第六章静力学专题
工程力学静力学课件第六章

§6-1 工程中的空间力系问题 §6-2 力在空间坐标轴上的投影 §6-3 力对轴之矩 §6-4 空间力系的平衡方程 §6-5 重心
【本章重点内容】
力在空间坐标轴上的投影 力对轴之矩 空间力系的平衡方程 重心
§6-1 工程中的空间力系问题
空间力系 :
作用在物体上的力系,其作用线分布在空间,而且 也不能简化到某一平面时,这种力系就称为空间力系。
一、空间力系的简化
• 空间力系的简化 • 与平面一般力系的简化方法一样,空间力系也
可以简化为一个合力和一个合力偶。
空间汇交力系的合力FR称为力系的主矢
FR F F
力系的主矢在FR三个坐标轴的投影分别为
FRx FRy
Fx Fy
FR
FRz
Fz
( Fx )2 ( Fy )2 ( Fz )2
实验法测算重心
出于以下两种原因,需要运用实验的方法来测算物体的重心。 (1)由于实际物体外形非常复杂,应用前述的方法难以求出物体的重 心,需要通过实验测算。 (2)对复杂物体进行初步设计后,由于加工误差,成型产品与设计值 有一定的差别,为了准确获得物体(产品)重心,需要通过实验测算 物体的重心。 实验方法主要有:悬挂法和称重法。
2、分割法—将形状较复杂的物体分成具有简单几何形状的几个部分,每一部 分容易确定,然后,再根据重心坐标求出组合形体的重心(简单几何图形的重 心坐标公式可以查表)。
例题6-4:试求图示截面重心的位置。 解:将图示截面分成图示三部分
A1 40cm2 , x1 10cm, y1 1cm A2 54cm2 , x2 0.75cm, y2 20cm A3 30cm2 , x3 6cm, y3 39cm
《静力学专题》课件

02 静力学分析方法
力的平衡分析
力的平衡分析
通过分析物体所受的力,确定物体在静止或匀速直线运动状态下 的受力情况。
力的平衡分析步骤
确定研究对象、分析受力情况、建立平衡方程、求解未知量。
力的平衡分析的应用
解决各种工程实际问题,如桥梁、建筑、机械等领域的结构稳定性 问题。
力矩平衡分析
力矩平衡分析
01
通过分析物体所受到的力矩,确定物体在旋转或角速度运动状
态下的受力情况。
力矩平衡分析步骤
02
确定研究对象、分析受力情况、建立力矩平衡方程、求解未知
量。
力矩平衡分析的应用
03
解决各种工程实际问题,如旋转机械、航空航天、车辆等领域
的设计和稳定性问题。
力的分布分析
力的分布分析
通过分析物体上力的分布情况,了解物体在不同位置的受力情况 。
学提供了更深入的理解和更广泛的应用。
静力学与流体力学
要点一
总结词
静力学与流体力学在研究流体平衡和稳定性方面有共同之 处,两者在理论和方法上相互借鉴。
要点二
详细描述
流体力学主要关注流体(液体和气体)的运动状态和受力 情况,而静力学则关注物体在静止或平衡状态下所受的力 。在研究流体平衡和稳定性方面,静力学中的一些基本原 理,如力的平衡和力矩平衡,可以应用于流体的平衡和稳 定性分析。此外,流体力学中的一些概念,如流体压力、 流速和流量等,也为静力学提供了更深入的理解和更广泛 的应用。
《静力学专题》ppt课 件
目录
Contents
• 静力学基础 • 静力学分析方法 • 静力学应用 • 静力学与其他学科的交叉
01 静力学基础
静力学的基本概念
工程力学(静力学与材料力学)(第2版)教学课件第6章 静力学专题

yC
A
ydA A
2 πR2
0R2
y
R2 y2 dy
yC
4R 3π
工程力学(静力学与材料力学)
7
例题 试计算图示环形图形形心C的纵坐标yC。
解:
环形图形大半圆图形小半圆图形
yC
Ao
πRo2 2
,
πRo2 2
4Ro 3π
yC Ao
yCo
4 Ro 3π
πRi2 4Ri
2 3π
yCo Ai yCi
第六章 静力学专题
§1 重 心 §2 形Байду номын сангаас心 §3 桁 架
工程力学(静力学与材料力学)
1
§1 重 心
重心概念
物体各部分所受地心引力,组成一空间平行力系,其 合力即重力,其作用线即重力作用线。
相对地球处于不同方位的同一物体,相应各重力作 用线的汇交点,称为重心。
对于物体的平衡与运动,重心的位置具有重要作用。
以桁架整体为研究对象,确定支座反力;截取多个节点为
研究对象,用平面力系平衡方程求解;设正法画杆件内力。
工程力学(静力学与材料力学)
12
本章结束
工程力学(静力学与材料力学)
13
解:
rz
z h
r
dV
πrz2dz
π
r2 h2
z
2dz
zC
V V
zdV dV
h
0
z3dz
h
0
z
2dz
h4 4
3 h3
3h 4
工程力学(静力学与材料力学)
4
§2 形 心
平面图形的形心
对于几何形体,由匀质物体重心公式 计算所得几何对应点,称为形心。
工程力学终于知识点

按右手螺旋法则, 扭矩矢量沿截面外法线方
向为正;反之为负。
3、扭矩图
扭矩图——表示扭矩沿杆件轴线变化规律的图线。
要求:
①扭矩图和受力图对齐; ②扭矩图上标明扭矩的大小、正负和单位。
快速作扭矩图
上上下下
四、薄壁圆筒的扭转
r0/d≥10 时,称为薄壁圆筒。
作用于杆上的合外力的作用线与杆的轴线重合。
2、变形特点
杆件产生轴向的伸长或缩短。
二、 内力·截面法·轴力和轴力图 1、内力
指截面上分布内力系的合力。
2、截面法
截面法四部曲 —截开 —取出 —代替 —平衡
3、轴力FN
沿杆轴线方向作用的内力,称为轴力。
轴力正负规定:
以使脱离体受拉为正,使脱离体受压为负。
F N3
一定为零力杆。
F N2
3
3、两杆相结,不共线,且节点 处的载荷沿其中某一杆件, 则另一杆为零力杆。
2 A 1 FN1 F N2
2
F A 1 F N1
三、重心坐标的一般公式
xc
Pi xi P
yc
Pi yi P
zc
Pi zi P
四、组合形体的重心
1、分割法
如果一个物体由几个简单形状的物体组合而成,而
此法适合于求桁架部分杆件的内力。
注:
(1)所有杆件均假设受拉。 (2)每次对象只能列出三个方程。 (3)合理确定坐标方位、矩心位置及方程次序。
两种方法并不 相互独立,可 配合使用。
二、桁架零力杆的判断方法
F N2
1、两杆相结,不共线,且节点
2
处没载荷,则此两杆均为零力杆。
第06章 静力学专题-桁架、重心

yili li
yi L
li
zC
zili li
zi li
L
极限为:
xdl
ydl
xC
C
L
,
yC
C
L
,
zdl
zC
C
L
z
O x
Pi zi
yi yC
C
P zC
xi
xC y
本章小结
1. 了解桁架的构成、结构特点以及桁架杆件内力的求解 方法;
§6.1 桁架 基本三角形 三个铰链为节点连接的三根杆构成的三角形 平面简单桁架
平面简单桁架节点和杆件数的关系 桁架节点数为n,杆件数为m,则 m-3=2(n-3) 即 m=2n-3 或 m+3=2n
§6.1 桁架 无冗杆桁架 从桁架中抽出任何一根杆,原有的几何形状不能保持, 没有多余杆件的桁架 有冗杆桁架 从桁架中抽出一根杆或几根杆件,原有的几何形状能 保持,桁架有多余杆件
S
xdS
ydS
xC
S
S
,
yC
S
S
,
zdS
zC
S
S
z ds
Pi
C
zi
PzC
O
yi
xi
xC y
x
yC
§6.3 重心
如果物体是均质等截面的细长线段,其截面尺寸与 其长度 L 相比是很小的,则重心公式为
xC
xili li
xi li
L
yC
(3)、节点连接三根杆,其中两根共线,并且在此节 点上无外载荷,则第三根杆件为零杆
工程力学 第6章 弹性静力学基本概念

第6章 弹性静力学的基本概念 刚体静力学研究力系的等效、简化与力系的平衡,并且应用这些基本概念和理论,分析、确定物体的受力。
刚体静力学的模型是质点和质点系以及刚体和刚体系。
弹性静力学则主要研究变形体受力后发生的变形,以及由于变形而产生的附加内力。
分析方法上,弹性静力学与理论力学刚体静力学也不完全相同。
建立在实验基础上的假定、简化计算,是弹性静力学分析方法的主要特点。
本章介绍弹性静力学的基本概念、研究方法以及弹性静力学对于工程设计的重要意义。
§6-1 弹性静力学概述 §6-2 弹性体及其理想化 6-2-1 各向同性与各向异性弹性体 6-2-2 各向同性弹性体的均匀连续性 §6-3 弹性体受力与变形特征 §6-4 应力及其与内力分量之间的关系 6-4-1 分布内力集度-应力 6-4-2 应力与内力分量之间的关系 §6-5 正应变与切应变 §6-6 线弹性材料的物性关系 §6-7工程结构与构件 §6-8 杆件变形的基本形式 §6-9 结论与讨论 6-9-1 关于刚体静力学模型与弹性静力学模型 6-9-2 关于弹性体受力与变形特点 6-9-3 关于刚体静力学概念与原理在弹性静力学中的 可用性与限制性 习 题 本章正文 返回总目录第6章 弹性静力学的基本概念 §6—1 弹性静力学概述 弹性静力学(elastic statics)又称材料力学(strength of materials),其研究内容分属于两个学科。
第一个学科是固体力学(solid mechanics),即研究物体在外力作用下的应力、变形和能量,统称为应力分析(stress analysis)。
但是,弹性静力学所研究的仅限于杆、轴、梁等物体,其几何特征是纵向尺寸远大于横向尺寸,这类物体统称为杆或杆件(bars或rods)。
大多数工程结构的构件或机器的零部件都可以简化为杆件。
静力学 第六章

转角: 转角: ϕ
单位:弧度(rad) 单位:弧度(rad)
理论力学
2、运动方程: 运动方程:
第六章 刚体的简单运动
ϕ = f (t )
分析:按定义, 分析:按定义,有一条直线不 动,不妨设为z 轴,那刚体要动 轴转, 只能绕z 轴转,或逆时针或顺时 针。取图示平面,开始在M0位置, 取图示平面,开始在M 位置, 任意时刻t 该平面在M位置 位置, 任意时刻 该平面在 位置, 随时间变化, 转过角度 ϕ 随时间变化,则
第六章 刚体的简单运动
ac = α × rc +ω×vc
vc = ω× rc =
i 0 50 2 j 0 -50 2 k 2 0
C 的加速度的矢量表达式:
α = −1.5k = (0, 0, −1.5)
rc = (50 2, −50 2,0)
= (100
2,100 2, 0)
α ×rc
=
i 0 50 2
a = at + an = R α 2 + ω 4
2 2
转动刚体上任一点的加速度的大小与 该点到转动轴的距离成正比, 该点到转动轴的距离成正比 , 等于刚体 角加速度的平方与角速度的四次方之和 的开方乘以该点到轴线的距离 at α = 2 全加速度方向: 全加速度方向: tan θ = an ω 与点的位置无关。 夹角 θ 与点的位置无关。
理论力学
第六章 刚体的简单运动
例1(习题6-4) 如图所示,摇杆机构的滑杆AB 以等速v 向上 运动,初瞬时摇杆OC 水平。摇杆长OC = a,距离OD = l。 求 当 ϕ = π/4时摇杆的角速度,C 点速度、法向加速度大小。 杆定轴转动, 解:1、OC 杆定轴转动,运动方程
静力学第6章 摩擦

假设D处先达到临界滑动状态,分别取杆、轮为研究对象
北京交通大学力学系
考虑摩擦时的平衡问题
假设D处先达到临界滑动状态,分别取杆、轮为研究对象
第6章 摩擦
M A (F ) 0
FNC
M O (F ) 0
FC' r FD r 0
l FB l 0 2
FNC 100 N
0.15FND FD FC
F2 fs FN2
sin f s cos G cos f s sin
y
补充方程
Fmax
北京交通大学力学系
考虑摩擦时的平衡问题
第6章 摩擦
例2 鼓轮B重500N,放在墙角里。已知鼓轮与水平地板间的 摩擦系数为0.25,而铅直墙壁假定是绝对光滑的,鼓轮上的绳 索下端挂着重物。设半径R=200mm,r=100mm。求平衡时重 物A的最大重量P。
补充方程
Fmin
sin f s cos G cos f s sin
北京交通大学力学系
考虑摩擦时的平衡问题
第6章 摩擦
例1 已知 、f、块重G。求平衡时F力的作用范围。
解: (2)F 较大时,物块有上滑趋势,摩擦力向下
F F
x
0 Fmax cos G sin F2 0 0 Fmax sin G cos FN2 0
静摩擦与滑动摩擦
第6章 摩擦
2、静滑动摩擦定律
静滑动摩擦力与接触面积无关; 静滑动摩擦力由平衡方程给出 (摩擦定律仅给出极限数值的大小)
FSmax FN fs
滑动摩擦力的极值 静止状态 临界状态 运动状态 FS=F F max;大小由平衡方程确定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 静力学专题习题解答习题6-1 如图6-1a 所示,一重980N 的物块放在倾斜角︒=30θ的倾斜面上。
已知接触面间的静摩擦因数2.0=s f 。
N F 588=的力沿斜面推物体,试问物体在斜面上处于静止还滑动?此时摩擦力为多大?解:假设物体静止,有沿斜面向上滑动趋势。
据此,作出受力图如图6-1b 所示,静摩擦力S F 沿斜面向下。
选取图示坐标轴,列平衡方程,解得N F N F N S 7.848,98==由于N N F f F F N s s S 7.1697.8482.0max =⨯==<所以,假设成立,物体静止。
此时的摩擦力N F S 98=。
习题6-2 如图6-2a 所示,已知某物块的质量kg m 300=,被力F 压在铅直墙面上,物块与墙面之间的静摩擦因数25.0=s f ,试求保持物体静止的力F 的大小。
解:(1)求保持物体静止的力F 的最大值 考虑物体处于即将向上滑动的临界平衡状态,受力图如图6-2b 所示。
列出2个平衡方程和最大静摩擦力补充方程,解得N F 13148max =考虑物体处于即将绕点A 翻到的临界平衡状态,受力图如图6-2b 所示。
由平衡方程0)(=∑F M A 得N F 6574max =所示,保持物块静止的力F 的最大值为N F 6574max =(2)求保持物块静止的力F 的最小值 考虑物体处于即将向下滑动的临界平衡状态,受力图如图6-2c 所示。
列出2个平衡方程和最大静摩擦力补充方程,解得N F 4383min =考虑物体处于即将绕点B 翻倒的临界平衡状态,受力图如图6-2c 所示。
由平衡方程0)(=∑F M B 得N F 2191min =所以,保持物块静止的力F 的最小值为N F 4383min =根据上述计算可知,保持物块静止的力F 的取值范围为N F N 65744383≤≤当N F 4383<时,物块将向下滑动;当N F 6574>时,物块将绕点A 翻倒。
习题6-3 如图6-3a 所示,两根相同的匀质杆和在端点B 用光滑铰链连接,A 、C 端放在粗糙的水平面上。
若当成等边三角形是,系统在铅直面内处于临界平衡状态,试求杆端与水平面间的静摩擦因数。
解:先选取整个系统为研究对象,作为受力图如图6-3b 所示,其中P 为杆的重力。
由对称性可得P F F CN AN ==再选取杆为研究对象,作出受力图如图6-3c 所示。
以点B 为矩心,列平衡方程060sin 602160cos ,0)(max =︒•-︒•-︒•=∑l F COS P l F F M Cs CN a 最大静摩擦力补充方程CN s Cs F f F =max联立解之,得杆端与水平面间的静摩擦因数289.063==s f 习题6-4 平面机构如图6-4a 所示,曲柄长为l ,其上作用一矩为M 的力偶;在图示位置,曲柄水平,连杆与铅垂线的夹角为θ;滑块B 与水平面之间的静摩擦因数为s f ,且s f >θtan 。
若不计构件自重,试求机构在图示位置保持静平衡时力F 的大小,已知力F 与水平线之间的夹角为β。
解:首先选取曲柄为研究对象,注意到连杆为二力杆,作出受力图如图6-4b 所示。
由平面力偶系平衡方程得︒60cos l M F A(1)求机构保持静平衡时力F 的最小值 此时滑块处于即将向右滑动的临界状态,作出受力图如图6-4c 所示,其中,=B F ︒60cos l M F A 。
列出平衡方程和最大静摩擦力补充方程,联立解之,得机构保持静平衡时力F 的最小值)cos(cos )sin()sin (cos cos )cos (sin min f f s s l M f l f m F ϕβθϕθββθθθ--=+-= (2)求机构保持静平衡时力F 的最大值 此时滑块处于即将向最滑动的临界平衡状态,作出受力图如图6-4d 所示。
列出平衡方程和最大静摩擦力补充方程,联立解之,的机构保持静平衡时力F 的最大值)cos(cos )sin()sin (cos cos )cos (sin min f f s s l M f l f m F ϕβθϕθββθθθ++=-+= 综上所述,机构在图示位置保持静平衡时力F 的取值范围为≤≤--F l M f f )cos(cos )sin(ϕβθϕθ)cos(cos )sin(f f l M ϕβθϕθ++式中,s f f arctan =ϕ。
习题6-5 凸轮推杆机构如图6-5a 所示,已知推杆与滑到间的静摩擦摩擦因数为s f ,滑道高度为b 。
设凸轮与推杆之间为光滑接触面,并不计推杆自重,试问a 为多大,推杆才不致被卡住。
解:(1)解析法 选取推杆为研究对象,设推杆处于即将向上滑动的临界平衡状态,作为受力图如图6-5b 所示,其中,F 为凸轮对推杆的推力。
这是平面任意力系,列出3个平衡方程和2个最大静摩擦力补充方程,联立解之,得sf b a 2= 故有结论,当sf b a 2<时,推杆才不致被卡住。
(2)几何法 选取推杆为研究对象,设推杆处于即将向上滑动的临界平衡状态,将接触点A 、B 处的最大静摩擦力和法向约束力均用其全约束力取代,作出受力图如图6-5c 所示。
由三方里平衡汇交定理可知,退杆所受三力F 、A F 和B F 的作用线相交于同一点O 。
根据图示几何关系有2/tan d a c f +=ϕ 2/tan d a c b f --=ϕ 联立上述两式,并注意到s f f =ϕtan ,既得sf b a 2= 习题6-6 专家的宽度为250,曲柄与在G 点铰链,尺寸如图6-6a 所示。
已知砖重120N;提起砖的力F 作用在曲柄上,期作用线与砖夹的中心线重合;砖夹与砖间的静摩擦因数5.0=s f 。
试问距离b 为多大时才能把砖夹起?解:考虑砖块处于即将下滑的临界平衡状态。
先选取砖块为研究对象,作出受力图如图6-6b 所示,由对称性和最大静摩擦力补充方程,易得N F F N F F DN AN Ds As 120,60max max ====在选取曲线为研究对象,作出受力图如图6-6c 所示,其中N F F N F F N P F AN AN As As120,60,120max max =='=='== 以G 点为矩心,由平衡方程0)(=∑F M G ,解得110故有结论,当距离mm b 110≤是才能把砖夹起。
习题6-7 尖劈顶重装置如图6-7a 所示,尖劈A 的顶角为a ,在B 快上受重力为P 的重物作用,尖劈A 与B 快间的静摩擦因数为s f ,有滚珠处表示接触面光滑。
若不计尖劈A 与B 块的自重,试求:(1)顶起重物所需的力F ;(2)去除F 后能保证自锁的顶角a 。
解:(1)求顶起重物所需的力F 考虑即将顶起重物的临界平衡状态。
分别选取B 快、尖劈A 为研究对象,作出受力分别如图6-7b 、c 所示,其中,全约束力RF '与R F 互为作用力与反作用力,全约束力与斜面法线间的夹角为摩擦角s f f arctan =ϕ。
对于图6-7b ,列平衡方程0)(,0=++-=∑f RCOS y a F p Fϕ对于图6-7c ,列平衡方程 0)(,0sin =+'+-=∑f Rx a F p Fϕ 联立解之,得 )tan(f a P F ϕ+=故有结论,顶起重物所需的力F 的大小为)tan(f a P F ϕ+>(2)求去除F 后能保证自锁的顶角a 去除F 后,B 块在重力P 的作用下,有下滑趋势,带动尖劈A 有向右滑动的趋势。
考虑即将滑动的临界平衡状态,作为尖劈A 的受力图如图6-7d 所示,根据二力平衡原理,此时的全约束力R F 必沿铅垂方向,从而得f a ϕ=。
故有结论,去除F 后能保证自锁的顶角s f f a arctan =≤ϕ此题6-8 试用节点法计算如图6-8a 所示平面桁架各杆内力。
解;首先选取桁架整体为对象(见图6-8a ),求得支座约束力KN F KN F kN F Br BY A 20,29,21===显然,杆7为零杆,96F F =.由节点法,依次选取节点A 、C 、D 、B 为研究对象,即可求出所有杆件内力。
节点A :受力图如图6-8b 所示,列平衡方程,解得杆1、杆2的内力kN F kN F 21,7.2921=-=节点C :受力图如图6-8c 所示,列平衡方程,解得杆3、杆4的内力kN F kN F 21,2143-==节点D :受力图如图6-8d 所示,列平衡方程,解得杆5、杆6(杆9)的内力kN F F kN F 9,15965===节点B ;受力图如图6-8e 所示,由平衡方程0=∑y F ,得杆8的内力kN F 0.418-=在上述计算结果中,正好代表杆件受拉,负号代表杆件受压。
习题6-9 平面桁架如图6-9a 所示,已知2m ,3吗,10。
是用节点法计算各杆内力。
解:首先选取桁架整体为研究对象(见图6-9a ),求得支座约束力KN F KN F kN F Er Ey A 10,25.11,75.8-===可以判断,杆B B '、C B '、C C '与D D '为零杆;E D F CD BC AB C B B A F F F F F F D C ''''===='',,。
故有节点法,依次选取节点A 、E 、D 为研究对象,即可求出所有杆件内力。
节点A :受力图如图6-9b 所示,列平衡方程,解得杆AB B A ,'的内力kN F kN F AB B A 67.11,58.14=-='故得杆BC C B ,''和CD 的内力KN F F F kN F F AB CD BC B A C B 67.11,58.14===-=='''节点E :受力图如图6-9b 所示,列平衡方程,解得杆DE E D ,'的内力kN F kN F DE E D 25,75.18=-='故得杆D C ''的内力kN F F E D D C 75.18-=='''节点D :受力图如图6-9d 所示,由平衡方程0=∑y F ,得杆D C '的内力kN F D C 0.24='在上述结果中,正号代表杆件受拉,负号代表杆件受压。
习题6-10 平行桁架如图6-10a 所示已知m l kN F 3,3==。
试用节点法计算各杆内力。
解:改梯无需求支座反力,可直接由节点法求出各杆内力。
显然,杆、为零件,依次选取节点E 、B 、D 为研究对象,即可求出所有杆的内力。