沪教版五年级相遇追及问题练习及答案

合集下载

相遇及追及问题(含答案)

相遇及追及问题(含答案)

.相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x= _________ 分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x= _________ 分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________ 分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________ 分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________ )秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________ 分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________ 点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________ .9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________ 圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________ 分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________ 分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm 的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________ 次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。

沪教版五年级下应用题相遇追及、流水问题

沪教版五年级下应用题相遇追及、流水问题

龙文教育学科教师辅导讲义教师:学生:日期: 年月星期:时段:课题期中复习之相遇追及、流水问题1甲、乙两列火车分别从A、B两地相对开出,甲车的速度是58千米/小时,乙车的速度是46千米/小时,甲、乙两车相遇后继续前进,甲到达B地,乙到达A地后,立即按原路返回,两车从开始到第二次相遇共用9小时,求A、B 两地相距多少千米?2甲乙两个城市相距1030千米,从甲城到乙城开出一列普通客车,每小时行驶65千米,2小时后,从乙城开出一列快车,每小时行驶85千米。

快车开出多少小时同普通客车相遇?2甲、乙两辆汽车,同时从东西两地相向而行,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地间的公路是多少千米?4好马每天走120千米,劣马每天走75千米,劣马先走12天,好马多少天可以追上劣马?1.张、李二骑车同时从甲地出发,同一方向行进。

张比李每小时快4千米,张比李早20分钟通过途中乙地。

当李到达乙地时,张又前进了8千米,那么甲、乙两的距离是多少千米?2.上午8时有一列货车以每小时48千米的速度从甲城开往乙城,上午10时又有一列客车以每小时70千米的速度从甲城开往乙城,为了行驶的安全,列车间的距离不应小时8千米,货车最晚应在什么时候停车让客车通过?3.有甲、乙两列火车,甲车车长115米,每秒钟行驶27米,乙车车长130米,每秒钟行驶32米。

从甲车追及乙车到两车离开,共需要多长时间?4.一架飞机从机场出发到某地执行任务,原计划每分钟飞行8千米。

为了争取时间,现将飞行速度提高到每分钟12千米,结果比原计划早到了40分钟。

问机场与目的地相距多远?1.一只小船从甲地到乙地往返一次共用2小时。

回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行驶6千米。

那么甲、乙两地距离是多少千米?2.一只轮船的速度是每小时3600米,船在水的流速为30米/分钟的河里航行,从下游的一个港口到上游的某地,再返回到原港口,共用了3小时20分,则这条船从下游港口到上游某地共航行了多少米?3.一艘货轮顺流航行36千米,逆流航行12千米共用了10小时;顺流航行20千米,再逆流航行20千米也用10小时;那么顺流航行12千米,又逆流航行24千米要用多少小时?4.甲、乙两船在静水中的速度分别为33千米/小时和25千米/小时。

五年级相遇追及问题

五年级相遇追及问题

补充练习—行程问题(相遇和追及)1.小东和小英同时从两地出发,相向而行。

小东每分钟走50米,小英每分钟走40米。

经过3分钟两人相遇。

两地相距多远?2.两只轮船同时从上海和武汉相对开出。

从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇。

上海到武汉的航路长多少千米?3.一艘轮船从甲港开往乙港,每小时行25千米,4.5小时到达。

从乙港返回甲港时用了5小时,返回时平均每小时行多少千米?4.小明和小红放学后在校门口反向各自回家,小明平均每分钟走65m,10分钟到家。

小红平均每分钟走45m,几分钟到家?(已知小明和小红家相距920千米)5.甲乙两艘轮船同时从北京开往上海。

甲船每小时行36.5千米,比乙船每小时少行6.7千米。

8小时后,两船相距多少千米?6.长沙到广州的铁路长699千米。

一列货车从长沙开往广州,每小时行69千米。

这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行71千米。

再经过几小时两车相遇?7.甲、乙两人分别从A、B两地同时相向而行,甲速度是乙速度的1.5倍,在距离中点30米处相遇。

相遇时甲、乙两人分别走了多少米?(提示:相遇时甲比乙多走了60米)8.甲乙两人从A地到B地,乙每分走65米,先走了300米后甲才出发,甲每分走80米。

甲追上乙需要多少时间?9.甲乙两人从A地到B地,乙每分走65米,先走了300米后甲才出发,20分钟后甲追上乙。

求甲的速度。

10.甲乙两人从A地到B地,甲以每分80米的速度去追先出发的乙,已知乙每分走65米。

甲用20分钟追上乙。

乙比甲先出发多少米?11.两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发几小时追上第一辆汽车?12.A B两地相距600米,甲乙两人同时分别从A、B两地向同一个方向行走,甲前乙后。

甲每分行40米,6分钟后乙追上甲,求乙的速度。

小学五年级相遇追击问题练习题(填空题、应用题)

小学五年级相遇追击问题练习题(填空题、应用题)

小学五年级相遇追击问题练习题(填空题、应用题)【导语】世界上很多国家都有国内的奥数竞赛,国际间的奥数竞赛也开展得如火如荼。

奥数在其它一些国家并不表现出“病入膏肓”,相反,奥数成了一些国家发现杰出数学人才的平台。

【填空题】1、甲乙两地相距49千米,AB两人同时从两地相向而行,甲每小时行3千米,乙每小时行4千米,()小时可以相遇。

2、甲、乙两人分别从相距18千米的东西两村同时向而行,甲在乙后面,甲骑自行车每小时行14千米,乙步行每小时行5千米,1小时甲可以追上乙()千米,()小时后甲可以追上乙。

3、甲乙两地相距480千米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,货车的速度每小时行()千米。

4、顺水速度=()+()。

逆水速度=()-()。

5、一艘船在一条河中的逆水速度是每小时18千米,顺水速度是每小时26千米,那么这艘船在河中的静水速度每小时()千米,水流速度是每小时()千米。

6、如果甲乙两人在一个400米环形跑道上,从同一点出发相向而行,那么两人相遇一次共行()米。

如果两人同向而行,甲追上乙,要比乙多行()米。

7、甲乙两人同向而行,甲比乙早出发2小时,甲的速度是每小时3千米,乙的速度是每小时4千米,那么甲乙两人的路程差是()千米;乙()小时后可以追上甲,追上时甲行()千米,乙行()千米。

【应用题】1、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快。

开始后1小时,甲与乙在高山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。

那么甲回到出发点共用多少小时?2、甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车。

小张和小王分别骑车从甲、乙两地出发,相向而行。

每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车。

已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟?3、小张、小王和小李同时从湖边同一地点出发,绕湖行走。

小学数学《行程问题之相遇与追击》练习题(含答案)

小学数学《行程问题之相遇与追击》练习题(含答案)

小学数学《行程问题之相遇与追击》练习题(含答案)内容概括我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t )、速度(v )和路程(s )这三个基本量,它们之间的关系如下:(1)速度×时间=路程 可简记为:s = vt(2)路程÷速度=时间 可简记为:t = s ÷v(3)路程÷时间=速度 可简记为:v = s ÷t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和×相遇时间=路程和 t v S 和和=追及问题:速度差×追及时间=路程差 t v S 差差=对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!相遇问题【例1】 两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?【例2】 大头儿子的家距离学校3000米,小头爸爸从家去学校,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【例3】 甲乙两车同时从A 、B 两地出发相向而行,6小时相遇.相遇后甲车继续行驶4小时到达B 地.乙车每小时行30千米,A 、B 两地相距多少千米?【例4】南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?【例5】夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?【例6】甲、乙两列火车同时从东西两镇之间的A地出发向东西两镇反向而行,它们分别到达东西两镇后,再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?【例7】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.追击问题【例8】龟兔赛跑同时出发,全程7000米,乌龟以每分30米的速度爬行,兔子每分钟跑330米.兔子跑了10分钟就停下来睡了200分钟,醒来后立即以原速往前跑.当兔子追上乌龟时,离终点的距离是多少千米?【例9】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?【例10】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第一次超过正南需要多少分钟?第三次超过正南需要多少分钟?【例11】两名运动员在湖的周围环形道上练习长跑。

沪教版五年级数学下册同步练习题列方程解决问题四

沪教版五年级数学下册同步练习题列方程解决问题四

第三讲:列方程解决问题(相遇问题、追及问题)第一部分:一、相遇问题。

例1:甲乙两地相距720千米,一辆轿车和一辆客车分别从甲乙两地同时出发,相向而行,轿车平均每小时行100千米,客车平均每小时比轿车少行20千米,客车出发几小时会与轿车相遇?线段图:等量关系式:解:设。

答:。

练习:1、沪宁高速公路全长约270千米,一辆轿车和一辆客车分别从上海和南京两地同时出发,相向而行。

轿车平均每小时行100千米,客车平均每小时行80千米。

几小时后两车还相距18千米?2、小亚和小丁丁从相距27千米的两地同时相向而行,小亚每小时行4千米,小丁丁每小时比小亚多行1千米,几小时后两人相遇?23、甲乙两车同时从东、西两城出发,相向而行,5小时后相遇。

相遇后乙继续行4小时到达东城,甲每小时行65千米。

东、西两城相距多少千米?二、追及问题。

例2:小胖和弟弟从家出发,比赛谁先跑到学校。

弟弟先跑100米后,小胖再从家中出发,以每分钟110米的速度追赶弟弟。

5分钟后,小胖正好在学校门口追上弟弟,问弟弟每分钟跑多少米?线段图:等量关系式:3解:设。

练习:1.小胖和弟弟从家出发,比赛谁先跑到学校。

小弟弟先跑100米后,小胖再从家中出发,以每分钟110米的速度去追赶弟弟,弟弟每分钟跑90米。

问:几分钟后,哥哥正好在学校门口追上弟弟?42.小胖和弟弟从家出发,比赛谁先跑到学校。

小弟弟先跑一段距离后,小胖再从家中出发,以每分钟110米的速度去追赶弟弟,弟弟每分钟跑90米。

5分钟后,哥哥正好在学校门口追上弟弟,问:弟弟先跑了多少米?3.在一条马路上,警察发现前方50米有一个小偷在偷电瓶车,这时小偷也发现了警察,于是以每分钟150米的速度逃跑,警察以每分钟200米的速度去追,照这样,警察几分钟能追上小偷?54、甲乙两人同时从AB两地相向而行,甲每分钟走120米,乙每分钟走140米,途中甲停下来休息了2分钟,结果甲、乙两人在距离中点150米处相遇,问AB两地相距多少米?第二部分:综合提高。

沪教版五年级下追及问题

沪教版五年级下追及问题

沪教版五年级下追及问题在我们的数学学习中,追及问题是一个非常有趣且实用的知识点。

对于沪教版五年级的同学们来说,理解和掌握追及问题是一项重要的任务。

追及问题,简单来说,就是两个物体在同一直线上运动,一个速度快,一个速度慢,速度快的在后面追赶速度慢的,最终追上的这样一种情况。

比如说,小明和小红在操场上跑步,小明每秒跑 5 米,小红每秒跑3 米。

一开始小红在小明前面 10 米的地方,那么经过多久小明能够追上小红呢?这就是一个典型的追及问题。

要解决追及问题,关键在于找到两者之间的速度差以及初始的距离差。

速度差就是快的速度减去慢的速度,在刚才的例子中,小明和小红的速度差就是 5 3 = 2 米每秒。

而初始的距离差是 10 米。

我们知道,时间=距离 ÷速度。

在追及问题中,追上所需的时间就等于初始的距离差除以速度差。

所以,小明追上小红所需的时间就是 10 ÷ 2 = 5 秒。

再来看一个例子,甲车每小时行 60 千米,乙车每小时行 40 千米,乙车先出发 2 小时,那么甲车需要多久才能追上乙车?首先,乙车先出发 2 小时,那么它先行驶的距离就是 40×2 = 80 千米。

甲车和乙车的速度差是 60 40 = 20 千米每小时。

所以,甲车追上乙车所需的时间就是 80÷20 = 4 小时。

在解决追及问题时,我们还需要注意单位的统一。

如果速度的单位是米每秒,距离的单位是米;如果速度的单位是千米每小时,距离的单位就是千米。

追及问题在我们的生活中也有很多实际的应用。

比如警察追捕罪犯,两辆汽车在公路上行驶等等。

对于五年级的同学们来说,可能一开始会觉得追及问题有点难理解,但只要多做一些练习题,掌握其中的规律,就会发现其实并不难。

做追及问题的题目时,我们可以先画出简单的示意图,帮助我们更好地理解题目中的条件和关系。

然后,根据已知条件找出速度差和距离差,再套用公式计算出时间。

另外,还有一些变形的追及问题。

沪教版五下数学相遇追及问题

沪教版五下数学相遇追及问题

沪教版五下数学相遇追及问题
相遇追及问题是数学中一个非常有趣的问题,其实就是指两个人在不同的时间从不同的位置出发,然后以不同的速度相向而行,最后相遇的问题。

这个问题可以归纳为以下几个要素:
1. 时间:两个人出发的时间。

2. 位置:两个人出发的位置。

3. 速度:两个人的速度。

4. 相遇:两个人何时相遇。

那么,我们怎么解决这个问题呢?我们可以分别考虑两个人的行进过程,找到他们相遇的时间点。

假设两个人分别为A、B,A出发点为a,速度为va,B出发点为b,速度为vb,相遇点为x,相遇时间为t。

根据以上要素,我们可以得到以下公式:
A:x = a + va*t
B:x = b + vb*t
因为他们相遇的地点的坐标肯定是相同的,所以我们可以将两个式子
组合起来,得到一个关于t的方程:
a + va*t =
b + vb*t
如果我们将未知数t移到一边,常数项移到另一边,就可以解出t的值:t = (b-a)/(va-vb)
得到t之后,就可以求出相遇点的坐标了:
x = a + va*t 或 x = b + vb*t
总结一下:
1. 计算两人相遇的时间:t = (b-a)/(va-vb)
2. 计算两人相遇的地点:x = a + va*t 或 x = b + vb*t
以上就是解决相遇追及问题的基本方法,希望大家能够轻松地运用这
种方法解决各种有趣的数学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇追及问题一、同步知识梳理1、s 、v 、t 探源我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。

那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。

表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。

表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。

velocity 表示物理学上的速度。

与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。

关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示路程。

2、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s = vt路程÷速度=时间 可简记为:t = s÷v路程÷时间=速度 可简记为:v = s÷t3、平均速度平均速度的基本关系式为:平均速度总路程总时间;总时间总路程平均速度;总路程平均速度总时间。

二、同步题型分析题型1:简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【解析】 原来韩雪到校所用的时间为20分钟,速度为:4802024÷=(米/分),现在每分钟比原来多走16米,即现在的速度为241640+=(米/分),那么现在上学所用的时间为:4804012÷=(分钟),7点40分从家出发,12分钟后,即7点52分可到学=÷=÷=⨯校.【例 2】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【解析】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。

①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。

法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午7+10-12=5(时) 回到邮局的。

【例 3】一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)【解析】火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了(1360÷340=)4秒.可见火车行1360米用了(57+4=)61秒,将距离除以时间可求出火车的速度. 1360÷(57+1360÷340)=1360÷61≈22(米)【例 4】甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?【解析】方法一:由于前一半时间与后一半时间的平均速度是已知的,因此可以计算出这人步行的时间.而如果了解清楚各段的路程、时间与速度,题目结果也就自然地被计算出来了.应指出,如果前一半时间平均速度为每分钟80米,后一半时间平均速度为每分钟60米,则这个人从甲走到乙的平均速度就为每分钟走(80+60)÷2=70米.这是因为一分钟80米,一分钟60米,两分钟一共140米,平均每分钟70米.而每分钟走80米的时间与每分钟走60米的时间相同,所以平均速度始终是每分钟70米.这样,就可以计算出这个人走完全程所需要的时间是6720÷70=96分钟.由于前一半时间的速度大于后一半时间的速度,所以前一半的时间所走路程大于6720÷2=3360米.则前一个3360米用了3360÷80=42分钟;后一半路程所需时间为96-42=54分钟.方法二:设走一半路程时间是x分钟,则80x+60x=6720,解方程得:x=48分钟,因为80×48=3840(米),大于一半路程3360米,所以走前一半路程速度都是80米,时间是3360÷80=42(分钟),后一半路程时间是48+(48-42)=54(分钟).评注:首先,从这道题我们可以看出“一半时间”与“一半路程”的区别.在时间相等的情况下,总的平均速度可以是各段平均速度的平均数.但在各段路程相等的情况下,这样做就是不正确的.其次,后一半路程是混合了每分钟80米和每分钟60米两种状态,直接求所需时间并不容易.而前一半路程所需时间的计算是简单的.因此,在几种方法都可行的情况下,选择一种好的简单的方法.这种选择能力也是需要锻炼和培养的.三、课堂达标检测检测题1、甲、乙两地相距100千米。

下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【解析】马车从甲地到乙地需要100÷10=10小时,在汽车出发时,马车已经走了9-3=6(小时)。

依题意,汽车必须在10-6=4小时内到达乙地,其每小时最少要行驶100÷4=25(千米).检测题2、两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。

客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?⨯=(千米),客车到达某地需要的时间为:【解析】北京到某地的距离为:6015900-=(小时),所以客车要比货车提前开出3小9005018÷=(小时),18153时。

检测题3、甲、乙两辆汽车分别从 A、B 两地出发相向而行,甲车先行三小时后乙车从 B 地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求 A、 B 两地间相距多少千米?【解析】在整个过程中,甲车行驶了 3+5= 8=(小时),行驶的路程为:48× 8 =384(千米);乙车行驶了 5 小时,行驶的路程为: 50 ×5 =250(千米),此时两车还相距15 千米,所以 A 、 B 两地间相距:384+250+15 =649(千米).检测题4、一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?【解析】我们可以先求出2小时梨和桃走的路程:(200150)2700+⨯=(千米),又因为还差500千米,所以梨和桃之间的距离:7005001200+=(千米).检测题5、两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?【解析】两车的相距路程减去5小时两车共行的路程,就得到了两车还相距的路程:480(4042)548041070-+⨯=-=(千米).一、专题精讲例1、(难度级别※※)(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【解析】汽车A在与汽车B相遇时,汽车A与汽车C的距离为:(8050)2260+⨯=千米,此时汽车B与汽车C的距离也是260千米,说明这三辆车已经出发了260(7050)13÷-=小时,那么甲、乙两站的距离为:(8070)131950+⨯=千米.例2、(难度级别※※)有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?a)甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).二、 专题过关检测题1、难度级别 ※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?【解析】 那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(67.5+75)=5130米。

检测题2、(难度级别 ※※)小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【解析】 画一张示意图:图中A 点是小张与小李相遇的地点,图中再设置一个B 点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B 与A 之间这段距离:()54.810.8 1.360+⨯=(千米),这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是:1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A 到甲地需要:130÷2=65(分钟).从乙地到甲地需要的时间是:130+65=195(分钟)=3小时15分.小李从乙地到甲地需要3小时15分.检测题3、(难度级别 ※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【解析】 那2分钟是甲和丙相遇,所以距离是(60+70)×1=130米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=130÷(65-60)=26分钟,所以路程=26×(65+70)=3510米。

相关文档
最新文档