人教版七年级上册数学《有理数的加减混合运算》培优训练

合集下载

人教版七年级数学上 专题6有理数的加减(培优训练)

人教版七年级数学上 专题6有理数的加减(培优训练)

专题6 有理数的加减知识解读1.运用运算律简便运算①加法交换律:两个数相加,交换加法的位置,和不变,即。

②加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再加上第一个数,和不变,即。

运用加法交换律和结合律将相对容易计算的数结合在一起进行计算,能简便运算。

2.巧妙裂项简便运算有的计算题,直接计算难度较大,而将其中的一些数拆分成几个数后,反而能简便运算。

3.巧设参数简便运算在一些计算中,如果将一组式子看成一个整体,设其为x(或其他字母),则可简便运算。

培优学案典例示范1.运用运算律简便运算例1:计算:(1)-8+26-17-26+15;(2)【提示】(1)将26与-26结合,-8和-17结合;(2)将结合。

【答案】(1) -10 (2) 5【技巧点评】(1)互为相反数的数结合在一起;(2)相加得整数的数结合在一起;(3)同分母的分数或容易通分的分数结合在一起;(4)相同符号的数结合在一起。

【跟踪训练1】计算:(1;(2;(3.【答案】(1)(2)-50 (3)2.巧妙裂项简便运算例2 计算:【提示】依进行裂项,然后邻相相消进行化简求和。

【答案】【技巧点评】表示正整数,那么有以下规律:①;②;③;④【跟踪训练2】计算:(且n为整数)【答案】3.巧设参数简便计算例3 计算:(1)(2)。

【提示】(1)设,则,将两式相加可得;(2)设,则,后式减前式得.【答案】(1) 1016064 (2)【技巧点评】等差数列的各式之和为,每一次项与前一项的比为的等比数列的各数之和为【跟踪训练3】计算:= 。

【答案】培优训练1. -3-(-2)的值是()【答案】A2.计算的值为()【答案】B3.计算:= 。

【答案】44.一列数,其中则。

【答案】5.计算:(1)(2);(3);(4)【答案】(1) 3 (2) 3.1 (3) 0 (4) 06.计算:;【答案】7.已知,计算:(1)(2)【答案】(1)10100 (2)21050挑战竞赛1.已知,则A与1的大小关系是()【答案】C2.设,,则S-T=()【答案】B3.计算:.【答案】4.计算:。

人教版数学七年级上册 有理数的加减法 同步提优练习卷【含答案】

人教版数学七年级上册  有理数的加减法 同步提优练习卷【含答案】

人教版数学七年级上册 有理数的加减法 同步提优练习卷一、选择题1.武汉市元月份某一天早晨的气温是-3℃,中午上升了8℃,则中午的气温是( )A .-5℃B .5℃C .3℃D .-3℃2.两个数相加,如果和小于每个加数,那么这两个加数( )A .同为正数B .同为负数C .一正一负且负数的绝对值较大D .不能确定3.下列各式错误的是()A .B .C .D .1(6)5-+=-0(3)3-+=-(6)(6)0+--=(15)(5)10---=-4.在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是( )A .2B .﹣1C .﹣3D .﹣45.不改变原式的值,将写成省略加号和括号的形式是()1(2)(3)(4)-+--+-A .B .C .D .1234--+-1234--+1234-+-1234---6.7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了A .加法交换律B .加法结合律C .分配律D .加法交换律与结合律7.计算43+(﹣77)+27+(﹣43)的结果是( )A .50B .﹣104C .﹣50D .1048.若x 的相反数是﹣3,|y |=5,则x +y 的值为( )A .﹣8B .2C .﹣8或2D .8或﹣2二、填空题9.计算:_________.|6|(5)--+=10.气温由﹣20℃下降50℃后是__℃.11.式子-6-8+10-5读作__________________或读作____________________。

12.若a 是最大的负整数,b 是绝对值最小的数,则a +b =_________.13.计算:_____.(1)(2)(3)(4)(2019)(2020)++-+++-++++-=14.若“方框”表示运算x ﹣y +z +w ,则“方框”的运算结果是=_____.三、解答题15.在横线上填写每步运算的依据.解:(-6)+(-15)+(+6)=(-6)+(+6)+(-15)(____________________________________)=[(-6)+(+6)]+(-15)(____________________________________)=0+(-15)(____________________________________)=-15(____________________________________)16.计算:.7511---莉莉的解法如下:7511---(75)11=---211=--(211)=--(9)=--.9=请问莉莉的解法正确吗?如果不正确,请写出正确解法.17.计算:(1); (2);(35)(17)(5)(8)++-+++-( 2.8)( 3.6) 3.6-+-+(3); (4).151237⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭1(3)7(54)2-++-18.计算:(1) (2)(7)(5)(4)(10)--++---2111()(5(4)93663-++--19.计算:(1);(12.56)(7.25) 3.01(10.01)7.25-+-++-+(2);23(72)(22)57(16)+-+-++-(3).11172.254( 2.5)2 3.4425⎛⎫⎛⎫+-+-+++- ⎪ ⎪⎝⎭⎝⎭20.已知,,且b <a ,求a+b 的值.34a =23b =21.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位).星期一二三四五六日水位变化/m 0.20+0.81+0.35-0.13+0.28+0.36-0.01-问题:(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?22.有一只青蛙,坐在深井底,井深4m ,青蛙第一次向上爬了1.2m ,又下滑了0.4m ;第二次向上爬了1.4m,又下滑了0.5m;第三次向上爬了1.1m,又下滑了0.3m;第四次向上爬了1.2m,又下滑了0.2m.(1)青蛙爬了四次后,距离爬出井口还有多远?(2)青蛙第四次之后,一共经过多少路程?(3)若青蛙第五次向上爬的路程与第一次相同,问能否爬出井?答案1.B【分析】根据有理数的加法即可得.【详解】-+=由题意得:中午的气温为385C︒故选:B.本题考查了有理数的加法运算,理解题意,正确列出运算式子是解题关键.2.B【分析】根据有理数的加法法则,两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.【详解】两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(−1)+(−3)=−4,−4<−1,−4<−3,故选B.本题考查了有理数的加法,掌握有理数的加法法则、绝对值及比较两个数的大小是解题的关键.3.C【分析】利用有理数减法法则即可求出.【详解】A、1-(+6)=-5正确,B、0-(+3)=-3正确,C、(+6)-(-6)=12故错,D、(-15)-(-5)=-10正确,故选C.本题考查有理数减法,减去一个数等于加上这个数的相反数,学生们要熟练掌握此法则即可.4.D【分析】找出值最小的两个数相加即可.【详解】解:(−1)+(−3)=−4,故选:D.本题主要考查了有理数的加法,熟练掌握运算法则是解答本题的关键.5.C【分析】根据加减法之间的关系,将加减混合运算写出省略加号代数和的形式.【详解】原式=1-2+3-4,故选:C.考查有理数的加减混合运算,利用加减法的关系省略加号代数和是常用的形式,代数式因此比较简洁明了.6.D【分析】式子由7+(–3)+(–4)+18+(–11)变为(7+18)+[(–3)+(–4)+(–11)]在这个过程中运用了加法的运算定律加法交换律和加法结合律.【详解】7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了加法交换律与结合律.故选D.本题考查了有理数的加减混合运算,在解答中运用了加法交换律和加法结合律.7.C【分析】运用加法交换律将正数和负数分别放在一起,再按照有理数加法的运算法则计算即可.【详解】解:原式=43+27+(﹣77)+(﹣43)=70+(-120)=-50,故选择C.本题考查了有理数的加法.8.D【分析】根据相反数的定义,绝对值的性质求出可知x 、y 的值,代入求得x +y 的值.【详解】解:若x 的相反数是﹣3,则x =3;|y |=5,则y =±5.①当x =3,y =5时,x +y =8;②当x =3,y =﹣5时,x +y =﹣2.故选:D .本题考查了相反数和绝对值的性质.只有符号不同的两个数互为相反数;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.9.1【分析】根据绝对值的性质和减法法则进行计算即可得解.【详解】解:,|6|(5)6(5)1--+=+-=故1.本题考查了绝对值的性质和减法法则,熟悉相关性质是解题的关键.10.-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴-70.本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.11.负6、负8、正10、负5的和-6减8加10减5.【分析】根据已知算式-6-8+10-5读出来即可.【详解】解:式子-6-8+10-5读作:负6、负8、正10、负5的和,或读作:-6减8加10减5;故负6、负8、正10、负5的和,-6减8加10减5.本题考查了有理数的加减混合运算的应用,能理解算式的意义是解此题的关键.12.-1【分析】根据-1是最大的负整数,0是绝对值最小的数计算计可.【详解】∵a 是最大的负整数,∴a=-1,b 是绝对值最小的数,∴b=0,∴a+b=-1.故-1.此题的关键是知道a 是最大的负整数是-1,b 是绝对值最小的数是0.13.1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式.(12)(34)(20192020)11111010=-+-++-=-----=- 故答案为.1010-本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.14.-8【详解】根据方框定义的运算得,-2-3+(-6)+3=-8.故答案为-8.15.(1)加法交换律(2)加法结合律(3)互为相反数的两个数和为0(4)一个数同0相加仍得这个数【分析】根据有理数加法运算法则以及运算律进行解答.【详解】解:(-6)+(-15)+(+6),=(-6)+(+6)+(-15)(加法交换律),=[(-6)+(+6)]+(-15)(加法结合律),=0+(-15)(互为相反数的两个数和为0),=-15(一个数同0相加仍得这个数).本题考查了有理数的加法运算,熟练掌握运算法则和运算律是解题关键.16.莉莉的解法不正确,详见解析,-23【分析】错误,运算法则运用错误,写出正确的解题过程即可.【详解】莉莉的解法不正确.正确解法:.7511(7)(5)(11)(12)(11)23---=-+-+-=-+-=-此题考查了有理数的减法法则,熟练掌握运算法则是解本题的关键.17.(1)15;(2)-2.8;(3);(4)8521-49.5-【分析】(1)根据有理数加法的运算法则进行计算即可;(2)根据有理数加法的运算法则进行计算即可;(3)根据有理数加法的运算法则进行计算即可;(4)根据有理数加法的运算法则进行计算即可.【详解】(1)原式(3517)(85)=+---183=-;15=(2)原式(2.8 3.6) 3.6=-++( 6.4) 3.6=-+;2.8=-(3)原式41937⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭41937⎛⎫=-+ ⎪⎝⎭;8521=-(4)原式(3)7.5(54)=-++-(7.53)(54)=+-+-4.5(54)=+-(54 4.5)=--.49.5=-本题考查了有理数的加法运算,掌握运算法则是解题关键.18.(1);(2)6-9-【分析】(1)根据有理数的加减混合运算法则进行计算即可;(2)先用简便方法分别计算第1、4项和第2、3项,再根据有理数的加法运算法则进行计算即可;【详解】(1)原式12(4)(10)16(10)6=-+---=---=-(2)原式2111(9(5(410193366=--++-=-+=-本题主要考查有理数的加减混合运算,熟练掌握运算法则是关键.19.(1)-19.56;(2)-30;(3)-2【分析】(1)根据有理数的加法运算法则,利用加法结合律进行计算即可;(2)根据有理数的加法运算法则,结合式子特点利用加法结合律进行计算即可;(3)先将分数化成小数,再根据有理数的加法运算法则,利用加法结合律进行计算即可.【详解】(1)原式;[[(12.56)(7.25)7.25] 3.01(10.01)]19.56=-+-+++-=-(2)原式;(2357)[(72)(22)(16)]30=++-+-+-=-(3)原式.2.25( 4.25)[( 2.5) 2.5][3.4( 3.4)]2=+-+-+++-=-此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.(1)或1712112【分析】根据题意可以求得a 、b 的值,然后求得a +b 的值即可.【详解】解:∵,,34a =23b =∴a =±,b =±,3423∵b <a ,∴a =,b =±,3423∴a +b =+=或−=.342317123423112本题考查绝对值和有理数加法,解题的关键是明确绝对值的意义.21.(1)水位最低的一天是星期一,位于警戒水位之上,与警戒水位的距离是;水位最高的0.20m 一天是星期五,位于警戒水位之上,与警戒水位的距离是;(2)与上周末相比,本周末河流1.07m 的水位上升了0.70米【分析】(1)依据表格分别求出每天的水位,即可得到答案;(2)将本周水位变化的值相加,根据结果的正负解答.【详解】(1)设警戒水位为.则星期一的水位是;0m 0.20m +星期二的水位是;0.200.81 1.01(m)++=星期三的水位是;1.01(0.35)0.66(m)+-=星期四的水位是;0.660.130.79(m)+=星期五的水位是;0.790.28 1.07(m)+=星期六的水位是;1.07(0.36)0.71(m)+-=星期日的水位是;0.71(0.01)0.70(m)+-=则水位最低的一天是星期一,位于警戒水位之上,与警戒水位的距离是;水位最高的一天是0.20m 星期五,位于警戒水位之上,与警戒水位的距离是;1.07m (2).0.200.81(0.35)0.130.28(0.36)(0.01)0.70(m)+++-+++-+-=+故与上周末相比,本周末河流的水位上升了0.70米.此题考查有理数加法是实际应用,掌握有理数加法的计算法则,正确运算是解题的关键.22.(1)离井口还有0.5m.(2)一共经过6.3m.(3)能爬出井.【分析】(1)根据题意利用有理数的加减混合运算即可解答.(2)利用有理数的加法法则进行解答即可.(3)利用青蛙爬的总距离和井深4m 做比较即可解答.【详解】(1)1.2-0.4+1.4-0.5+1.1-0.3+1.2-0.2=3.5(m )4-3.5=0.5(m )即离井口还有0.5m.(2)1.2+0.4+1.4+0.5+1.1+0.3+1.2+0.2=6.3(m )即一共经过6.3m.(3)3.5+1.2=4.7>4,所以能爬出井.。

人教版数学七年级上册1.3.2《有理数的加减混合运算》训练(有答案)

人教版数学七年级上册1.3.2《有理数的加减混合运算》训练(有答案)

课时4有理数的加减混合运算基础训练知识点1(有理数的加减混合运算)1.下列把有理数的加减混合运算统一成有理数的加法运算中,正确的是()A.(﹣7)﹣(﹣10)+(﹣8)﹣(+2)=(﹣7)+(﹣10)+(﹣8)+(﹣2)B.(﹣7)﹣(﹣10)+(﹣8)﹣(+2)=(﹣7)+(﹣10)﹣(+8)+(﹣2)C.(﹣7)﹣(﹣10)+(﹣8)﹣(+2)=(﹣7)+(﹣10)+(﹣8)﹣(+2)D.(﹣7)﹣(﹣10)+(﹣8)﹣(+2)=(﹣7)+(+10)+(﹣8)+(﹣2)2.在括号内填上适当的数.(1)(﹣2)+(+7)﹣(﹣5)=(﹣2)+(+7)+();(2)0﹣(+4)+(﹣6)=0+()+(﹣6);(3)(﹣6)﹣3﹣(﹣2)=(﹣6)+()+();(4)1﹣(+37)﹣28=1+()+().3.计算下列各式:(1)(﹣18)+29﹣(﹣24)﹣(﹣9);(2)(﹣13.6)﹣(+0.26)﹣(﹣2.7)﹣(﹣1.06);(3)﹣456+(﹣335)﹣(﹣316)﹣125;(4)1.5﹣(﹣414)+3.75﹣(+812).知识点2(有理数加减混合运算的简化形式)4.对式子“﹣8+16﹣3﹣6”的读法正确的是()A.负8加16减3减6B.负8正16负3减6C.负8、加16、负3、负6的和D.减8加16减3减65.把式子15+(﹣6)-(﹣7)-(+2)写成省略加号的和的形式是____________,结果是______.6.[2017湖北黄石阳新实验中学期中]某公交车上原有22人,经过4个站点时乘客上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,6),(﹣3,2),(1,﹣7),此时车上还有______人.7.计算:(1)0-12-(﹣3.25)+234﹣712;(2)(﹣323)+(﹣2.4)-(﹣13)-(﹣425);(3)﹣|﹣34|-|15-14|-(﹣2)+45.8.甲、乙两队举行拔河比赛,标志物先向甲队移动0.5米,然后又向乙队移动0.8米,相持后又向乙队移动0.4米,然后又向甲队移动1.2米,最后标志物再向甲队移动1.4米,规定只要标志物向某队移动2米,该队即可获胜,问甲队有没有获胜?请说明理由.参考答案1.D2.(1)+5;(2)﹣4;(3)﹣3+2;(4)﹣37﹣283.【解析】(1)(﹣18)+29﹣(﹣24)﹣(﹣9)=(﹣18)+29+(+24)+(+9)=44.(2)(﹣13.6)﹣(+0.26)﹣(﹣2.7)﹣(﹣1.06)=(—13.6)—(—0.26)+(+2.7)+(+1.06)=﹣10.1(3)﹣456+(﹣335)﹣(﹣316)-125=﹣456-335+316-125=(﹣456+316)+(﹣335-125)=﹣123+(﹣5)=﹣62 3(4)1.5-(﹣414)+3.75﹣(+812)=1.5+4.25+3.75﹣8.5=(1.5﹣3.5)+(4.25+3.75)=﹣7+8=14.A【解析】式子“﹣8+16﹣3﹣6”可以读作“负8加16减3减6”.或读作“负8、正16、负3、负6的和”,所以选项A正确.故选A.5.15﹣6+7﹣2 14【解析】15+(﹣6)﹣(﹣7)﹣(+2)=15+(﹣6)+(+7)+(﹣2)=15﹣6+7﹣2=14.6.12【解析】根据题意,可得车上还有22+4﹣8﹣5+6-3+2+1﹣7=12(人).7.【解析】(1)0-12-(﹣3.25)+234﹣712=0-12+314+234-712=﹣12-712+314+234=﹣8+6 =﹣2.(2)(﹣323)+(﹣2.4)﹣(﹣13)-(﹣425)=﹣323-225+13+425=﹣323+13+425-225=﹣313+2=﹣11 3(3)﹣|﹣34|-|15-14|﹣(﹣2)+45=﹣34-120+2+45=﹣45+2+45=2.8.【解析】甲队没有获胜.理由如下:将标志物向甲队移动的长度记为正数,向乙队移动的长度记为负数,则标志物移动的长度可记为(单位:米)0.5,﹣0.8,﹣0.4,1.2,1.4.0.5﹣0.8﹣0.4+1.2+1.4=(0.5+1.2+1.4)+(﹣0.8﹣0.4)=3.1﹣1.2=1.9(米).因为1.9<2,所以甲队没有获胜.课时4有理数的加减混合运算提升训练1.[2018重庆巴蜀中学课时作业]在正整数中,前50个偶数的和减去前50个奇数的和所得的结果是()A.50B.﹣50C.100D.﹣1002.[2018山西大学附中课时作业]规定图形表示运算a﹣b+c,图形表示运算x+z-y-w,则+=______.(直接写出答案)3.[2018江西吉安一中课时作业]已知a是3的相反数,b是﹣13的绝对值,c与原点的距离是2,则a-c+b=_____.4.[2018河北石家庄二十七中课时作业]计算下列各式:(1)﹣327-(﹣6)+1167-(+537);(2)(﹣37)-(﹣15)-(﹣27)+(﹣15);(3)﹣0.5+(﹣15)-(﹣17)-|12|;(4)(﹣812)-[﹣(+6.5)﹣(﹣3.3)﹣615].5.[2018湖北襄阳四中课时作业]做数学游戏,其乐无穷,游戏规则:(1)每人每次抽取4张卡片,如果抽到方块卡片,那|么加上卡片上的数字,如果抽到阴影卡片,那么;减去卡片上的数字;(2)比较两人所抽4张卡片上的计算结果,结果大的为胜者.小明抽到图1中的4张卡片,小丽抽到图2中的4张卡片,你知道本次游戏的获胜者吗?请说明理由.6.[2018江苏盐城市初级中学课时作业]依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作.第二次经过同样的操作,也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去. (1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)第一百次操作后所得的数串比第九十九次操作后所得的数串增加的所有新数之和是多少?参考答案1.A【解析】由题意,可得2+4+6+…+100)﹣(1+3+5+…+99)=(2﹣1)+(4﹣3)+(6﹣5)+…+(100﹣99)=1+1+1+…+1=50.故选A.2.0【解析】由题意,可知=1﹣2+3=2,=4+6﹣5﹣7=﹣2,所以+=2+(﹣2)=0.3.﹣423或﹣23【解析】因为a是3的相反数,b是的绝对值,c与原点的距离是2,所以a=﹣3,b=13,c=±2.当a=﹣3,b=13,c=2时,a﹣c+b=﹣3﹣2+13=﹣423;当a=﹣3,b=13,c=﹣2时,a﹣c+b=﹣3﹣(﹣2)+13=﹣3+2+13=﹣23.综上,a-c+b=﹣423或﹣23.4.(1)﹣327-(﹣6)+1167-(﹢537)=﹣327+6+1167-537=6+(﹣327+1167-537)=6+31 7=917.(2)(﹣37)-(﹣15)-(﹣27)+(﹣115)=(﹣37)+(﹢15)+[(﹢15)+(﹣115)]=(﹣17)+(﹣1)=﹣11 7(3)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|=﹣0.5+(﹣15)+(+17)+(﹣12) =(+17)+[﹣0.5+(﹣15)+(﹣12)]=(+17)+(﹣27.5)=﹣10.5.(4)(﹣812)﹣[﹣(+6.5)﹣(﹣3.3)﹣615]=﹣8.5﹣[(﹣6.5)+(﹣6.2)+3.3]=﹣8.5—(﹣12.7+3.3)=﹣8.5-(﹣9.4)=﹣8.5+9.4=0.9.名师点睛利用加法交换律和结合律,把正数分别相加、负数分别相加、分母相同的数分别相加、和为整数的数分别相加,这样可简化计算过程.5.【解析】获胜者是小明.理由如下:小明抽取的4张卡片计算的结果是(﹣12)+(﹣23)﹣(﹣5)+4=7小丽抽取的4张卡片计算的结果是(﹣13)+(﹣67)﹣0+5=312因为7>312,所以获胜者是小明.6.【解析】(1)第一次操作后,增加的所有新数之和为6+(﹣1)=5.(2)第二次操作后所得的数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)第一百次操作后所得的数串比第九十九次操作后所得的数串增加的所有新数之和为5.《有理数的加减法》错解分析学生在解有理数加减法问题时,经常因为未掌握法则或方法不当等而错解题目,下面就学生在解题中出现的错误分析如下,供大家参考.一、未掌握加法法则例1 下列判断:(1)两个有理数相加,它们的和一定大于每一个数.(2)一个正数与一个负数相加得正数.(3)两个负数和的绝对值一定等于它们绝对值的和.其中正确判断的个数有()A.0个B.1个C.2个D.3个错解:D.分析:由于没有掌握有理数的加法法则导致错误.(1)不对,因为(-1)+(-2)=-3;(2)不对,因为(+1)+(-2)=-1;(3)对,比如2(4)624-+-==-+-.正解:B.二、未掌握减法法则例2 下列说法中:(1)减去一个数等于加上这个数;(2)零减去一个数,仍得这个数;(3)两个相反数相减得零;(4)有理数减法中,被减数不一定比减数或差大.其中错误的说法有( )A .1个B .2个C .3个D .4个错解:D .分析:由于对减法法则不理解或看错了题目的要求,导致错误。

七年级数学上册有理数混合运算培优练习题

七年级数学上册有理数混合运算培优练习题

有理数混合运算一、基础知识1.有理数的混合运算,要掌握运算顺序,即先算乘方,再算乘除,最后算加减,如有括号,就先算括号里面的。

2.进行有理数运算时,要认真看题,除考虑运算顺序外,还要善于观察题目中各数之间的特殊关系,灵活运用运算律,适当改变运算顺序,寻求比较合理的计算方法,以求简化运算。

3.运算过程中,运用符号法则正确熟练地确定符号,仍然是关键所在。

4.乘除及乘方运算,带分数化假分数,小数往往化分数。

二、实战演练――基础卷一.填空题:34-6.8+5=______。

77232.42⨯(-)+(-)÷(-0.25)=______。

341.-3.2+33.当a=-5.4,b=6,c=4.8,d=-1.2时,代数式a c+的值为______。

-d b4.x,y为有理数,且x+1+2(y+3)2=0,则代数式x2-3xy+2y2的值为______。

5.已知3a-2b=5,代数式2(3a-2b)2-3(2b-3a)的值为______。

6.若a为最大的负整数,则a2001+a2002=______。

二.选择题:1.下列说法正确的是()A.当n为自然数时,4n(n+1)必是8的倍数;B.a为有理数时,-a+a可能为负数;C.a+2一定比2大;D.a,b为有理数时,a+b一定大于a-b。

2.若a与b的差为正数,则一定有()A.a>0;B.a>b;C.a>b;D.a>0或b<0。

3.下列各组数中,数值相等的是()A.32和23;B.(-2)3和-23;C.-32和(-3)2;D.(-3⨯2)2和(-3⨯22)。

4.若ab<0,则下列各式中一定成立的个数是()a<0。

bA.1个;B.2个;C.3个;D.4个。

5.设a=-(1-2)-3,b=-1-(2-3),c=(-1)-(-2)-3,则-a-[b-(-c)]的值为()(1)a<0<b,(2)a≠0,(3)a>0,且b<0,(4)A.1;B.4;C.-1;D.-2。

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。

一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。

规定:先算高级运算再算低级运算同级运算从左到右依次进行。

(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。

当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。

1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。

有理数的加减混合运算培优

有理数的加减混合运算培优

双语初一数学培优五【知识总结】(1) ___________________________ 数轴上的数,右边的数总左边的数.(2)正数大于0,负数小于0,正数大于负数.(3)两个负数,绝对值大的反而;(4)两数比较大小,可按符号情况分类:(4) ________________ 同正:____________________________ 的数大两数同号;同负:的反而小比较大小两数异号(一正一负):_______ 于________ ;正数与0: ________ 于0;负数与0: _________ 小于0(5)有理数加法法则①同号两数相加,取相同的 ________ ,并把绝对值 _________ .②绝对值不相等的异号两数相加,取 _________ 的加数的符号,并用较大的________ 减去较小的________ .③一个数同0相加,仍得 ______ .(5)有理数减法法则减去一个数,等于________ ,即a-b=a+()(6)有理数减法的运算步骤(7)有理数减法法则①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算(8)有理数加减混合运算的步骤①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果(10)【基础部分】 1•计算 (1)(2) 3^ (-25) 5|4 54-82 ;(3)7(-6)1 1⑷(-辽)(匕);(5) (-0.8) +1.2+ (-0.7) + (-2.1) +0.8+3.5;1(6)-2(7) (-8) -8;(9)3 1 -16— -(-10 — )4 412.;(11)— 0.5 +(—3丄)+ 2.754(10)2. 若 N = ? ,2,且a>b ,则 a + b= __________________ ..3. I x — 1 | = 3,贝U x = _____ .4. 已知| x +1|与| y — 2 |互为相反数,贝U| x | + | y | = _______ .【提高部分】 1.若 aa,贝U a= _____ ;若 a 0,贝U a __________ .2•相反数是2的数是 _____________ ,绝对值等于2的数是1 1 3. 3.14 n = ,— 2- — 31.234. 在有理数中最大的负整数是 —,最小的正整数是 _,最小的非负整数是 ___________ ,最小 的非负数是 _____________ .5.若m 是有理数,则m m 的值( )A.可能是正数6..若m 0,则m |m|的值为( )A.正数B.负数C.0D.非正数7.若 a 2 b 30 ,则a b 的值是()A.5B.1C. — 1D. — 58.有理数a ,b 在数轴上的对应点的位置如图所示,则( )9.下列各式中与a b c 的值不相等的是( ) B.—定是正数C.不可能是负数D.可能是正数,也可能是负数—1A.a + b = 0B.a + b > 0 1b —1C.a — b v 0D.a — b > 0A. a (b c)B.a (b c)C.(a b) ( c)D.( b) (a c)10.下列各式中与a b c的值不相等的是()A. a (b c)B.a (b c)C. (a b) ( c)D. ( b) (a c)11若a、b表示有理数,且a>0, b v0, a+ b v0,则下列各式正确的是()A. —b v —a v b v aB. —a v b v a v —bC.b v —a v —b v aD.b v —a v a v —b12.分别输入一1,- 2,按图所示的程序运算,则输出的结果依次是____________ 、_13.已知有理数a、b满足:a v 0, b>0且a b,化简a b a b a b b a14.下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数).如果现在时间是北京时间上午8 : 30,那么现在的纽约时间是多少?东京时间是多少?小兵现在想给远在巴黎的爸爸打电话,你认为合适吗?。

人教版七年级数学上册:第1章《有理数》计算强化培优训练卷【含答案】

人教版七年级数学上册:第1章《有理数》计算强化培优训练卷【含答案】

人教版七年级数学上册:第1章《有理数》计算强化培优训练卷一.有理数的加减法1.计算:﹣1﹣3=( )A.2B.﹣2C.4D.﹣42.计算|﹣3|﹣(﹣2)的最后结果是( )A.1B.﹣1C.5D.﹣53.某地区一天三次测量气温如下,早上是﹣6℃,中午上升了7℃,半夜下降了9℃,则半夜的气温是( )A.4℃B.﹣8℃C.10℃D.﹣22℃4.下列运算中正确的个数有( )(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(﹣)﹣(+)=﹣.A.1个B.2个C.3个D.4个5.式子(﹣3)﹣(﹣1)+(﹣2)﹣(+5)省略括号后可以写成 ,读作 或 .6.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y= .7.计算:(1)﹣3+(﹣7)﹣(+15)﹣(﹣5);(2)1.5+2﹣10﹣4.75.8.计算:(1)(﹣6)+8+(﹣4);(2)23﹣17+(﹣16);(3)1+(﹣2)+2+(﹣1);(4)(+)+(﹣)+(+1)+(﹣).二.有理数的乘除法9.若a•b•c=0,则这三个有理数中( )A.至少有一个为零B.三个都是零C.只有一个为零D.不可能有两个以上为零10.计算:3×(﹣2)=( )A.1B.﹣1C.6D.﹣611.已知43×47=2021,则(﹣43)的值为( )A.2021B.﹣2021C.D.﹣12.已知|a|=2,b2=25,且ab>0,则a﹣b的值为( )A.7B.﹣3C.3D.3或﹣313.﹣1的倒数是 ,﹣8的倒数是 ,的倒数是 ,的倒数是 ,﹣1的倒数是 , 的倒数是﹣2.14.(﹣)÷(﹣2)×(﹣6)= .15.用“>”,“<”或“=”号填空:若a<c<0<b,则abc 0;若a<b<c<0,则abc 0.16.计算:(1)(﹣3)×;(2)(﹣1)÷(﹣2).17.计算:(1)(﹣)×(﹣)×(﹣);(2)(﹣5)×(﹣)××0×(﹣325).18.下面是佳佳同学的一道题的解题过程:2÷(﹣)×(﹣3)=[2÷(﹣)+2]×(﹣3),①=2×(﹣3)×(﹣3)+2×4×(﹣3),②=18﹣24,③=6,④(1)佳佳同学开始出现错误的步骤是 ;(2)请给出正确的解题过程.三.有理数的乘方19.(﹣1)2021等于( )A.1B.﹣2021C.2021D.﹣120.下列计算正确的是( )A.﹣(﹣3)2=9B.C.﹣32=9D.(﹣3)3=﹣921.在(﹣10)8中,﹣10是( )A.底数B.指数C.幂D.乘方22.下列各组数中,互为相反数的一组是( )A.﹣(﹣3)和|﹣3|B.(﹣3)3和﹣33C.﹣|3|和﹣3D.(﹣3)2和﹣3223.对于(﹣2)3,指数是 ,底数是 ,(﹣2)3= ;对于﹣42,指数是 ,底数是 ,幂是 .24.若a、b为整数,且|a﹣2|+(b+3)2020=1,则b a= .四.有理数的混合运算25.下列计算错误的是( )A.﹣3÷(﹣)=9B.()+(﹣)=C.﹣(﹣2)3=8D.|﹣2﹣(﹣3)|=526.计算:(﹣3)3×()的结果为( )A.B.2C.D.1027.若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则式子|m|﹣cd+的值为( )A.3B.3或5C.3或﹣5D.428.计算:23+(﹣3)×(﹣2)2的结果为 .29.计算:﹣(﹣3)2×+|2﹣4|= .30.已知m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2020pq+x2的值是 .31.计算:﹣32÷(﹣1)2+|﹣3+2|.32.计算:﹣32﹣28÷(﹣7)×(﹣)2.33.计算:.34.计算:.答案一.有理数的加减法1.解:﹣1﹣3=﹣1+(﹣3)=﹣4.故选:D.2.解:|﹣3|﹣(﹣2)=3+2=5.故选:C.3.解:﹣6+7﹣9=﹣8(°C).故选:B.4.解:(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(﹣)﹣(+)=.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.5.解:将式子(﹣3)﹣(﹣1)+(﹣2)﹣(+5)写成省略括号的和的形式是﹣3+1﹣2﹣5,可以读作负3正1负2与﹣5的和或负3加1减2减5.故﹣3+1﹣2﹣5;负3正1负2与﹣5的和;负3加1减2减5.6.解:∵|x|=2,y2=9,∴x=±2,y=±3,∵|x﹣y|=y﹣x,∴x﹣y<0,∴x﹣y=﹣2﹣3=﹣5,或x﹣y=2﹣3=﹣1,所以x﹣y=﹣5或﹣1.故﹣5或﹣1.7.解:(1)原式=﹣3﹣7﹣15+5=﹣25+5=﹣20;(2)原式===.8.解:(1)(﹣6)+8+(﹣4)=(﹣6﹣4)+8=﹣10+8=﹣2;(2)23﹣17+(﹣16)=23+(﹣17﹣16)=23﹣33=﹣10;(3)1+(﹣2)+2+(﹣1)=(1+2)+(﹣1﹣2)=4﹣4=0;(4)(+)+(﹣)+(+1)+(﹣)=(++1)+(﹣﹣)=2﹣1=1.二.有理数的乘除法9.解:若a•b•c=0,则这三个有理数中至少有一个为零,故选:A.10.解:3×(﹣2)=﹣6.故选:D.11.解:∵43×47=2021,∴(﹣43)=﹣43×47=﹣2021,故选:B.12.解:因为|a|=2,所以a=±2,因为b2=25,所以b=±5,又因为ab>0,所以a、b同号,所以a=2,b=5,或a=﹣2,b=﹣5,当a=2,b=5时,a﹣b=2﹣5=﹣3,当a=﹣2,b=﹣5时,a﹣b=﹣2﹣(﹣5)=3,因此a﹣b的值为3或﹣3,故选:D.13.解:由乘积为1的两个数互为倒数得,∵﹣1×(﹣1)=1,∴﹣1的倒数是﹣1;∵﹣8×(﹣)=1,∴﹣8的倒数是﹣;∵﹣×(﹣7)=1,∴﹣的倒数是﹣7;∵×=1,∴的倒数是;∵﹣1×(﹣)=1,∴﹣1的倒数是﹣;∵﹣×(﹣2)=1,∴﹣2的倒数是﹣,故﹣1,﹣,﹣7,,﹣,﹣.14.解:原式=×()×(﹣6)=×(﹣6)=﹣1,故﹣1.15.解:若a<c<0<b,则abc>0;若a<b<c<0,则abc<0,故>,<.16.解:(1)(﹣3)×=﹣×=﹣2;(2)(﹣1)÷(﹣2)=(﹣)÷(﹣)=.17.解:(1)(﹣)×(﹣)×(﹣)=﹣××=﹣;(2)(﹣5)×(﹣)××0×(﹣325)=0.18.解:(1)佳佳同学开始出现错误的步骤是①.故①.(2)2÷(﹣)×(﹣3)==2×(﹣12)×(﹣3)=72.三.有理数的乘方19.解:(﹣1)2021=﹣1,故选:D.20.解:A.﹣(﹣3)2=﹣9,故此选项不符合题意;B.,故此选项符合题意;C.﹣32=﹣9,故此选项不符合题意;D.(﹣3)3=﹣27,故此选项不符合题意.故选:B.21.解:(﹣10)8中表示8个(﹣10)相乘,其中(﹣10)是底数,8是指数,故选:A.22.解:A,因为﹣(﹣3)=3,|﹣3|=3,3与3不是相反数,所以A选项不符合题意;B,因为(﹣3)3=﹣27,﹣33=﹣27,﹣27与﹣27不是相反数,所以B选项不符合题意;C,因为﹣|3|=﹣3,﹣3与﹣3不是相反数,所以C选项不符合题意;D,因为(﹣3)2=9,﹣32=﹣9,9与﹣9互为相反数,所以D选项符合题意.故选:D.23.解:根据乘方的定义,得(﹣2)3的底数是﹣2,指数是3,(﹣2)3=﹣2×(﹣2)×(﹣2)=﹣8.同理,﹣42的底数是4,指数是2,幂是﹣16.故3,﹣2,﹣8,2,4,﹣16.24.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.四.有理数的混合运算25.解:﹣3÷(﹣)=3×3=9,故选项A正确;()+(﹣)==,故选项B正确;﹣(﹣2)3=﹣(﹣8)=8,故选项C正确;|﹣2﹣(﹣3)|=|﹣2+3|=1,故选项D错误;故选:D.26.解:(﹣3)3×()=(﹣27)×()=(﹣27)×﹣(﹣27)×+(﹣27)×=(﹣9)+15+(﹣4)=2,故选:B.27.解:∵a,b互为相反数,c,d互为倒数,m+1的绝对值为5,∴a+b=0,cd=1,|m+1|=5,∴m=﹣6或4,则原式=6﹣1+0=5或4﹣1+0=3.故选:B.28.解:23+(﹣3)×(﹣2)2=8+(﹣3)×4=8﹣12=﹣4.故﹣4.29.解:﹣(﹣3)2×+|2﹣4|=﹣9×+2=﹣3+2=﹣1.故﹣1.30.解:∵m、n互为相反数,p、q互为倒数,x的绝对值为2,∴m+n=0,pq=1,x=2或﹣2,则原式=+2020×1+4=2024.故2024.31.解:原式=﹣9÷1+|﹣1|=﹣9+1=﹣8.32.解:原式=﹣9+28×=﹣9+1=﹣8.33.解:原式===.34.解:原式=﹣9÷(4﹣1)+(﹣)×24=﹣9÷3+(×24﹣×24)=﹣3+(16﹣6)=﹣3+10=7.。

有理数的加减混合运算-2020-2021学年七年级数学上册尖子生同步培优题【人教版】

有理数的加减混合运算-2020-2021学年七年级数学上册尖子生同步培优题【人教版】

2020-2021学年七年级数学上册尖子生同步培优题【人教版】专题1.6有理数的加减混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•瑞安市校级月考)下列运算中正确的个数有( ) (1)(﹣5)+5=0; (2)﹣10+(+7)=﹣3; (3)0+(﹣4)=﹣4; (4)(−27)﹣(+57)=−37. A .1个B .2个C .3个D .4个2.(2018秋•黄陂区期末)将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是( ) A .20﹣3+5﹣7B .﹣20﹣3+5+7C .﹣20+3+5﹣7D .﹣20﹣3+5﹣73.(2019秋•麻城市校级期中)下列各式中,正确的是( ) A .﹣4﹣2=﹣2 B .﹣5﹣4﹣(﹣4)=﹣5C .10+(﹣8)=﹣2D .3﹣(﹣3)=04.(2018秋•岳麓区校级月考)小明存折中原有450元,取出260元,又存入150元,现在存折中还有( ) A .340元B .240元C .540元D .600元5.(2018秋•拱墅区期末)下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3C .(﹣11)﹣7=﹣4D .(﹣7)﹣(﹣8)=﹣16.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是( ) A .﹣5﹣4+7﹣2B .5+4﹣7﹣2C .﹣5+4﹣7﹣2D .﹣5+4+7﹣27.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( )A .﹣8B .﹣7C .﹣4D .﹣38.(2019秋•通州区期末)下列运算正确的是( ) A .﹣2+(﹣5)=﹣(5﹣2)=﹣3 B .(+3)+(﹣8)=﹣(8﹣3)=﹣5 C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+109.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( ) A .15mB .7mC .﹣18mD .﹣25m10.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是( ) A .﹣1+(﹣3)+(+6)﹣(﹣8) B .﹣1﹣3+6﹣8C .﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D .﹣1﹣(﹣3)﹣6﹣(﹣8)二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13= .12.(2018秋•北海期末)把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是 . 13.(2016秋•渝中区校级期中)规定a ﹡b =a +b ﹣1,则(﹣4)﹡6的值为 . 14.(2019秋•顺德区期中)计算:(﹣35)+(﹣22)﹣(﹣35)﹣8= .15.(2019秋•沙坪坝区校级月考)x 是最大负整数,y 是最小的正整数,z 是最小的自然数,则代数式x ﹣y +z 的值为 .16.(2019秋•南安市校级月考)已知|a |=1,|b |=2,|c |=4,且a >b >c ,则a ﹣b +c = .17.(2019秋•新都区期末)若“方框”表示运算x ﹣y +z +w ,则“方框”= .18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2019秋•城厢区校级月考)计算 (1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323. 20.(2019秋•凉州区校级月考)计算 (1)﹣17+(﹣33)﹣10﹣(﹣16). (2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)21.(2018秋•开福区校级月考)有理数a ,b ,c 在数轴上的位置如图所示,且|a |=|b |.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)化简:|a﹣b|+|b+c|﹣|a|.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?23.(2019秋•颍州区期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)若经过这一周,该粮仓存有大米88吨某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)求m的值.(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.24.(2019秋•沙坪坝区校级月考)已知买入股票与卖出股票均需支付成交金额的0.2%的交易费,周先生上周星期五在股市收盘价每股18元买进某公司的股票2000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:星期星期一星期二星期三星期四星期五每股涨跌元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据是每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若周先生在本周的星期五以收盘价将全部股票卖出,试求出周先生一共盈利多少钱?2020-2021学年七年级数学上册尖子生同步培优题典【人教版】专题1.6有理数的加减混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•瑞安市校级月考)下列运算中正确的个数有()(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(−27)﹣(+57)=−37.A.1个B.2个C.3个D.4个【分析】根据有理数的加减运算法则分别计算即可.【解析】(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(−27)﹣(+57)=37.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.2.(2018秋•黄陂区期末)将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7【分析】先把加减法统一成加法,再省略括号和加号.【解析】(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.3.(2019秋•麻城市校级期中)下列各式中,正确的是()A.﹣4﹣2=﹣2B.﹣5﹣4﹣(﹣4)=﹣5C.10+(﹣8)=﹣2D.3﹣(﹣3)=0【分析】根据有理数加减法的运算方法,以及有理数加减混合运算的方法,逐项判断即可.【解析】A、﹣4﹣2=﹣6,故此选项不合题意;B、﹣5﹣4﹣(﹣4)=﹣5,正确,符合题意.C、10+(﹣8)=2,故此选项不合题意;D、3﹣(﹣3)=6,故此选项不合题意.故选:B.4.(2018秋•岳麓区校级月考)小明存折中原有450元,取出260元,又存入150元,现在存折中还有()A.340元B.240元C.540元D.600元【分析】根据有理数的混合运算的方法,用小明存折中原有的钱数减去取出的钱数,再加上又存入的钱数,求出现在存折中还有多少元即可.【解析】450﹣260+150=190+150=340(元)∴现在存折中还有340元.故选:A.5.(2018秋•拱墅区期末)下列计算正确的是()A.5+(﹣6)=﹣11B.﹣1.3+(﹣1.7)=﹣3C.(﹣11)﹣7=﹣4D.(﹣7)﹣(﹣8)=﹣1【分析】根据有理数的加法和减法法则计算可得.【解析】A.5+(﹣6)=﹣1,此选项错误;B.﹣1.3+(﹣1.7)=﹣3,此选项正确;C.(﹣11)﹣7=(﹣11)+(﹣7)=﹣18,此选项错误;D.(﹣7)﹣(﹣8)=(﹣7)+8=1,此选项错误;故选:B.6.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣2【分析】根据有理数加减法的运算方法,判断出把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是哪个即可.【解析】(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C .7.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( )A .﹣8B .﹣7C .﹣4D .﹣3【分析】从左向右依次计算,求出算式的值是多少即可. 【解析】(﹣1434)﹣(﹣1014)+12=﹣412+12=﹣4 故选:C .8.(2019秋•通州区期末)下列运算正确的是( ) A .﹣2+(﹣5)=﹣(5﹣2)=﹣3 B .(+3)+(﹣8)=﹣(8﹣3)=﹣5 C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+10【分析】根据有理数的加法法则一一计算即可判断.【解析】A 、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意. B 、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C 、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D 、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意, 故选:B .9.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( ) A .15mB .7mC .﹣18mD .﹣25m【分析】根据下沉减,上升加,列出算式计算即可解答. 【解析】﹣15﹣10+7=﹣18(m ). 故此时潜艇的海拔高度可记为﹣18m . 故选:C .10.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是( ) A .﹣1+(﹣3)+(+6)﹣(﹣8) B .﹣1﹣3+6﹣8C .﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D .﹣1﹣(﹣3)﹣6﹣(﹣8)【分析】将所列的四个数写成省略加号的形式即可得.【解析】读作“负1,负3,正6,负8的和”的是﹣1﹣3+6﹣8,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13=﹣3.【分析】根据有理数的加减法法则计算即可.【解析】﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣34+31=﹣3.故答案为:﹣312.(2018秋•北海期末)把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2.【分析】根据有理数的运算法则即可求出答案.【解析】原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.13.(2016秋•渝中区校级期中)规定a﹡b=a+b﹣1,则(﹣4)﹡6的值为1.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解析】根据题中的新定义得:(﹣4)﹡6=﹣4+6﹣1=1.故答案为:1.14.(2019秋•顺德区期中)计算:(﹣35)+(﹣22)﹣(﹣35)﹣8=﹣30.【分析】直接利用有理数的加减运算法则计算得出答案.【解析】原式=﹣35﹣22+35﹣8=(﹣35+35)﹣(22+8)=﹣30.故答案为:﹣30.15.(2019秋•沙坪坝区校级月考)x是最大负整数,y是最小的正整数,z是最小的自然数,则代数式x﹣y+z 的值为﹣2.【分析】根据题意确定出x,y,z的值,即可代入求出所求式子的值.【解析】∵x是最大负整数,y是最小的正整数,z是最小的自然数,∴x=﹣1,y=1,z=0,∴x ﹣y +z =﹣1﹣1+0=﹣2. 故答案为:﹣2.16.(2019秋•南安市校级月考)已知|a |=1,|b |=2,|c |=4,且a >b >c ,则a ﹣b +c = ﹣1或﹣3 . 【分析】根据|a |=1,|b |=2,|c |=4,且a >b >c ,可得出c =﹣4,b =﹣2,a =±1,由此可得出答案. 【解析】由题意得:a =±1,b =﹣2,c =﹣4, 当a =﹣1,b =﹣2,c =﹣4时a ﹣b +c =﹣3; 当a =1,b =﹣2,c =﹣4时,a ﹣b +c =﹣1; ∴a ﹣b +c =﹣1或﹣3. 故答案为:﹣1或﹣3.17.(2019秋•新都区期末)若“方框”表示运算x ﹣y +z +w ,则“方框”= ﹣8 .【分析】利用题中的新定义计算即可得到结果.【解析】根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8.18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= ﹣9 .【分析】首先计算括号里面的加法,然后计算括号外面的减法,求出算式的值是多少即可. 【解析】﹣[(﹣1.5)+(﹣512)]﹣16=﹣(﹣7)﹣16 =7﹣16 =﹣9故答案为:﹣9.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2019秋•城厢区校级月考)计算 (1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323.【分析】根据有理数的加减混合运算的法则计算即可. 【解析】(1)11﹣18﹣12+19=30﹣30 =0.(2)534−(−13)+(−34)+323 =534−34+13+323=5+4 =9.20.(2019秋•凉州区校级月考)计算 (1)﹣17+(﹣33)﹣10﹣(﹣16). (2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先根据绝对值的含义和求法,求出|﹣7|、|﹣4|的值各是多少;然后从左向右依次计算,求出算式的值是多少即可.【解析】(1)﹣17+(﹣33)﹣10﹣(﹣16) =﹣50﹣10+16 =﹣44(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9) =7﹣4﹣2﹣4﹣9 =﹣1221.(2018秋•开福区校级月考)有理数a ,b ,c 在数轴上的位置如图所示,且|a |=|b |. (1)用“>”“<”或“=”填空:b < 0,a +b = 0,a ﹣c > 0,b ﹣c < 0; (2)化简:|a ﹣b |+|b +c |﹣|a |.【分析】(1)根据数轴得出b <c <0<a ,|a |=|b |>|c |,求出b <0,a +b =0,a ﹣c >0,b ﹣c <0即可; (2)先去掉绝对值符号,再合并即可.【解析】(1)∵从数轴可知:b <c <0<a ,|a |=|b |>|c |,∴b<0,a+b=0,a﹣c>0,b﹣c<0,故答案为:<,=,>,<;(2)|a﹣b|+|b+c|﹣|a|=a﹣b﹣b﹣c﹣a=﹣2b﹣c.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?【分析】(1)计算这些数的和,根据和的符号、绝对值得出是否回到原来的位置,(2)计算出每一次离开球门的距离,比较得出答案,(3)计算这些数的绝对值的和即可.【解析】(1)(+6)+(﹣5)+9+(﹣10)+13+(﹣9)+(﹣4)=0,答:守门员回到了球门线的位置;(2)守门员每次离开球门的距离为:6,1,10,0,13,4,0,答:守门员离开球门的位置最远是13米;(3)6+5+9+10+13+9+4=56(米)答:守门员一共走了56米.23.(2019秋•颍州区期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)若经过这一周,该粮仓存有大米88吨某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)求m的值.(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【解析】(1)132﹣32+26﹣23﹣16+m+42﹣21=88,解得m=﹣20;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700答:这一周该粮仓需要支付的装卸总费用为2700元.24.(2019秋•沙坪坝区校级月考)已知买入股票与卖出股票均需支付成交金额的0.2%的交易费,周先生上周星期五在股市收盘价每股18元买进某公司的股票2000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:星期星期一星期二星期三星期四星期五每股涨跌元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据是每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若周先生在本周的星期五以收盘价将全部股票卖出,试求出周先生一共盈利多少钱?【分析】(1)根据表格中数据,可得答案;(2)根据有理数的加法可得答案;(3)根据利用盈利减去卖出股票应支付的交易费计算即可.【解析】(1)价格最高的是星期四;(2)该股票每股为:18+2+3﹣2.5+3﹣2=21.5(元/股);(3)卖出股票应支付的交易费为:(21.5﹣18)×2000﹣18×2000×0.2%﹣21.5×2000×0.2%=6842(元),11/ 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册数学课时4有理数的加减混合运算
1.[2018重庆巴蜀中学课时作业]在正整数中,前50个偶数的和减去前50个奇数的和所得的结果是()
A.50
B.﹣50
C.100
D.﹣100
2.[2018山西大学附中课时作业]规定图形表示运算a﹣b+c,图形表示运算x+z-y-w,则+=______.(直接写出答案)
3.[2018江西吉安一中课时作业]已知a是3的相反数,b是﹣1
3
的绝对值,c与
原点的距离是2,则a-c+b=_____.
4.[2018河北石家庄二十七中课时作业]计算下列各式:
(1)﹣32
7
-(﹣6)+11
6
7
-(+5
3
7
);
(2)(﹣3
7
)-(﹣
1
5
)-(﹣
2
7
)+(﹣
1
5
);
(3)﹣0.5+(﹣15)-(﹣17)-|12|;
(4)(﹣81
2
)-[﹣(+6.5)﹣(﹣3.3)﹣6
1
5
].
5.[2018湖北襄阳四中课时作业]做数学游戏,其乐无穷,游戏规则:
(1)每人每次抽取4张卡片,如果抽到方块卡片,那|么加上卡片上的数字,如果抽到阴影卡片,那么;减去卡片上的数字;
(2)比较两人所抽4张卡片上的计算结果,结果大的为胜者.
小明抽到图1中的4张卡片,小丽抽到图2中的4张卡片,你知道本次游戏的获胜者吗?请说明理由.
6.[2018江苏盐城市初级中学课时作业]依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作.第二次经过同样的操作,也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去. (1)第一次操作后,增加的所有新数之和是多少?
(2)第二次操作后所得的数串比第一次操作后所得的数串增加的所有新数之和是多少?
(3)第一百次操作后所得的数串比第九十九次操作后所得的数串增加的所有新数之和是多少?
参考答案
1.A【解析】由题意,可得2+4+6+…+100)﹣(1+3+5+…+99)=(2﹣1)+(4﹣3)+(6﹣5)+…+(100﹣99)=1+1+1+…+1=50.故选A.
2.0【解析】由题意,可知=1﹣2+3=2,=4+6﹣5﹣7=﹣2,所以
+=2+(﹣2)=0.
3.﹣42
3
或﹣
2
3
【解析】因为a是3的相反数,b是的绝对值,c与原点的距离是
2,所以a=﹣3,b=1
3
,c=±2.当a=﹣3,b=
1
3
,c=2时,a﹣c+b=﹣3﹣2+
1
3
=
﹣42
3
;当a=﹣3,b=
1
3
,c=﹣2时,a﹣c+b=﹣3﹣(﹣2)+
1
3
=﹣3+2+
1
3

﹣2
3
.
综上,a-c+b=﹣42
3
或﹣
2
3
.
4.(1)﹣32
7
-(﹣6)+11
6
7
-(﹢5
3
7
)
=﹣32
7
+6+11
6
7
-5
3
7
=6+(﹣32
7
+11
6
7
-5
3
7
)
=6+31 7
=91
7
.
(2)(﹣3
7
)-(﹣
1
5
)-(﹣
2
7
)+(﹣1
1
5

=(﹣3
7
)+(﹢
1
5
)+[(﹢
1
5
)+(﹣1
1
5
)]
=(﹣1
7
)+(﹣1)
=﹣11 7
(3)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|=﹣0.5+(﹣15)+(+17)+(﹣12) =(+17)+[﹣0.5+(﹣15)+(﹣12)]
=(+17)+(﹣27.5)
=﹣10.5.
(4)(﹣81
2
)﹣[﹣(+6.5)﹣(﹣3.3)﹣6
1
5
]
=﹣8.5﹣[(﹣6.5)+(﹣6.2)+3.3]
=﹣8.5—(﹣12.7+3.3)
=﹣8.5-(﹣9.4)
=﹣8.5+9.4
=0.9.
名师点睛
利用加法交换律和结合律,把正数分别相加、负数分别相加、分母相同的数分别相加、和为整数的数分别相加,这样可简化计算过程.
5.【解析】获胜者是小明.理由如下:
小明抽取的4张卡片计算的结果是(﹣1
2
)+(﹣
2
3
)﹣(﹣5)+4=7
小丽抽取的4张卡片计算的结果是(﹣1
3
)+(﹣
6
7
)﹣0+5=3
1
2
因为7>31
2
,所以获胜者是小明.
6.【解析】(1)第一次操作后,增加的所有新数之和为6+(﹣1)=5.
(2)第二次操作后所得的数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.
(3)第一百次操作后所得的数串比第九十九次操作后所得的数串增加的所有新数之和为5.。

相关文档
最新文档