五年级下册数学重点知识(精华版)
五年级下册数学知识点归纳(经典完整版)

五年级下册数学知识点归纳第一单元:观察物体★站在任意一个位置,最多只能看到长方体的3个面。
★从不同的位置观察物体,看到的形状可能是不同的。
★从一个或两个方向看到的图形不能确定立体图形的形状。
★从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元:因数和倍数★在整数除法中,如果商是整数而没有余数,被除数是除数的倍数,除数是被除数的因数。
★★因数和倍数是相互依存的,不能单独存在。
★一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
★一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
★1是所有非零自然数的因数。
★根据数的特征判断2、3、5的倍数。
★自然数可以分为偶数和奇数两类。
第三单元:长方体和正方体★相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
★一个长方体最多有6个面是长方形,最少4个面是长方形,最多有2个面是正方形。
★正方体是长、宽、高都相等的长方体,是特殊的长方体。
★正方体的6个面完全相同,12条棱都相等。
★长方体和正方体都有6个面,8个顶点,12条棱,相对的面完全相同,相对的棱长度相等。
★计算长方体和正方体的棱长总和、表面积和体积的公式。
★单位间的进率。
第四单元:分数的意义和性质★分数表示将一个整体平均分成若干份的一份或几份。
★分数单位是将单位“1”平均分成若干份。
★分数运算:加法、减法、乘法、除法。
★真分数、假分数、带分数的概念。
★分数的基本性质:分子和分母同时乘或除以相同的数,分数的大小不变。
★最大公因数和最小公倍数的概念及计算方法。
第五单元:几何图形的旋转★旋转的三要素:旋转中心、旋转方向、旋转角度。
★钟面上指针旋转一大格是30度。
★异分母分数不能直接相加减,因为分数单位不同。
★解决打电话问题的方法是使用公式:第n分钟所有接到通知的队员总数是(2n-1)人。
第六单元:统计与图形★折线统计图可以表示数量的多少和增减变化情况。
★复式折线统计图用于比较两组数据的差异和变化趋势。
五年级数学下册数学知识点(推荐9篇)

五年级数学下册数学知识点(推荐9篇)五年级数学下册数学知识点第1篇1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:÷表示已知两个因数的积与其中的一个因数,求另一个因数的运算。
小数除法的计算方法:计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:取近似数的方法有三种,①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。
没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。
如:…………另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。
如:5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
五年级数学下册数学知识点第2篇用天平找次品规律:1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。
2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次244~739个物体,保证能找出次品需要测的次数是6次五年级数学下册数学知识点第3篇分数加减法1,异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。
五年级下册数学重点概念

五年级下册数学重点概念五年级下册数学重点概念五年级下册数学内容主要包括以下几个重点概念:•有理数•分数与小数的相互转换•质数与合数的判断•梯形与平行四边形•三角形的周长与面积•几何体的表面积和体积•算式的拓展与运用相关内容有理数•正数与负数的表示与比较•有理数的加减乘除运算分数与小数的相互转换•分数的概念与表示方法•分数与小数的互相转换方法质数与合数的判断•质数的概念与判断方法•合数的概念与判断方法梯形与平行四边形•梯形的特点与性质•平行四边形的特点与性质三角形的周长与面积•三角形的周长计算方法•三角形的面积计算方法几何体的表面积和体积•不规则几何体的表面积计算方法•不规则几何体的体积计算方法算式的拓展与运用•算式的变形与拓展•算式的实际运用场景以上是五年级下册数学的重点概念及相关内容。
同学们在学习时应重点理解这些概念,并通过练习题与实际问题应用的方式进行巩固和深化。
祝你们学业进步!有理数•正数与负数的表示与比较–正数的表示方法–负数的表示方法–正数与负数的比较方法•有理数的加减乘除运算–有理数加法的运算规则–有理数减法的运算规则–有理数乘法的运算规则–有理数除法的运算规则分数与小数的相互转换•分数的概念与表示方法–分子与分母的含义–分数的简化与约分–带分数的表示方法•分数与小数的互相转换方法–分数转换为小数的方法–小数转换为分数的方法质数与合数的判断•质数的概念与判断方法–质数的定义–质数的判断方法•合数的概念与判断方法–合数的定义–合数的判断方法梯形与平行四边形•梯形的特点与性质–梯形的定义–梯形的性质–梯形的分类•平行四边形的特点与性质–平行四边形的定义–平行四边形的性质–平行四边形的分类三角形的周长与面积•三角形的周长计算方法–三角形的周长定义–计算任意三角形周长的方法•三角形的面积计算方法–三角形的面积定义–计算任意三角形面积的方法几何体的表面积和体积•不规则几何体的表面积计算方法–不规则几何体的概念–计算不规则几何体表面积的方法•不规则几何体的体积计算方法–不规则几何体的概念–计算不规则几何体体积的方法算式的拓展与运用•算式的变形与拓展–算式中的括号运算–算式的公式变形–算式的运算顺序•算式的实际运用场景–算式在日常生活中的应用–算式在实际问题中的运用以上是五年级下册数学的重点概念及相关内容。
人教版五年级下册数学重点知识(精华版)

人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面。
第二单元:因数与倍数1、一个数因数的个数是有限的,一个数倍数的个数是无限的。
2、一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
3、整数中,是2的倍数的数叫做偶数(0也是偶数)。
不是2的倍数的数叫做奇数。
4、2的倍数的特征:个位上是0、2、4、6、8的数。
5的倍数的特征:个位上是0或5的数。
3的倍数的特征:一个数各个数位上的数相加的和是3的倍数。
2和5的倍数的特征:个位上是0的数。
2、3、5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
5、最小的偶数是0,最小的奇数是1;最小的质数是2,最小的合数是4。
6、奇数偶数的性质(1)奇数+奇数=偶数;偶数+偶数=偶数;偶数+奇数=奇数;(2)奇数-奇数=偶数;偶数-偶数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;(3)奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;质数×质数=合数(4)除2外所有的偶数均为合数;(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
7、1既不是质数,也不是合数。
8、100以内质数表:第三单元:长方体和正方体1、长方体和正方体(立方体)的特征面棱顶点长方体①有6个面;②相对的两个面完全相同;③每个面是长方形(特殊情况下有两个相对的面是正方形)。
①有12条棱;②相对的4条棱长度相等(特殊情况下有8条棱长度相等)。
有8个顶点正方体①有6个面;②6个面完全相同;③每个面是正方形。
①有12条棱;②12条棱全部相等。
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 972、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、正方体是长、宽、高都相等的特殊长方体。
五年级下册数学重点知识归纳

五年级下册数学重点知识归纳一、图形的变换1、轴对称:把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称。
这条直线就是对称轴。
2、旋转:物体绕着某一点运动,这种运动叫做旋转。
图形旋转后,形状、大小都没有发生变化,只是位置变了。
3、利用平移、旋转、或对称,可以设计简单而美丽的图案。
二、因数与倍数1、因数和倍数:如果a×b=c(a、b、c都不是0的整数),那么a、b就是c的因数,c就是a、b的倍数(不能单独的说谁是倍数或谁是因数;应说谁是谁的倍数,或谁是谁的因数)。
一个数的因数的个数是有限的,其中最小的因数是1,最大的是它本身。
一个数的倍数是无限的,其中最小的是本身,没有最大的倍数。
2、个位是2、4、6、8、0的数,都是2的倍数。
3、自然数可以分成奇数和偶数两类:2的倍数叫做偶数;不是2的倍数叫做奇数。
通常用2a表示偶数,用2a+1表示奇数。
最小的偶数是0,没有最大的偶数。
最小的奇数是1,没有最大的奇数。
个位是0或5的数,都是5的倍数。
一个数各位上的数字和是3(或9)的倍数,这个数就是3(或9)的倍数。
4、自然数(0除外)按因数个数的多少,可以分三类:质数、合数和1。
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身外还有别的因数,这样的数叫做合数。
最小的质数是2(2也是偶数里唯一的质数),最小的合数是4。
100以内的质数:2 3 5 7 11 13 17 19 23 29 31 37 4143 47 53 59 61 67 71 73 79 83 89 975、分解质因数:把一个合数用质数连乘的形式表示出来。
(其中每个质数都是这个合数的质因数。
)分解质因数的方法:①“树枝”图式分解法、②短除法。
书写方法:把要分解的数写在等号的左边,把它的质因数用连乘的形式写在等号右边。
三、长方体和正方体正方体棱长总和=棱长×12(求棱长和的常用单位用米m、分米dm、厘米cm)2、长方体的表面积=(长×宽+长×高+宽×高)×2 用字母表示S=(ab+ac+bc)×2正方体的表面积=棱长×棱长×6 用字母表示S=6a² (在求长方体和正方体物体的表面积时,有的可能少一个面或少两个面,要根据实际情况计算。
五年级下册数学知识总结

五年级数学下册知识点概念第一章:观察物体1、从不同的方位观察物体,看到的形状可能是不同的;2、不管从哪个方位观察,一次最多只能看到物体不同的三个面。
(例如:观察长方体或正方体时,从固定位置最多能看到三个面。
)3、当我们从某一方位看到两个或三个面的时候,这些面都是相邻的面;不可能从某一方位同时看到物体相对的面。
4、正确辨认方位的方法:正面,上面和侧面是相对于观察者而言的,以观察者所站的位置来确定。
5、正确从固定方位观察物体的方法:观察物体时,视线要与被观察物体的表面垂直。
6、从左面观察和从右面观察是不一样的;从正面观察和从背(后)面观察不一样,位置恰好相反。
7、同一物体,从不同的方位观察,看到的形状是不一样的第二章:因数和倍数知识点归纳1、像0、1、2、3、4、5、…这样的数是自然数。
2、最小的自然数是0,没有最大的自然数。
3、既没有最大的整数,也没有最小的整数。
4、倍数和因数是相互依存的。
如:4×5=20,20是4和5的倍数,4和5是20的因数。
5、找倍数的方法:从1倍开始有序的找。
6、倍数的特点:一个数的倍数的个数数无限的;最小的倍数是它本身;没有最大的倍数。
7、找因数的方法:用想乘法算式或除法算式的方法一对一对有序的找比较好。
8、因数的特点:一个数因数的个数是有限的;最小的因数是1;最大的因数是它本身。
9、质数:一个数只有1和它本身两个因数,这样的数叫质数。
10、合数:一个数除了1和它本身两个因数以外还有别的因数,这样的数叫合数。
11、1既不是质数也不是合数。
12、2是唯一一个是质数的偶数,其余的偶数都是合数。
(除2外,所有的偶数都是合数)13、最小的质数是2,最小的合数是4.14、1是所有自然数的因数。
15、20以内的质数有8个:2、3、5、7、11、13、17、19。
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
五年级数学下册知识点归纳总结【6篇】

五年级数学下册知识点归纳总结【6篇】五年级数学下册知识点归纳总结【6篇】学习需要具备跨文化、多样性和包容性的能力,需要尊重和理解不同的文化、信仰和价值观。
知识和技能需要具备可持续性和环境友好性,需要尊重生态环境和可持续发展原则。
下面就让小编给大家带来五年级数学下册知识点归纳总结,希望大家喜欢!五年级数学下册知识点归纳总结篇11、函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。
2、向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。
3、不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。
高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。
考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。
4、立体几何知识:20年已经变得简单,20年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。
5、解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。
五年级数学下册知识点归纳总结

五年级数学下册知识点归纳总结第一单元:图形的变换1、艺术家们利用几何学中平移、对称和旋转变转,设计了许多美丽的镶嵌图案。
2、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
3、轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
4、图形或物体绕着一个点或一条轴运动的现象叫做旋转。
5、旋转三要素:点、方向、角度(如绕点O顺时针旋转90度)6、旋转的性质:(1)其中对应点到旋转中心的距离相等;(2)旋转前后图形的大小和形状没变,位置变了;(3)两组对应点分别与旋转中心的连线所成的角叫旋转角;(4)旋转中心是唯一不动的点。
第二单元:因数和倍数1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c 的因数,c是a和b的倍数。
2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。
但是0也是整数。
3. 一个数的最小因数是1,最大因数是它本身。
一个数的因数的个数是有限的。
4. 一个数的最小倍数是它本身,没有最大的倍数。
一个数的倍数的个数是无限的。
如果两个整数(a、b)都是另一个整数(c)的倍数,那么这两个整数的和(a+b)也是另一个整数(c)的倍数。
5. 个位上是0、2、4、6、8的数都是2的倍数。
个位上是0、5的数都是5的倍数。
个位上是0数既是2的倍数,也是5的倍数。
一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。
6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
7. 最小的奇数是1,最小的偶数是0。
最小的质数是2,最小的合数是4。
8. 四则运算中的奇偶规律:奇数+奇数=偶数奇数-奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数-偶数=奇数奇数×偶数=偶数偶数-奇数=奇数9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。
2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。
由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。
(先由上面确定立体图形的形状,再由左(右)和前(后)确定立体图形有几层,每层有几行几列。
)3、从一个方向看到的图形摆立体图形,有多种摆法。
4、从多个角度观察立体图形:先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。
例:1会画三视图(画一画)从正面看从左面看从上面看2、会搭积木例如:如右图是从上面看到的搭积木的形状,请你画一画。
从正面看从侧面看从上面看第二单元:因数与倍数【在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)】1、熟记概念:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数(或者商)的倍数,除数(或者商)是被除数的因数。
在整数乘法中,因数是积的因数,积是因数的倍数。
例如:12÷2=6 →12是2(或者6)的倍数,2(或者6)是12的因数。
2×6=12→12是2(或者6)的倍数,2(或者6)是12的因数。
一个数因数的个数是有限的,一个数倍数的个数是无限的。
例如:12的最小因数是( 1 ),最大的因数是(12 )。
一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
例如:18的最小倍数是(18 )。
一个不为0的自然数,既是它本身的最小倍数,又是它本身的最大因数。
例:⑴一个数的最大因数等于它的最小倍数。
(×)⑵一个数(0除外)的最大因数等于它的最小倍数。
(√)⑶一个数的最大的因数和最小倍数都是18,这个数是(18 )。
2、整数中,是2的倍数的数叫做偶数(0也是偶数)。
偶数就是我们以前说的双数。
不是2的倍数的数叫做奇数,也就是以前我们说的单数。
3、2的倍数的特征:个位上是0、2、4、6、8的数。
5的倍数的特征:个位数是0或5的数。
3的倍数的特征:一个数各个数位上的数的和是3的倍数。
2和5的倍数的特征:个位上是0的数。
3和5的倍数的特征:个位是0或者5的并且各个数位上的数字之和能被3整除的数。
2和3的倍数的特征:个位是0、2、4、6、8并且各个数位上的数字之和能被3整除的数。
2、3、5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
4、一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。
例如:2的因数:1、2。
3的因数:1、3。
5的因数:1、5。
7的因数:1、7。
所以,2、3、5、7都是质数。
一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。
例如:4的因数:1、2、4。
6的因数:1、2、3、6。
所以4和6都是合数。
5、求一个数的因数的方法:(1)列乘法算式找;(看哪两个数相乘的积是要求的数,这两个数就是这个数的因数。
要从自然数1开始,一对一对去找不要遗漏。
) (2)列除法算式找。
(这个数除以那些整数,商是整数而没有余数,那么商和除数就是这个数的因数。
)例:18的因数有哪几个?6、求一个数的倍数的方法:(1)列乘法算式找;(用这个数乘以不是0的自然数得到的积就是这个数的倍数,要从自然数1开始。
) (2)列除法算式找。
(哪个数除以这个数,商是整数而没有余数,那么那个数就是这个数的倍数。
)例:4的倍数有哪些?50以内8的倍数有哪些?7、倍数和倍的区别:倍可以运用于整数、小数、分数,而倍数只能运用于整数。
例: 15是3的5倍,可以说15是3的倍数。
1.5是0.3的5倍,不能说1.5是0.3的倍数。
8、如果两个数都是一个数的倍数,那么这两个数的和(差)也是这个数的倍数。
例如:14是7的倍数,21是7的倍数。
14和21的和也是7的倍数。
64是8的倍数,32是8的倍数。
64和32的差也是8的倍数。
9、个位上是0、2、4、6、8的数都是2的倍数。
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
例:按2的倍数的特征,自然数分成(奇数)和(偶数)。
最小的偶数是(0 ),最小的奇数是( 1 )。
所有的自然数,不是奇数就是偶数。
(√)10、奇数偶数的性质关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数+奇数=偶数;偶数+奇数=奇数;任意多个偶数的和都是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)除2外所有的正偶数均为合数;(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
(6)奇数×奇数=奇数;偶×数偶数=偶数;奇数×偶数=偶数;(7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9。
(8)奇数×奇数=奇数质数×质数=合数11、①一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
质数只有(2 )个因数。
②一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
合数至少有(3 )个因数。
③1只有一个因数,所以1不是质数,也不是合数。
12、按因数的个数,把非零的自然数分成1、质数和合数。
最小的质数是(2),2是唯一的偶质数。
最小的合数是( 4 ),20以内的质数有2、3、5、7、9、11、13、17、19.20以内合数有:4、6、8、9、10、12、14、15、16、18、20.100以内质数表:例:①10以内既是奇数,又是合数的数是(9 )。
②在7、17、27、37、47、57、67、77、87、97这10个数中,质数有:7、17、37、47、67、97。
合数有27、57、77、87。
③判断:所有的质数都是奇数,所有的合数都是偶数。
(×)两个质数的和是偶数。
(×)两个质数相乘,积是合数。
( √)例:最小的奇数是1;最小的偶数是0;最小的质数是2;最小的合数是4;8是一位数中最大的偶数;9是一位数中最大的奇数;1不是质数,也不是合数。
连续的两个质数是2、3。
13、把一个合数写成几个质数相乘的形式就是分解质因数。
例如:把30分解质因数。
方法一:树状图式分解法。
(先把30分解成两个数(1除外)相乘的形式,30分解成2×15, 2是质数,不需要再分解,15是合数,需再进行分解,15可以分解成3×5.直到所有因数都是质数为止。
方法二:短除法。
除数和商都不能是1,因为1不是质数。
把除数和商写成相乘的形式。
1、树状图式分解法。
2、 短除法。
2 303 15 30=2×3×5第三单元:长方体和正方体熟记概念(3)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(4)正方体是长、宽、高都相等的特殊长方体。
(如右图)体积:物体所占空间的大小。
常见的体积单位:立方厘米(cm³)、立方分米(dm³)、立方米(m³)。
棱长为1cm的正方体,体积是1cm³;棱长为1dm的正方体,体积是1dm³;棱长为1m的正方体,体积是1m³。
容积:箱子、油桶、仓库等所能容纳物体的体积。
常见的容积单位:升(L)、毫升(mL)。
底面积:长方体或正方体地面的面积。
1、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
2、在一个长方体中,相对的面完全相同,相对的棱长度相等。
3、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4、正方体是由6个完全相同的正方形围成的立体图形。
5、正方体可以看成是长、宽、高都相等的长方体。
它是一种特殊的长方体。
6、长方体或正方体6个面的总面积,叫做它的表面积。
长方体或正方体底面的面积叫做底面积。
7、物体所占空间的大小叫做物体的体积。
8、箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。
(所以,对于同一个物体,体积大于容积。
)9、计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml。
10、长方体和正方体都有:8个顶点,12条棱,6个面。
11、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和= 棱长×12长方体表面积=(长×宽+长×高+宽×高)×2正方体表面积=棱长×棱长×6无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab S=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)没盖的正方体表面积=棱长×棱长×5长方体体积(容积)=长×宽×高V=abh正方体体积(容积)=棱长×棱长×棱长V=a3长方体(或正方体)体积=底面积×高V=sh长= 体积÷宽÷高 a= V÷b÷h 宽= 体积÷长÷高b= V÷a÷h 高= 体积÷长÷宽 h= V÷a÷b生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。
(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍(正方体的棱长扩大a倍),则表面积扩大a2倍,体积扩大a3倍。
(如长、宽、高各扩大3倍,表面积就会扩大到原来的9倍,体积就会扩大到原来的27倍)。
注意3:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
注意4:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
12、知道长方体的棱长和、表面积、体积求其它量的方法:(1)方程法:设要求的量为X,按公式列方程。
(2)算术法:如:长方体的长=棱长总和÷4-宽-高正方体的棱长=棱长和÷12长方体的长=体积÷宽÷高正方体的棱长的平方=表面积÷613、单位换算(换算方法:大单位×进率=小单位小单位÷进率=大单位大到小除以进率,小到大乘进率)长度单位:1千米=1000 米1 分米=10 厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)面积单位:1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)体积、容积单位:1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米1立方厘米=1毫升1升=1000毫升质量单位:1吨=1000千克1千克=1000克人民币:1元=10角1角=10分1元=100分时间单位1时=60分1分=60秒1时=3600秒15、将石头或物体放入水箱中算物体体积的方法:(1)知道两次水的深度:石头的体积=长×宽×(放入后的水深-放入前的水深)(2)知道放入前或放入后的体积石头的体积=放入后的体积-放入前的体积第四单元:分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。