第三章 整式的加减综合练习
华东师大版七年级数学上册《第三章整式的加减》单元检测卷-带答案

华东师大版七年级数学上册《第三章整式的加减》单元检测卷-带答案一、单选题1.一列火车长m 米,以每秒v 米的速度通过一个长为n 米的隧道,用式子表示它刚好从开始进隧道口到全部通过隧道所需的时间为( )秒.A .n vB .m n v +C .2m n v +D .n m v- 2.若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .13.下列各式:15- 22a b 112x - -251x 2x y - 222a ab b -+.其中单项式的个数有( ) A .4个 B .3个 C .2个 D .1个4.若8m x y 与36n x y 的和是单项式,则m n +的值为( )A .4B .8C .4-D .8-5.若关于x 的多项式226723x x mx -++不含x 的二次项,则m =( )A .2B .2-C .3D .3-6.下列合并同类项正确的是( )A .336x y xy =+B .2222m n m n m n -=C .22752x x -=D .459ab ab =+7.下列计算正确是( )A .()x y z x y z ----=B .()x y z x y z -----+=C .3)33(x y z x z y --+=+D .()()a b c d a c d b ------=+++ 二、填空题 8.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费________元.9.一个长方形的长、宽分别是34x -和x ,它的面积等于________.10.已知221x x +=-,则代数式()52x x ++的值为________.11.如图所示是一个设计好的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是________.12.在下列式子中:23b 32xy + 2,3xy 5ab x - a b π+ ()23xy π+多项式有________个. 13.把多项式22354xy x y y -+按字母x 降幂顺序排列为:________.14.将多项式22332356xy x x y -+-按v 的升幂排列:________.15.如果32x y a b 与21y x a b +-是同类项,则代数式52x y -的值是________.三、计算题16.先化简,再求值()2222332232x y xy xy x y ⎛⎫----+- ⎪⎝⎭,其中122x y =-=-.四、综合题17.数学老师给出这样一个题:22=2x x --+□△.(1)若“□”与“△”相等,求“△”(用含的代数式表示);(2)若“□”为2326x x -+,当1x =时,请你求出“△”的值.参考答案与解析一、1.【答案】B【解析】解:根据“通过桥洞所需的时间为=(桥洞长+车长)÷车速”求解即可. 根据分析知:火车通过桥洞所需的时间为m n v +秒. 故答案为:B .2.【答案】D【解析】把所求代数式2483m m +-变形为()2423m m +-,然后把条件整体代入求值即可.解:221m m += 2483m m ∴+-()2423m m =+-413=⨯-1=.故答案为:D .3.【答案】B【解析】由一个数字与一个字母的积或一个字母与一个字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式),据此得出单项式的个数。
整式的加减练习题计算

整式的加减练习题计算一、基础题1. 计算:3x + 5x2. 计算:4a 2a3. 计算:7b + 3b 2b4. 计算:9c 5c + 4c5. 计算:6m 8m + 2m二、进阶题1. 计算:(2x + 3y) (4x 5y)2. 计算:(5a 3b) + (2a + 4b)3. 计算:(7m + 4n) (3m 6n)4. 计算:(8p 5q) + (4p + 3q)5. 计算:(6r + 2s) (4r 7s)三、综合题1. 计算:2x + 3y 4z + 5xy 6yz + 7xz2. 计算:3a 4b + 5c 6ab + 7bc 8ac3. 计算:4m 5n + 6p 7mn + 8np 9mp4. 计算:5x^2 6y^2 + 7z^2 8x^2y + 9y^2z 10z^2x5. 计算:6a^3 7b^3 + 8c^3 9a^3b + 10b^3c 11c^3a四、挑战题1. 计算:(x + y z) + (2x 3y + 4z) (3x + 4y 5z)2. 计算:(a b + c) (2a + 3b 4c) + (3a 4b + 5c)3. 计算:(m + n p) + (2m 3n + 4p) (3m + 4n 5p)4. 计算:(x^2 + y^2 z^2) (2x^2 3y^2 + 4z^2) + (3x^2 + 4y^2 5z^2)5. 计算:(a^3 + b^3 c^3) + (2a^3 3b^3 + 4c^3) (3a^3 + 4b^3 5c^3)五、应用题1. 小华有苹果的数量是x个,小丽有苹果的数量是y个,小王有苹果的数量是z个。
如果小华给了小丽3个苹果,小丽又给了小王2个苹果,那么现在小丽有多少个苹果?2. 工厂A生产了a个零件,工厂B生产了b个零件,工厂C生产了c个零件。
如果工厂A向工厂B转移了4个零件,工厂B又向工厂C 转移了5个零件,那么现在工厂B有多少个零件?3. 一辆汽车在平地上行驶的速度是m km/h,在上坡时的速度是n km/h,在下坡时的速度是p km/h。
第三章 整式及其加减专题练习及答案 解析版

第三章 整式及其加减专题练习学校:___________姓名:___________班级:___________学号:___________一、单选题(每小题3分,共30分)1.下列计算正确的是( )A .527x y xy +=B .321x x −=C .22234x y yx x y −=−D .338x x x += 2.已知423x y −与2n x y 是同类项,则n 的值为( )A .1B .2C .3D .43.下列说法中正确的是( )A .单项式2πx 的次数和系数都是2B .单项式2m n 和2n m 是同类项C .多项式2234x y xy +−是三次三项式D .多项式221x x −+−的项是2x ,2x 和1 4.定义一种新运算:2a b a b ⊗=−.例如232231⊗=⨯−=,则()()2x y x y +⊗−化简后的结果是( )A .33x y −+B .yC .3x y −−D .3y 5.如图是一个正方体的平面展开图,若原正方体中相对面上的两个数字之和均为5,则x y z ++的值为( )A .4B .5C .6D .7 6.如果2312M x x =++,235N x x =−+−,则M 与N 的大小关系是( ) A .M N >B .M N <C .M N =D .与x 的大小有关 7.在式子2532x x −,22x y π,1x y +,25y −中,多项式的个数是( ) A .1 B .2 C .3 D .4 8.若221m m +=-,则2324m m −−=( )A .1−B .1C .5−D .59.已知5x y −=,3a b +=−,则()()y b x a −−+的值为( )A .8B .8−C .2D .2−10.正方形ABCD 在数轴上的位置如图所示,点A 、B 对应的数分别为2−和1−,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点C 所对应的数为0;则翻转2022次后,点C 所对应的数是( )A .2020B .2021C .2022D .2023二、填空题(每小题3分,共15分)11.k =______时()2232353x k xy xy y −−++−中不含xy 项 12.已知a ,b 互为相反数,m ,n 互为倒数,p 是最小的正整数,则102()||2020a b mn p ++−=__________.13.当2022x =时,代数式35ax bx ++的值为1,则当2022x =−时,35ax bx ++的值为__________.14.如图是一个“数值转换机”,若输入的数 1.5x =−,则输出的结果为____.15.如图,是由一些点组成的图形,按此规律,当20n =时图形中点的个数为 __.三、解答题(16题8分,17题6分,18题6分,19题7分,20题10分,21题9分,22题9分,共55分)16.化简:(1)()()2235x x x −+−−+(2)()()2222312x x x x x −+−−−+17.先化简,再求值:()()2222352mn m m mn m mn ⎡⎤−−+−−+⎣⎦, 其中m ,n 满足()2120m n −++=.18.某同学做一道数学题:已知两个多项式A 、B ,计算2A B +,他误将“2A B +”看成“2A B +”,求得的结果是2927x x −+,已知232B x x =+−,求2A B +的正确答案.19.如图,已知长方形的宽为a ,两个空白处分别是半径为a ,b 的四分之一圆.(1)用含a 、b 的式子表示阴影部分的面积;(结果保留π)(2)当6a =,2b =时,求出阴影部分的面积.20.已知:22321A a ab a =+−−,21B a ab =−+−(1)求()432A A B −−的值;(2)若2A B +的值与a 的取值无关,求b 的值.21.仔细观察下列等式:第一个:225183−=⨯第二个:229587−=⨯第三个:22139811−=⨯第四个:221713815−=⨯……(1)请你写出第六个等式:___________;(2)请写出第n 个等式:___________;(用含字母n 的等式表示);(3)运用上述规律,计算:811813897899⨯+⨯++⨯+⨯.22.在数轴上点A 表示数a ,点B 表示数b ,点 C 表示数c ,a 是多项式2241x x −−+的二次项系数,b 是最大的负整数,单项式2412x y −的次数为c .(1)a =_________,b =_________,c =__________(2)若将数轴在点B 处折叠,则点A 与点C __________重合。
华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)

华东师大版七年级数学上册第三章整式的加减专题训练试题专题(一)整式的化简与求值1.已知有理数a,b,c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()A .a+cB .c-aC .-a-cD .a+2b-c2.有理数a,b 在数轴上的位置如图所示,则化简式子|a+b|+a 的结果是______.3.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x-7的值为______.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a-7b)-(4a-5b);(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);(5)3x 2-[5x-(12x-3)+3x 2].6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;(3)2(a 2b-ab 2)-3(a 2b-1)+2ab 2+1,其中a=2,|b+1|=0.8.若单项式3x 2y 5与-2x1-a y 3b-1是同类项,求下面代数式的值:5ab 2-[6a 2b-3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b<_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b_____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2020.”小明做题时把“x =2020”错抄成了“x =-2020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是()A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是()A.1009+1010+…+3026=20172B.1009+1010+…+3027=20182C.1010+1011+…+3028=20192D.1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.参考答案专题(一)整式的化简与求值1.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是(A)A.a+c B.c-a C.-a-c D.a+2b-c 2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.若多项式2x2+3x+7的值为10,则多项式6x2+9x-7的值为2.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a-7b)-(4a-5b);解:原式=8a-7b-4a+5b =4a-2b.(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);解:原式=-12x 2y+xy 2+12x 2+13x 2+13x 2y+13xy2=-16x 2y+56x 2+43xy 2.(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);解:原式=2x 3-4y 2-x+2y-x+3y 2-2x 3=-y 2-2x+2y.(5)3x 2-[5x-(12x-3)+3x 2].解:原式=3x 2-(5x-12x+3+3x 2)=3x 2-5x+12x-3-3x2=-92x-3.6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x 2-2x+1+2(2x 2-6x+3)=x 2-2x+1+4x 2-12x+6=5x 2-14x+7.(2)2A-B=2(x 2-2x+1)-(2x 2-6x+3)=2x 2-4x+2-2x 2+6x-3=2x-1.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;解:原式=-x 2+12x-2-12x+1=-x 2-1.当x=12时,原式=-(12)2-1=-54.(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b<0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b<0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2020.”小明做题时把“x=2020”错抄成了“x=-2020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2020和x=-2020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),(10b+a)-(10a+b)=10b+a-10a-b=9b-9a=9(b-a),因为a,b都是整数,所以a-b,b-a也是整数.所以这两个数的差一定是9的倍数.专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n+6D .3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C )A .1009+1010+…+3026=20172B .1009+1010+…+3027=20182C .1010+1011+…+3028=20192D .1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2019个单项式是-4037x2019,第2020个单项式是4039x2020.。
七年级数学华东师大版上册课件:第3章《整式的加减》测试卷 (共33张PPT)

20
(2)求当 t=8 小时,s=40 千米时,骑自行车每小 时比步行多走的距离.
解:当 t=8,s=40 时,t-s 3-st=84-03-480=3 千 米/小时,即骑自行车比步行每小时多走 3 千米.
21
21. (8 分)阅读理解:小红、小英和小强三个同学, 针对同一道数学题“先化简,后求值:(xyz2-4xy-1) +(-3xy+xyz2-3)-(2xyz2+xy),其中 x=-0.125,y =0.5,z=0.315.”展开争论:
(1)在第 n 个图形中,每一横行共有________块瓷 砖,每一竖列共有________块瓷砖;
(2)在铺设第 n 个图形时,共用多少,每块白瓷砖 3 元,铺设 当 n=10 时的图形时,共需花多少钱购买瓷砖?
29
解:(1)(n+3);(n+2); (2)(n+3)(n+2); (3)当 n=10 时,总砖数为 13×12=156(块),其中 白瓷砖 10×11=110 块,黑瓷砖 156-110=46(块). 所需购买瓷砖的钱数为 4×46+3×110=514(元).
A.x(6-x)平方米 B.x(12-x)平方米 C.x(6-32x)平方米 D.x(6-3x)平方米
10
【解析】窗框的宽度为12-2 3x=6-32x米,则窗 框的面积是 x(6-32x)平方米.
11
10. (2017·荆州)如图,用黑白两种颜色的菱形 纸片,按黑色纸片数逐渐增加 1 的规律拼成下列图 案.若第 n个图案有2017 个白色纸片,则 n的值为( B )
解:(1)如图所示; (2)原式=a-2(a-b)+a+b =3b.
24
23. (10 分)“囧”(jiǒng)是网络流行语,像一个人 脸郁闷的神情.如图所示,一张边长为 20 的正方形的 纸片,剪去两个一样的小直角三角形和一个长方形得 到一个“囧”字图案(阴影部分).设剪去的小长方形长 和宽分别为 x,y,剪去的两个小直角三角形的两直角 边长也分别为 x,y.
第三章 整式的加减单元试题(含答案)

第三章 整式的加减单元试题班级:_____________座号:_____ 姓名:________________ 成绩:________一、选择题(每小题3分,共18分)1. 在下列式子:x=y ,a ,ax+1,3x-2=0中,是代数式的有…………………………( )A. 1个B. 2个C. 3个D. 4个2. 下列说法,正确的是……………………………………………………………………( )A. 12是单项式B. x 的次数是0C. 1y是单项式 D. x 2y 3没有系数 3. 下列添括号正确的是…………………………………………………………………( )A. –x-y=-(x-y )B. 6x 2+2x=2x (3x+2)C. a 2 + b 2 + 2b-1= a 2-(b 2-2b+1)D. 12a-2=12(a-4) 4. 当x=5时,(x 2-x )-(x 2-2x+1)等于………………………………………………( )A. -14B. 4C. -4D. 15. 减去-3x 得x 2-3x+6的式子为…………………………………………………………( )A. x 2+6B. x 2+3x+6C. x 2-6xD. x 2-6x+66. x 表示一个两位数,y 表示一个三位数,如果把x 放在y 的左边组成一个五位数,则这个五位数可能表示为………( )A. x+yB. 10x+yC. 100x+yD. 1000x+y二、填空题(每小题2分,共24分)7. 单项式- x 2y 3的系数是_____________。
8. 多项式2x 2 y –1 + 3x 是 _________次_______项式。
9. 去括号:(a+b )-2(a-b )=_________________________。
10. 若x=-1,y=2,则x 2+y 2的值为_______________。
11. 把多项式x 3y - x 2y 3 -1- xy 2 ,按x 的升幂排列为______________________________。
第3章 整式的加减测试(含答案)-
整式的加减综合测试一、填空题(每空1分,共18分)1.单项式2 a2b的系数是_______,次数是________.2.多项式-52x2y+xy+2x-1是_____次______项式,常数项是_______.3.将多项式3xy2-2x2y+x3y3按x的降幂排列,结果是________.4.若单项式4x m y3与-x2y n-1的和是单项式,则m=_______,n=________.5.m,n互为相反数,则(3m-2n)-(2m-3n)=_______.6.“a,b•两数的平方和除以它们乘积的2•倍”这句话用代数式可以表示为________.7.若代数式x2+x+3的值为7,则代数式3x2+3x+7的值是________.8.若代数式(2x2+3ax-y)-2(bx2-3x+2y-1)的值与字母x的取值无关,则代数式(•a -b)-(a+b)的值是_________.9.在长、宽分别为acm、bcm的长方形铁皮的四个角上各剪去一个边长为xcm•的小正方形,再把它折成一个无盖的小盒子,则这个盒子的容积用代数式表示是_______.10.如图,学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人.按照这种规定填写下表中的空格:二、选择题(每题3分,共30分)11.在式子10,2ab,2m+n,3x-4=1,st中,整式的个数为().A.3 B.4 C.5 D.612.a-b-c的相反数是().A.a+b+c B.-a+b-c C.-a+b+c D.-a-b-c13.下列合并同类项中,错误的有().①3x-2y=1;②x2+x2=x4;③3mn-3mn=0;④4ab2-5ab2=ab;⑤3a2+4a3=7a5.A.4个B.3个C.2个D.1个14.组成多项式2x2-x-3的单项式是下列几组中的().A.2x2,x,3 B.2x2,-x,-3 C.2x2,x,-3 D.2x2,-x,3 15.下列各项中,去括号正确的是().A.x2-(2x-y+2)=x2-2x+y+2 B.-(m+n)-mn=-m+n-mnC.x-(5x-3y)+(2x-y)=-2x+2y; D.ab-(-ab+3)=316.有一串数:0,1,2,3,6,7,14,15,30,____,_____,____.•这串数是由小明按照一定的规律写下来的,他第一次写下“0,1”,第二次接着写下“2,3”,•第三次接着写下“6,7”,第四次接着写下“14,15”,就这样一直接着往下写,那么这串数的最后三个应该是下面的( ). A .31,32,64 B .31,62,63 C .31,32,33 D .31,45,46 17.某商品先降价20%,再提价20%后的售价为a 元,则原价是( ). A .0.96a 元 B .a 元 C .0.96a 元 D .以上都不对18.若m<0,mn<0,则│n -m+1│-│m -n -5│的值是( ). A .-4 B .4 C .2m -2n+4 D .无法确定 19.化简(-1)n x+(-1)n+1x (n 为整数)的结果为( ). A .2a B .-2a C .0 D .2a 或-2a20.如图,正方形的边长为a ,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为( ).A .πa 2-a 2B .2πa 2-a 2C .12πa 2-a 2 D .14a 2-πa2三、解答题(共52分) 21.(8分)化简:(1)-7x 2+(6x 2-5xy )-2(3y 2+xy -x 2);(2)(8xy -3x 2)-5xy -3(xy -2x 2+3)22.(5分)已知x=12,y=-12,求4xy 2-12(x 3y -2xy 2)-2[14x 3y -(x 2y -xy 2)]的值.23.(5分)已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a -3ab )-(4a b-3b )的值.24.(5分)已知3x |2a -1|y 与-2xy |b|是同类项,并且a 与b 互为负倒数,求ab -3(2a -b )-2a +6的值.25.(5分)有理数a ,b ,c 在数轴上的位置如图所示,化简代数式3│a -b │+│a+b │-│c -a │+2│b -c │.26.(12分)有一根弹簧,原长为10cm,挂重物后(不超过50g)它的长度会改变,•请根据下面表格中的一些数据回答下列问题:(1(2)当x=30时,求弹簧的总长度;(3)要想使弹簧伸长5cm,应挂重物多少克?27.(12分)如图所示,每张小纸带的长为30cm,宽为10cm,用胶水把它们粘贴成一张长纸带,接头部分的长为3cm.(1)分别求出用3张和5张这样的小纸带粘贴成的纸带的长度.(2)用n张这样的小纸带粘贴成的纸带的长度是多少?(3)根据(2)计算用30张这样的小纸带粘贴成的纸带的长度.答案:1.2π2 3 点拨:π不是字母,它是常数. 2.三 四 -1 3.x 3y 3-2x 2y+3xy 24.2 4 点拨:两个单项式的和是单项式,隐含着这两个单项式是同类项. 5.0 点拨:化简结果为m+n ,因为m ,n 互为相反数,所以m+n=0. 6.222a b ab+7.19 点拨:由x 2+x+3=7得x 2+x=4,原式=3(x 2+x )+7=3×4+7=19.8.-2 点拨:原代数式可化简为(2-2b )x 2+(3a+6)x -5y+2, 因为其值与字母x •的取值无关,所以2-2b=0,3a+6=0, 所以a=-2,b=1,则代数式(a -b )-(a+b )=-2b=-2.9.(a -2x )(b -2x )x 10.4 6 8 10 2n+2 11.A12.C 点拨:a -b -c 的相反数是-(a -b -c )=-a+b+c . 13.A14.B 点拨:符号应是项的一部分.15.C 点拨:括号前是“-”号的,去括号时里面各项都变号.16.B17.C 点拨:设原价为x 元,则(1-20%)(1+20%)x=a ,x=0.96a .18.A 点拨:m<0,n>0,原式=n -m+1+m -n -5=-4.19.C 点拨:当n 为奇数时,原式=-x+x=0;当n 为偶数时,原式=x+(-x )=0. 20.C 点拨:S阴影=2×π×(2a )2-a 2=12πa 2-a 2.21.(1)原式=-7x 2+6x 2-5xy -6y 2-2xy+2x 2= x 2-7xy -6y 2 (2)原式=8xy -3x 2-5xy -3xy+6x 2-9=3x 2-9 22.原式=4xy 2-12x 3y+xy 2-12x 3y+2x 2y -2xy 2=3xy 2-x 3y+2x 2y ,当x=12,y=-12时,原式=3×12×(-12)2-(12)3×(-12)+2×(12)2×(-12)=38+116-23816=.23.原式=5ab+4a+7b+6a -3ab -4ab+3b=-2ab+10a+10b=-2ab+10(a+b ). 当a+b=7,ab=10时,原式=-2×10+10×7=50.24.由题意可知│2a-1│=1,│b│=1,解得a=1或0,b=1或-1.又因为a与b互为负倒数,所以a=1,b=-1.原式=ab-32a+3b-12a+6=ab-2a+3b+6,当a=1,b=-1时,原式=1×(-1)-2×1+3×(-1)+6=0.25.由图可知c>0,a<b<0,原式=-3(a-b)-(a+b)-(c-a)-2(b-c)=-3a+3b-a-b-c+a-2b+2c=-3a+c.()26.(1)(10+0.5x)cm(2)当x=30时,10+0.5x=10+0.5×30=25(cm).(3)10g27.(1)3张:3×30-2×3=84(cm);5张:30×5-4×3=138(cm).(2)n张:纸带的长度=30n-3×(n-1)=(27n+3)cm.(3)当n=30时,27n+3=813(cm).。
2024-2025学年北师大版七年级数学上册第三章+整式的加减+单元测试题+
第三章 整式的加减 单元测试题 2024-2025学年北师大版七年级数学上册A 卷( 共 100 分)第Ⅰ卷(选择题,共 32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,请将答案写在答题表格内)1 . 下列代数式书写规范的是( )A . x12B . x ÷ yC . a(x + y )D . 121xy 2 . 用代数式表示“x 与y 的2倍的和”,正确的是( )A . x + 2yB . 2x + yC . 2x + 2yD . x 2 + y 23 . 在代数式:- π ,0 ,a , 65,1,3ab x y x -- 中,单项式有( ) A . 2 个 B . 3 个 C .4 个 D .5 个4 . 多项式a 3 - 4 a 2 b 2+ 3 ab - 1的项数和次数分别是( )A . 3 和4B . 4 和4C . 3 和3D . 4 和35 . 一个三位数,百位上的数字为x,十位上的数字比百位上的数字少3,个位上的数字是百位上的数字的2倍,这个三位数用含x 的代数式表示为( )A . 112x - 30B . 100x - 30C . 112x + 30D . 102x + 306 . 某产品原价为a 元,提价10% 后又降价了10% ,则现在的价格是( )A . 0 . 9 a 元B . 1 . 1 a 元C . a 元D . 0 . 99 a 元7 . 已知a 2 + 2a - 3 = 0 ,则代数式2a 2+ 4 a - 3 的值是( )A . - 3B . 0C . 3D . 68. 按如图所示的方式摆放圆和三角形,观察图形,则第10 个图形中圆有( )A . 36 个B . 38 个C . 40 个D . 42 个第Ⅱ 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20 分)9 . 去括号:+ ( a - b ) = _______ , - ( a + b) = ________.10 . 单项式-2 πab 2 的系数是________,次数是_________.11 . 若单项式3x m y 与-2x 6 y 是同类项,则m =________.12 . 已知一个多项式与多项式3x 2 + x 的和等于3x 2 + 4x - 1,则这个多项式是________.13 . 已知a 1 = 23-,a 2=55,a 3=107-,a 4 =179,a 5=2611- ,则a 8=_______. . 三、解答题(本大题共5个小题,共48分)14 .(本小题满分12 分,每题3分)计算:( 1 )5 m 2 - 5 m + 7 - 6 m 2- 5 m - 10 ; (2 ) ( 8a - 7 b ) - (4 a - 5 b ) ;(3 )5 (a 2 b - 3 ab 2 ) - 2 (a 2 b - 7 ab 2 ) ; (4 )5 abc - { 2a 2 b - [ 3 abc - (4 ab 2- ab 2 ) ] } .15 .(本小题满分9分)列代数式,并化为最简形式.(1)一个三位数,它的个位数字是m,十位数字比个位数字大1,百位数字比个位数字小2, 用 含m 的代数式表示这个三位数;(2)东方红电影院第一排有15 个座位,后面每排比前一排多2 个座位,用含n 的代数式表示 第n 排的座位数;(3 ) 如图,将长为4m 的长方形沿图中虚线裁剪成四个形状、大小完全相同的小长方形,用含m 的代数式表示每个小长方形的周长.16 .(本小题满分8分)先化简,再求值:(7x + 4y + xy) - 6 (xy x y -+65),其中x-y = 5 , - xy = 3 .17 .(本小题满分9分) 先化简,再求值:a 2 - 10ab -5a 2 + 12ac - c 2+ 3 ab - 8ac + 4a 2 , 其中a 是平方等于它本身倒数的数,且|b + 2|+ (3a + c +21 )2 = 0 .18 .(本小题满分10 分)某商家销售一款定价1200 元的空调和300 元的电扇.“五一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台空调送一台电扇;方案二:空调和电扇都按定价的90%付款.现某客户要到该商场购买空调6 台,电扇x 台(x > 6).(1)若该客户按方案一购买,则需付款_____元;若该客户按方案二购买,则需付款_________元;(用含x 的代数式表示)(2)当x= 10 时,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案并计算需付款多少元.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19 . 一辆公交车原有a 名乘客,到某站后,下去一半乘客,又上来b 名乘客,此时公交车上乘客的人数为_________.20 . 一组按规律排列的式子:,......,,,41138252ab a b a b a b -- 第n 个式子是________(n 为正整数).21 . 若b a b a +-2 = 5,则代数式 b a b a +-)2(2+ ba b a -+2)(3的值为_______ . 22 . 有理数a 、b 、c 在数轴上对应的点的位置如图所示,试化简:|a + c|-|a - b - c| -|b - a| +|b + c|=__________. .23 . 观察下列等式:第一个等式:a 1=22213⨯⨯=211⨯-2221⨯; 第二个等式:a 2=32324⨯⨯=2221⨯-3231⨯; 第三个等式:a 3=22435⨯⨯=3231⨯-4241⨯; 第四个等式:a 4=52546⨯⨯=4221⨯-5251⨯……, 按上述规律,回答以下问题:(1 )用含n 的代数式表示第n 个等式:a n =___________.(2)计算:a 1+ a 2+ a 3+ …+a 20=_________.二、解答题(本大题共3个小题,共30 分)24 .(本小题满分8分)已知代数式2x 2 + ax - y + 6 - bx 2 + 3 x - 5 y - 1 的值与x 的取值无关,且A = 4a 2 - ab + 4b 2,B = 3a 2 - ab + 3b 2,求3A -2(3A - 2B )- 3(4A - 3 B )的值.25 .(本小题满分10 分)(1)探索规律并填空:1 + 2 =2)21(2+⨯;1 + 2 + 3 =2)31(3+⨯;1 + 2 + 3 + 4 =2)41(4+⨯; 则1 + 2 + 3 + …+20 =_________,1 + 2 + 3 + …+ n =__________.(2)将火柴棒按如图所示的方式搭图形.① 填表:②照这样的规律搭下去:(i)第n 个图形的大三角形周长的火柴棒是几根?(ii)第n 个图形的小三角形有几个?第100 个图形的小三角形有几个?(iii)第n 个图形需要多少根火柴棒?26 .(本小题满分12 分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费标准如表:(注:水费按月份结算,m3表示立方米)例:若某户居民1月份用水8m3,应交水费2 × 6 + 4 ×(8 - 6)= 20元. 请根据表中信息解答下列问题:(1)若该户居民2月份用水4m3,则应交水费多少元?(2)若该户居民3 月份用水am 3(其中6 < a < 10),则应交水费多少元?(用含a 的代数式表示)(3)若该户居民4、5 两个月共用水15 m3(5 月份用水量超过了4月份),设4月份用水xm 3,求该户居民4、5 两个月共交水费多少元?(用含x的代数式表示)。
七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)
七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)一、选择题1.如果一个两位数是十位数字是a ,个位数字是b ,则这个两位数用代数式表示为( )A .abB .10abC .a b +D .10a b +2.已知12a b -=,则代数式662a b --的值是( ). A .0B .1C .-1D .53.下列代数式中,属于单项式的是( )A .a b +B .a b -C .abD .a b4.下列各选项中的两个项是同类项的是( ).A .32a b 和23a bB .35a b -和33baC .23abc 和23a bcD .2a 和2a5.“居家嗨购,网上过年”,为做好疫情防控并促进春节消费,山西省组织开展了2022年“全晋乐购”网上年货节活动,某企业采购了具有山西特色的年货慰问响应国家号召就地过年的员工,该企业选购了甲种物品()3a +件,单价是100元;乙种物品a 件,单价是240元.则该企业共花费在( )A .()140300a +元B .()200300a +元C .()300300a +元D .()340300a +元6.已知21a b -=-,则代数式124a b -+的值是( )A .-3B .-1C .2D .37.式子 2282259b x y a x m-++--,,,, 中, 单项式有( ) A .1个B .2个C .3个D .4个8.若关于 x 、 y 的多项式 2226431x ax y ax x +-+-- 中没有二次项,则 a = ( )A .3B .2C .12-D .3-9.下列运算中,正确的是( )A .325a b ab +=B .325235a a a +=C .22541a a -=D .22330a b ba -=10.图1是由3个相同小长方形拼成的图形其周长为24cm ,图2中的长方形ABCD 内放置10个相同的小长方形,则长方形ABCD 的周长为( )A .32cmB .36cmC .48cmD .60cm二、填空题11.“x 的2倍与5的和”用式子表示为 . 12.已知221a a -=-,则2362a a -+= .13.把多项式322245x y y x -+按x 的升幂排列 .14.若代数式39m a b 与22n a b -是同类项,那么m = ,n = .三、解答题15.如图是某居民小区的一块长为b 米,宽为2a 米的长方形空地,为了美化环境,准备在这个长方形的四个顶点处各修建一个半径为a 米的扇形花台,然后在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?16.已知:a b 、 互为相反数,c d 、 互为倒数,m 是最小的正整数,求代数式2022()32a b cd m +-+的值.17.已知式 23372m km m +-+ 是关于m 的多项式,且不含一次项,求k 的值. 18.先化简,再求值:()222233()a ab a b ab b ⎡⎤+--++⎣⎦其中6a =和13b =-.四、综合题19.列代数式。
第三章整式的加减分节练习题和综合练习题
用字母表示数【基础训练】 一、填空题1、气温由5℃上升t ℃后是__________℃.2、长为b ㎝,宽为a ㎝的长方形的面积是__________㎝2.3、成本由x 元下降5%后是__________元.4、若甲的速度是v 千米/小时,乙的速度是甲的速度的3倍,则乙的速度是_____千米/小时.5、若a 、b 、c 表示任意三个有理数,则乘法对加法的分配律可表示为:__________.6、练习簿每本定价元,活动铅笔每支元,买a 本练习簿和b 支活动铅笔,共需用__________元.7、希望小学初一(2)班共有学生m 人,其中女学生占全班人数的一半还少2人,则女生有__________人. "8、长为a ,宽为41a 的长方形的面积是___________________,周长是_________; 9、在某段长江大堤上,参加抗洪抢险的军民共a 人,其中解放军占50%,则这段大堤上解放军共有_________________人.10、如果每个学生植树2棵,初一(1)班有x 人,那么初一(1)班植树__________棵. 11、若a 和b 表示两个有理数,则它们的和是_______,它们的倒数和是_______,它们和的倒数是_______,它们的绝对值的差是_______,它们差的相反数是_______.12、某服装厂第一季度加工了x 件服装,第二季度比第一季度增加了15%,第三季度比第二季度减少了10%,则第三季度加工服装_______件.13、某船在静水种的速度为x 千米/小时,水流速度为y 千米/小时,该船逆水行了a 小时,共行_______千米,这段路程顺水行需_______小时. 二、选择题14. 圆柱的高为x ,底面直径等于高,则圆柱的体积是( )(A)341x π(B)321x π(C)3x π(D)331x π15. 如果n 为自然数,能代表奇数的代数式为( ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 整式的加减综合练习
一、 选择题
1.下列各式中是多项式的是 ( )
23
2
1ab D
ab C
y x B A -+-
2.下列说法中正确的是( )
A. x 的次数是0
B. 是单项式
C. 是单项式
D. -5a 的系数是5
3.如图,为做一个试管架,在 cm 长的木条上钻了4个圆孔,每个孔直径2cm ,则 等于 ( )
4. a-(b+c-d)=(a-c)+( )
A d-b
B -b-d
C b-d
D b+d
5.只含有 的三次多项式中,不可能含有的项是 ( ) 6. 化简 2a-〔3b-5a-(2a-7b)〕的结果是( )
A -7a+10b
B 5a+4b
C -a-4b
D 9a-10b
7.一台电视机成本价为 a 元,销售价比成本价增加了25% ,因库存积压,所以就按销售价的 70% 出售,那么每台实际售价为 ( )
A (1+25%)(1+70%)a 元
B 70%(1+25%)a 元
C (1+25%)(1-70%)a 元
D (1+25%+70%)a 元
8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面,.
阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )
A . -7xy B. +7xy C. -xy D . +xy
9.用棋子摆出下列一组三角形,三角形每边有n 枚棋子,每个三角形的棋子总数是s .按此规律推断,当三角形边上有n 枚棋子时,该三角形的棋子总数s 等于 ( )
10.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应( ) A. -4(x -3)2+(x -3) B. 4(x -3)2-x (x -3) C. 4(x -3)2-(x -3) D . -4(x -3)2-(x -3)
二、填空题
11.单项式 8
53
ab - 的系数是 ,次数是 .
12.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.
13.当 x=-2时,代数式 的值是 ;
14.计算: 4(a 2b-2ab 2)-(a 2b+2ab 2)= ;
15.)将自然数按以下规律排列,则2018所在的位置是第 行第 列.
16.规定一种新运算:a ⊿b=ab-a-b+1,如:3⊿4=3×4-3-4+1,请比较大小 (-3)⊿4 4⊿(-3)(填“>”、“=”或“<”)
17.观察下列单项式:0,3x 2,8x 3,15x 4,24x 5,……,按此规律写出第13个单项式是______。
18.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x>60),则该户应交煤气费 元.
三、解答题
585558-+a D C B A A yz x D y C xyz B x A 23341752-⎪⎭⎫ ⎝⎛-+-22213y xy x 2
222123421y
x y xy x -=⎪⎭⎫ ⎝⎛-+--x
x -+15
6y
1
3
2
19、化简:
()
()()[]
2223473244
1
1x x x x mn mn -----
20.化简求值
(1) 其中 a=-1
(2) 其中
21、已知 求2A-3B 的值 22.如图所示,一扇窗户的上部是由4
4个小正方形,请计算这扇窗户的面积和窗框的总长.
23、有这样一道题“当 a=2.b=-2时,
求多项式 -2b 2
+3的值”,
马小虎做题时把 错抄成 ,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
24. 某商店有两个进价不同的计算器都卖了a 元,其中一个盈利60%,另一个亏本20%,
在这次买卖中,这家商店是赚了,还是赔了?赚了或赔了多少?
25、某农户2014年承包荒山若干亩,投资7800•元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元(b <a ).该农户将水果拉到市场出售平均每天出售1000千克,需8•人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a ,b 表示两种方式出售水果的收入?
(2)若a =1.3元,b =1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售)?
)522(2)624(22-----a a a a )3123()21(22122b a b a a -----3
2,2=-=b a 1232+-=a a A 2352+-=a a B ⎪⎭⎫ ⎝⎛---+-2233233414213b b a b a b b a b a ⎪⎭⎫ ⎝⎛++b a b a 23341。