钢结构基本原理受弯构件
6-钢结构基本原理—压弯构件

求解过程:p.197
方程解:
(1 −
一、单向压弯构件的平面内失稳
参阅 §7.4.1
不对称实腹式截面,弯矩使较大翼缘受压时的 补充计算公式
N A
−
β mx M x
γ xWx2 (1 − 1.25N
/ NE)
≤
fd
§3 压弯构件的整体稳定
二、单向压弯构件的平面外失稳
平面外失稳的特征
参阅 §7.4.2
Mx
N
y
v
Mx zN
N
x u,θ
zN
与受弯构件整体失稳的相似点:
边缘屈服准则
N A
+
Nv 0m
≤
W x (1 − N / N E )
fy
M max
=
Nv0m 1-N / N E
2阶效应放大因子(弹性范围)
整理为 p.103(5-30)
σ cr
=
fy + (1+ ε0 )σEx 2
−
[
fy
+ (1+ ε0 )σEx 2
]2
−
fyσ Ex
1 1-N / N E
ε0
=
则 N + Mx ≤1 N p M ex
N An
+ Mx Wxn
≤
fd
§2 单向压弯(拉弯)构件截面强度
三、全截面屈服准则
准则描述:
参阅 §4.2
截面各点应力(拉、压)都达到钢材屈服点
截面强度公式
y σ1 = fy
x
记 屈服轴力 N p = Af y 塑性弯矩 M px = Wpx fy
N 经推导可得
Av 0m Wx
受弯构件

型钢梁
实腹式截面梁
按截面构成方式分
焊接组合截面梁
空腹式截面梁 组合梁
由若干钢板或钢板与型钢连接而成。它 截面布置灵活,可根据工程的各种需要 布置成工字形和箱形截面,多用于荷载 较大、跨度较大的场合。
3
钢结构原理与设计
图4.1 工作平台梁格
1-主梁 2-次梁 3-面板 4-柱 5-支撑
4
钢结构原理与设计
M x Wnx
a
M x f yWnx
a
σ
fy
fy
fy
M xp f yW pnx
M xp f y S1nx S2nx f yWpnx
式中: S1nx、S2nx 分别为中和轴以上、以下截面对中 和轴的面积矩; Wpnx 截面对中和轴的塑性抵抗矩。
(4-2) 5 2) (
16
钢结构原理与设计
2) 梁的抗剪强度 剪应力的计算公式:
VS fv It w
(4.6)
式中:V ——计算截面的剪力; S ——计算剪应力处以上毛截面对中和轴的面积矩; I ——毛截面惯性矩;
17
钢结构原理与设计
3) 梁的局部承压强度
图4.6 梁局部承压应力
18
钢结构原理与设计
式中:F ——集中荷载,动力荷载需考虑动力系数; ψ ——集中荷载增大系数,重级工作制吊车梁ψ=1.35; Lz ——集中荷载在腹板计算高度上边缘的假定腹板长度,按下式计算: Lz=a+2hy a ——集中荷载沿梁跨度方向的支承长度,吊车梁可取a为50mm; hy ——自吊车梁轨顶或其它梁顶面至腹板计算高度上边缘的距离
t1
ho
t1
b
20
钢结构原理与设计
受弯构件钢结构设计原理

钢结构设计原理是一种重要的学科,涉及到受弯构件的设计和力学特性。通 过设计不同形状的截面,我们可以实现更高效、更安全的钢结构。
受弯构件概述
受弯构件是钢结构中常见的一种构件类型。了解受弯构件的基本原理和力学 特性对设计高效的钢结构至关重要。
受弯构件的力学特性
受弯构件的力学特性包括弯曲应力与截面形状的关系,截面变形与变形限值,弯曲稳定性分析等。深入理解这 些特性可以指导我们设计出更可靠的受弯构件。
燃气管道和桥梁受弯构件的设计
1
燃气管道设计
燃气管道受弯构件的设计需考虑管道的输送能力和弯曲变形。
2
桥梁设计
桥梁受弯构件设计的关键是确保桥梁结构在荷载下的安全和稳定。
3
设计原则
无论是燃气管道还是桥梁,设计原则都是确保结构强度和稳定性。
不同截面形状的受弯构件设计
I型截面
通过优化I型截面的设计,可以实现更高的强度和刚度。
H型截面
H型截面受弯构件常用于大跨度的结构中,具有较高的承载能力。
T型截面
T型截面受弯构件常用于柱和梁的连接处,具有较强的刚性。
双角型截面受弯构件的设计
双角型截面受弯构件常用于复杂结构中,设计时需要考虑受力分布和稳定性。
规则多边形截面受弯构件的设计
三角形截面
三角形截面受弯构件具有良好的 强度和刚。
正方形截面
正方形截面受弯构件常用于需要 均匀受力的结构中。
六边形截面
六边形截面受弯构件具有优秀的 力学性能和美观的外观。
不规则多边形截面受弯构件的 设计
不规则多边形截面受弯构件的设计需要考虑受力分布和形状参数的优化。
钢结构设计原理 第五章 受弯构件

钢结构设计原理第五章受弯构件1、第五章受弯构件51概述1、定义主要承受横向荷载作用的构件,即通常所讲的梁。
2、类型按使用功能,可分为工作平台梁、吊车梁、楼盖梁、墙梁及檩条等;按支承状况,可分为简支梁、连续梁、伸臂梁和框架梁等;按荷载作用状况,可分为单向弯曲梁和双向弯曲梁;按截面形式有型钢梁和组合梁;实腹式和格构式。
图51受弯构件的截面形式3、受弯构件梁的内力一般,仅考虑其弯矩和剪力;对于框架梁,需同时考虑M、V和N作用。
※关键词受弯构件MEMBERINBENDING梁BEAM单向受弯构件ONEWAYMEMBERINBENDING双向受弯构件TWOWAYMEMBERINBENDING52受弯构件的强度一、2、抗弯强度1、梁在弯矩作用下,当M渐渐增加时,截面弯曲应力的进展可分为三个阶段,见图52所示。
〔1〕弹性工作阶段弯矩较小时,梁截面受拉边缘?<YF,梁处于弹性工作阶段,弯曲应力呈三角形分布。
弹性极限弯矩为NEW??截面受拉边缘的?YF。
〔2〕弹塑性工作阶段弯矩继续增大,截面边缘部分进入塑性,中间部分仍处于弹性工作状态。
〔3〕塑性工作阶段当弯矩再继续增加,截面的塑性区进展至全截面,形成塑性铰,梁产生相对转动,变形大量增加。
此时为梁的塑性工作阶段的极限状态,对应的塑性极限弯矩为PNYPWFM??。
图52梁受弯时各阶段的应力分布状况问取那个阶段作为设计或计算的模型答规范中按弹性阶3、段或弹塑性阶段设计或计算。
塑性进展深度,通过塑性进展系数?来衡量。
截面样子系数NPEFWM??2、抗弯强度?单向受弯FNX????双向受弯FWNYNX???其中X?、Y截面塑性进展系数,一般状况按表61取值;?若YFTB2351>时,取X?Y10;?若直接承受动力荷载作用时,取10。
※抗弯强度不够时,可以调整截面尺寸增大NW,但以增大截面高度H最有效。
二、抗剪强度梁的抗剪强度按弹性设计,以截面的剪应力到达钢材的抗剪强度设计值作为抗剪承载力的极限状态。
11钢结构基本原理(3-构件强度09)

轴心受拉构件强度计算公式 N f An
An 构件净截面面积 f 抗拉强度设计值
轴心受压构件的强度计算---与受拉构件强度计算完全相同, 仍采用以上公式
注意:轴心受压构件的破坏形式有强度破坏、整体失稳破坏和 局部失稳破坏(设计方法后述)。
——强度计算往往不是起控制作用?
轴心压杆(柱)的设计和计算内容—概述 1. 截面选择
最优截面改变处是离支座1/6跨度处。
b'
≤1:4
M' M1
b
M' M
M
a=l/6 l
1
按强度条件选择梁截面
h
a=l/6
多层翼缘板的梁,可用切断外层板的方法来改变梁的截面。
双层翼缘焊接梁
梁截面一般只改变一次,对于跨度较小的组合梁,不宜改变截面。
四、拉弯、压弯构件的应用和强度计算
压弯(拉弯)构件——同时承受轴向力和弯矩的构件 弯矩的产生
塑性阶 段
弯曲正应力的特点是什么?
受弯构件(梁)的强度
1、正应力—抗弯强度
三种强度准则: 1)按边缘屈服准则
(对需计算疲劳的)
Mx f Wnx
2)按全截面塑性准则
Mx f W pnx
3)按有限塑性准则(规范用公式)
(对一般受弯构件)
Mx f xWnx
梁的抗弯强度计算公式---应用和注意
h he
梁的建筑高度要求决定了梁的最大高度hmax ; 梁的刚度要求决定了最小高度: hmin f l = ; l 1.34 10 6 vT
1
梁的经济条件决定了梁的经济高度:he 7Wx 3 30(cm)
b. 腹板厚度
抗剪要求
钢结构原理 第五章 受弯构件解析

xp
pnx
M W F
x
nx
(5 3)
只取决于截面几何形状而与材料的性质无关
F
的形状系数。
X
Y
A1
X Aw
Y 对X轴 F 1.07 ( A1 Aw )
对Y轴 F 1.5
钢结构设计原理
第五章 受弯构件
2.抗弯强度计算 《规范》对于承受静荷载或间接动荷载的梁,梁设 计时只是有限制地利用截面的塑性,如工字形截面 塑性发展深度取a≤h/8。
b
满足:
t
Y
13 235 b 15 235
fy t
fy
时, x 1.0
XX Y
需要计算疲劳强度的梁:
x y 1.0
钢结构设计原理
第五章 受弯构件
(二)抗剪强度
Vmax Mmax
xx
t max
t VS
max
I tw
fv
(5 6)
钢结构设计原理
第五章 受弯构件
(三)局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且
钢结构设计原理
第五章 受弯构件
4.梁的计算内容
承载能力极限状态
强度
抗弯强度 抗剪强度 局部压应力 折算应力
整体稳定
局部稳定
正常使用极限状态 刚度
钢结构设计原理
第五章 受弯构件
5.1.1 截面强度破坏
◎ 抗弯强度 ◎ 抗剪强度 ◎ 局部压应力 ◎ 折算应力
5.1.2 整体失稳
◆当弯矩不大时,梁的弯曲平衡状态是稳定的。 ◆当弯矩增大到某一数值后,梁会突然出现很大的侧向弯曲 并伴随扭转,失去继续承载能力。 ◆只要外荷载稍微增加些,梁的变形就急剧增加并导致破 坏.这种现象称为梁的侧向弯扭屈曲或梁整体失稳。
《钢结构基本原理》作业解答.

《钢结构基本原理》作业解答.《钢结构基本原理》作业判断题2、钢结构在扎制时使⾦属晶粒变细,也能使⽓泡、裂纹压合。
薄板辊扎次数多,其性能优于厚板。
正确错误答案:正确1、⽬前钢结构设计所采⽤的设计⽅法,只考虑结构的⼀个部件,⼀个截⾯或者⼀个局部区域的可靠度,还没有考虑整个结构体系的可靠度.答案:正确20、柱脚锚栓不宜⽤以承受柱脚底部的⽔平反⼒,此⽔平反⼒应由底板与砼基础间的摩擦⼒或设置抗剪键承受。
答案:正确19、计算格构式压弯构件的缀件时,应取构件的剪⼒和按式计算的剪⼒两者中的较⼤值进⾏计算。
答案:正确18、加⼤梁受压翼缘宽度,且减少侧向计算长度,不能有效的增加梁的整体稳定性。
答案:错误17、当梁上翼缘受有沿腹板平⾯作⽤的集中荷载,且该处⼜未设置⽀承加劲肋时,则应验算腹板计算⾼度上边缘的局部承压强度。
答案:正确16、在格构式柱中,缀条可能受拉,也可能受压,所以缀条应按拉杆来进⾏设计。
答案:错误15、在焊接连接中,⾓焊缝的焊脚尺⼨愈⼤,连接的承载⼒就愈⾼.答案:错误14、具有中等和较⼤侧向⽆⽀承长度的钢结构组合梁,截⾯选⽤是由抗弯强度控制设计,⽽不是整体稳定控制设计。
答案:错误13、在主平⾯内受弯的实腹构件,其抗弯强度计算是以截⾯弹性核⼼⼏乎完全消失,出现塑性铰时来建⽴的计算公式。
答案:错误12、格构式轴⼼受压构件绕虚轴稳定临界⼒⽐长细⽐相同的实腹式轴⼼受压构件低。
原因是剪切变形⼤,剪⼒造成的附加绕曲影响不能忽略。
答案:正确11、轴⼼受⼒构件的柱⼦曲线是指轴⼼受压杆失稳时的临界应⼒与压杆长细⽐之间的关系曲线。
答案:正确10、由于稳定问题是构件整体的问题,截⾯局部削弱对它的影响较⼩,所以稳定计算中均采⽤净截⾯⼏何特征。
答案:错误9、⽆对称轴截⾯的轴⼼受压构件,失稳形式是弯扭失稳。
答案:正确8、⾼强度螺栓在潮湿或淋⾬状态下进⾏拼装,不会影响连接的承载⼒,故不必采取防潮和避⾬措施。
答案:错误7、在焊接结构中,对焊缝质量等级为3级、2级焊缝必须在结构设计图纸上注明,1级可以不在结构设计图纸中注明。
第五章 受弯与压弯构件分析原理

1.第一种方法 考虑外包混凝土对钢骨刚度的提高作用,按钢结构稳定理论计算。英国及欧
洲规范采用此方法。 2.第二种方法
假定构件的钢骨与外包混凝土形成一个整体,变形一致;从而套用钢筋混凝 土的有关计算理论。我国及美国ACI规范采用此方法。
第二节 型钢混凝土受弯与压弯构件
3.第三种方法 “强度叠加法”,它不要求钢骨与外包混凝土完全实现整体工作,认为:型
三、数值迭代法求解(简述迭代步骤) 四、长柱的分析
长柱的特性
第二节 型钢混凝土受弯与压弯构件
一、型钢混凝土结构(钢骨混凝土结构SRC)
第二节 型钢混凝土受弯与压弯构件
二、试验研究
1.钢骨与外包混凝土能够较好的共同工作,截面应变符合平截面假定。 2.在柱脚、结构类型转换层等传递较大内力的部位,还应在钢骨翼缘外侧设置栓 钉,以防止钢骨与混凝土之间产生相对滑移。
查得新的
s'u,若所查得的
' 正好与所假设值充分接近,则停止迭代,
su
该
s'u即为所求;将查得的
' su
代入静力平衡方程中可求得叠合梁的抗
弯承载力。
第四节 FRP(纤维增强塑料)受弯构件
一、受力特点
破坏类型、二次受力、滞后应变。
二、理论计算时的基本假定
①正截面应变分布符合平截面假定。 ②混凝土和钢筋的应力应变关系为已知,不考虑混凝土的受拉。 ③FRP材料采用线弹性应力应变关系,当考虑二次受力情况时,应计算FRP材料 的滞后应变。 ④FRP采用的拉应变由平截面假定确定,但不应超过其允许拉应变。
第三节 混凝土叠合受弯构件
2)计算公式
As su
K1K3
fcbxn