现代操作系统(中文第三版)习题答案

合集下载

现代操作系统(中文第三版)习题答案精编版

现代操作系统(中文第三版)习题答案精编版
6、在建立一个操作系统时有几个设计目的,例如资源利用、及时性、健壮性等。 请列举两个可能互相矛盾的设计目的。 答:考虑公平和实时。公平要求每一个进程都以公平的方式分配资源,没有进程 能得到超过公平份额的资源。另一方面,实时要求使进程在规定的时间内执行完 毕的基础上分配资源。一个实时的进程可能会得到一个不成比例的资源份额。(非
5002.395ns
11、一位校对人员注意到在一部将要出版的操作系统教科书手稿中有一个多次出 现的拼写错误。这本书大致有 700 页。每页 50 行,一行 80 个字符。若把文稿用 电子扫描,那么,主副本进入图 1-9 中的每个存储系统的层次要花费多少时间? 对于内存储方式,考虑所给定的存取时间是每次一个字符,对于磁盘设备,假定 存取时间是每次一个 1024 字符的盘块,而对于磁带,假设给定开始时间后的存 取时间和磁盘存取时间相同。
第2页
cztqwan 2017-06-19
答:原稿包含 80*50*700 = 2800000 字符。当然,这不可能放入任何目前的 CPU 中,但是如果可能的话,在寄存器中只需 2.8ms,在 Cache 中需要 5.6ms,在内 存中需要 28ms,整本书大约有 2700 个 1024 字节的数据块,因此从磁盘扫描大 约为 27 秒,从磁带扫描则需 2 分钟 7 秒。当然,这些时间仅为读取数据的时间。 处理和重写数据将增加时间。
cztqwan 2017-06-19
现代操作系统(第三版)习题答案
cztqwan 2017-06-19
(部分内容来源于网络,转载请注明出处)
cztqwan 2017-06-19
目录
第一章 绪论..................................................................................................................1 第二章 进程与线程......................................................................................................8 第三章 存储管理........................................................................................................21 第四章 文件系统........................................................................................................32 第五章 输入/输出 ......................................................................................................42 第六章 死锁................................................................................................................55 第七章 多媒体操作系统............................................................................................ 65 第八章 多处理机系统................................................................................................ 76 第九章 安全................................................................................................................88 第十章 实例研究 1:Linux .....................................................................................100 第十一章 实例研究 2:Windows Vista .................................................................. 110 第十二章 实例研究 3:Symbian 操作系统 ........................................................... 110 第十三章 操作系统设计.......................................................................................... 110

现代操作系统(中文第三版)习题答案

现代操作系统(中文第三版)习题答案
标准答案)
7、下面的哪一条指令只能在内核态中使用?
a)禁止所有的中断。
b)读日期-时间时钟。
c)设晋日期-时间时钟。
d)改变存储器映像。
答:选择(a)、(c)、(d)应该被限制在内核模式。
8、考虑一个有两个CPU的系统,并且每一个CPU有两个线程(超线程)。假设有三个程序P0,P1,P2,分別以运行时间 5ms,10ms,20ms开始。运行这些程序需要多少时间?假设这三个程序都是100% 限于CPU,在运行时无阻塞,并且一旦设 定就不改变CPU。
的文件复制到装配点,使得他们在进行设备检查或修理时,可以在紧急事件中的普通路径上找到这些文件。
17、在一个操作系统中系统调用的目的是什么? 答:系统调用允许用户进程在内核中访问和执行操作系统功能。用户程序使用系统调用操作系统服务。
18、对于下列系统调用,给出引起失败的条件:fork、exec以及unlink。 答:如果进程表中没有空闲的槽(或者没有内存和交换空间),fork 将失败。如果所给的文件名不存在,或者不是一个有效的 可执行文件,exec将失败。如果将要解除链接的文件不存在,或者调用unlink的进程没有权限,则unlink将失败。 19、在count = write(fd, buffer, nbytes);调用中,能在counБайду номын сангаас中而不是nbytes中返回值吗?如果能,为什么? 答:如果fd不正确,调用失败,将返回1。同样,如果磁盘满,调用也失败,要求写入的字节数和实际写入的字节数可能不 等。在正确终止时,总是返回nbytes。 20、有一个文件,其文件描述符是fd,内含下列字节序列:3,1,4,1,5,9,2,6,5,3,5。 有如下系统调用:
12、在用户程序进行一个系统调用,以读写磁盘文件时,该程序提供指示说明了所需要的文件,一个指向数据缓冲区的指针 以及计数。然后,控制权转给操作系统,它调用相关的驱动程序。假设驱动程序启动磁盘并且直到中断发生才终止。在从磁盘 读的情况下,很明显,调用者会被阻塞(因为文件中没有数据)。在向磁盘写时会发生什么情况?需要把调用者阻塞一直等到 磁盘传送完成为止吗?答:也许。如果调用者取回控制,并且在最终发生写操作时立即重写数据,将会写入错误的数据。然 而,如果驱动程序在返回之前首先复制将数据复制到一个专用的缓冲器,那么调用者可以立即继续执行。另一个可能性是允许 调用者继续,并且在缓冲器可以再用时给它一个信号,但是这需要很高的技巧,而且容易出错。

现代操作系统第三版中文答案

现代操作系统第三版中文答案

现代操作系统第三版中文答案【篇一:操作系统课后答案】>思考与练习题1. 2. 3. 4. 5. 6. 7. 8. 9.什么是操作系统?它的主要功能是什么?什么是多道程序设计技术?多道程序设计技术的主要特点是什么?批处理系统是怎样的一种操作系统?它的特点是什么?什么是分时系统?什么是实时系统?试从交互性,及时性,独立性,多路性,可靠性等几个方面比较分时系统和实施系统。

实时系统分为哪俩种类型?操作系统主要特征是什么?操作系统也用户的接口有几种?它们各自用在什么场合?“操作系统是控制硬件的软件”这一说法确切吗?为什么?设内存中有三道程序,a,b,c,它们按a~b~c的先后顺序执行,它们进行“计算”和“i/o操作”的时间如表1-2所示,假设三道程序使用相同的i/o设备。

(1) 试画出单道运行时三道程序的时间关系图,并计算完成三道程序要花多少时间。

(2) 试画出多道运行时三道程序的时间关系图,并计算完成三道程序要花多少时间。

10.将下列左右两列词连接起来形成意义最恰当的5对。

dos 网络操作系统 os/2自由软件 unix多任务 linux单任务11.选择一个现代操作系统,查找和阅读相关的技术资料,写一篇关于操作系统如何进行内存管理、存储管理、设备管理和文件管理的文章。

答案1.答:操作系统是控制和管理计算机的软、硬件资源,合理地组织计算机的工作流程,以方便用户使用的程序集合。

2.答:把多个独立的程序同时放入内存,使她们共享系统中的资源。

1)多道,即计算机内存中同时放多道相互独立的程序。

2)宏观上并行,是指共识进入系统的多道程序都处于运行过程。

3)微观上串行,是指在单道处理机环境下,内存中的多道程序轮流地占有cpu,交替执行。

3.答:批处理操作系统是一种基本的操作系统类型。

在该系统中用户的作业被成批地输入到计算机中,然后在操作系统的控制下,用户的作业自动的执行。

特点是:资源利用率高。

系统吞吐量大。

现代操作系统(第三版)答案

现代操作系统(第三版)答案

MODERNOPERATINGSYSTEMSTHIRD EDITION PROBLEM SOLUTIONSANDREW S.TANENBAUMVrije UniversiteitAmsterdam,The NetherlandsPRENTICE HALLUPPER SADDLE RIVER,NJ07458Copyright Pearson Education,Inc.2008SOLUTIONS TO CHAPTER1PROBLEMS1.Multiprogramming is the rapid switching of the CPU between multiple proc-esses in memory.It is commonly used to keep the CPU busy while one or more processes are doing I/O.2.Input spooling is the technique of reading in jobs,for example,from cards,onto the disk,so that when the currently executing processes arefinished, there will be work waiting for the CPU.Output spooling consists offirst copying printablefiles to disk before printing them,rather than printing di-rectly as the output is generated.Input spooling on a personal computer is not very likely,but output spooling is.3.The prime reason for multiprogramming is to give the CPU something to dowhile waiting for I/O to complete.If there is no DMA,the CPU is fully occu-pied doing I/O,so there is nothing to be gained(at least in terms of CPU utili-zation)by multiprogramming.No matter how much I/O a program does,the CPU will be100%busy.This of course assumes the major delay is the wait while data are copied.A CPU could do other work if the I/O were slow for other reasons(arriving on a serial line,for instance).4.It is still alive.For example,Intel makes Pentium I,II,and III,and4CPUswith a variety of different properties including speed and power consumption.All of these machines are architecturally compatible.They differ only in price and performance,which is the essence of the family idea.5.A25×80character monochrome text screen requires a2000-byte buffer.The1024×768pixel24-bit color bitmap requires2,359,296bytes.In1980these two options would have cost$10and$11,520,respectively.For current prices,check on how much RAM currently costs,probably less than$1/MB.6.Consider fairness and real time.Fairness requires that each process be allo-cated its resources in a fair way,with no process getting more than its fair share.On the other hand,real time requires that resources be allocated based on the times when different processes must complete their execution.A real-time process may get a disproportionate share of the resources.7.Choices(a),(c),and(d)should be restricted to kernel mode.8.It may take20,25or30msec to complete the execution of these programsdepending on how the operating system schedules them.If P0and P1are scheduled on the same CPU and P2is scheduled on the other CPU,it will take20mses.If P0and P2are scheduled on the same CPU and P1is scheduled on the other CPU,it will take25msec.If P1and P2are scheduled on the same CPU and P0is scheduled on the other CPU,it will take30msec.If all three are on the same CPU,it will take35msec.2PROBLEM SOLUTIONS FOR CHAPTER19.Every nanosecond one instruction emerges from the pipeline.This means themachine is executing1billion instructions per second.It does not matter at all how many stages the pipeline has.A10-stage pipeline with1nsec per stage would also execute1billion instructions per second.All that matters is how often afinished instruction pops out the end of the pipeline.10.Average access time=0.95×2nsec(word is cache)+0.05×0.99×10nsec(word is in RAM,but not in cache)+0.05×0.01×10,000,000nsec(word on disk only)=5002.395nsec=5.002395μsec11.The manuscript contains80×50×700=2.8million characters.This is,ofcourse,impossible tofit into the registers of any currently available CPU and is too big for a1-MB cache,but if such hardware were available,the manuscript could be scanned in2.8msec from the registers or5.8msec from the cache.There are approximately27001024-byte blocks of data,so scan-ning from the disk would require about27seconds,and from tape2minutes7 seconds.Of course,these times are just to read the data.Processing and rewriting the data would increase the time.12.Maybe.If the caller gets control back and immediately overwrites the data,when the writefinally occurs,the wrong data will be written.However,if the driverfirst copies the data to a private buffer before returning,then the caller can be allowed to continue immediately.Another possibility is to allow the caller to continue and give it a signal when the buffer may be reused,but this is tricky and error prone.13.A trap instruction switches the execution mode of a CPU from the user modeto the kernel mode.This instruction allows a user program to invoke func-tions in the operating system kernel.14.A trap is caused by the program and is synchronous with it.If the program isrun again and again,the trap will always occur at exactly the same position in the instruction stream.An interrupt is caused by an external event and its timing is not reproducible.15.The process table is needed to store the state of a process that is currentlysuspended,either ready or blocked.It is not needed in a single process sys-tem because the single process is never suspended.16.Mounting afile system makes anyfiles already in the mount point directoryinaccessible,so mount points are normally empty.However,a system admin-istrator might want to copy some of the most importantfiles normally located in the mounted directory to the mount point so they could be found in their normal path in an emergency when the mounted device was being repaired.PROBLEM SOLUTIONS FOR CHAPTER13 17.A system call allows a user process to access and execute operating systemfunctions inside the er programs use system calls to invoke operat-ing system services.18.Fork can fail if there are no free slots left in the process table(and possibly ifthere is no memory or swap space left).Exec can fail if thefile name given does not exist or is not a valid executablefile.Unlink can fail if thefile to be unlinked does not exist or the calling process does not have the authority to unlink it.19.If the call fails,for example because fd is incorrect,it can return−1.It canalso fail because the disk is full and it is not possible to write the number of bytes requested.On a correct termination,it always returns nbytes.20.It contains the bytes:1,5,9,2.21.Time to retrieve thefile=1*50ms(Time to move the arm over track#50)+5ms(Time for thefirst sector to rotate under the head)+10/100*1000ms(Read10MB)=155ms22.Block specialfiles consist of numbered blocks,each of which can be read orwritten independently of all the other ones.It is possible to seek to any block and start reading or writing.This is not possible with character specialfiles.23.System calls do not really have names,other than in a documentation sense.When the library procedure read traps to the kernel,it puts the number of the system call in a register or on the stack.This number is used to index into a table.There is really no name used anywhere.On the other hand,the name of the library procedure is very important,since that is what appears in the program.24.Yes it can,especially if the kernel is a message-passing system.25.As far as program logic is concerned it does not matter whether a call to a li-brary procedure results in a system call.But if performance is an issue,if a task can be accomplished without a system call the program will run faster.Every system call involves overhead time in switching from the user context to the kernel context.Furthermore,on a multiuser system the operating sys-tem may schedule another process to run when a system call completes, further slowing the progress in real time of a calling process.26.Several UNIX calls have no counterpart in the Win32API:Link:a Win32program cannot refer to afile by an alternative name or see it in more than one directory.Also,attempting to create a link is a convenient way to test for and create a lock on afile.4PROBLEM SOLUTIONS FOR CHAPTER1Mount and umount:a Windows program cannot make assumptions about standard path names because on systems with multiple disk drives the drive name part of the path may be different.Chmod:Windows uses access control listsKill:Windows programmers cannot kill a misbehaving program that is not cooperating.27.Every system architecture has its own set of instructions that it can execute.Thus a Pentium cannot execute SPARC programs and a SPARC cannot exe-cute Pentium programs.Also,different architectures differ in bus architecture used(such as VME,ISA,PCI,MCA,SBus,...)as well as the word size of the CPU(usually32or64bit).Because of these differences in hardware,it is not feasible to build an operating system that is completely portable.A highly portable operating system will consist of two high-level layers---a machine-dependent layer and a machine independent layer.The machine-dependent layer addresses the specifics of the hardware,and must be implemented sepa-rately for every architecture.This layer provides a uniform interface on which the machine-independent layer is built.The machine-independent layer has to be implemented only once.To be highly portable,the size of the machine-dependent layer must be kept as small as possible.28.Separation of policy and mechanism allows OS designers to implement asmall number of basic primitives in the kernel.These primitives are sim-plified,because they are not dependent of any specific policy.They can then be used to implement more complex mechanisms and policies at the user level.29.The conversions are straightforward:(a)A micro year is10−6×365×24×3600=31.536sec.(b)1000meters or1km.(c)There are240bytes,which is1,099,511,627,776bytes.(d)It is6×1024kg.SOLUTIONS TO CHAPTER2PROBLEMS1.The transition from blocked to running is conceivable.Suppose that a processis blocked on I/O and the I/Ofinishes.If the CPU is otherwise idle,the proc-ess could go directly from blocked to running.The other missing transition, from ready to blocked,is impossible.A ready process cannot do I/O or any-thing else that might block it.Only a running process can block.PROBLEM SOLUTIONS FOR CHAPTER25 2.You could have a register containing a pointer to the current process tableentry.When I/O completed,the CPU would store the current machine state in the current process table entry.Then it would go to the interrupt vector for the interrupting device and fetch a pointer to another process table entry(the ser-vice procedure).This process would then be started up.3.Generally,high-level languages do not allow the kind of access to CPU hard-ware that is required.For instance,an interrupt handler may be required to enable and disable the interrupt servicing a particular device,or to manipulate data within a process’stack area.Also,interrupt service routines must exe-cute as rapidly as possible.4.There are several reasons for using a separate stack for the kernel.Two ofthem are as follows.First,you do not want the operating system to crash be-cause a poorly written user program does not allow for enough stack space.Second,if the kernel leaves stack data in a user program’s memory space upon return from a system call,a malicious user might be able to use this data tofind out information about other processes.5.If each job has50%I/O wait,then it will take20minutes to complete in theabsence of competition.If run sequentially,the second one willfinish40 minutes after thefirst one starts.With two jobs,the approximate CPU utiliza-tion is1−0.52.Thus each one gets0.375CPU minute per minute of real time.To accumulate10minutes of CPU time,a job must run for10/0.375 minutes,or about26.67minutes.Thus running sequentially the jobsfinish after40minutes,but running in parallel theyfinish after26.67minutes.6.It would be difficult,if not impossible,to keep thefile system consistent.Sup-pose that a client process sends a request to server process1to update afile.This process updates the cache entry in its memory.Shortly thereafter,anoth-er client process sends a request to server2to read thatfile.Unfortunately,if thefile is also cached there,server2,in its innocence,will return obsolete data.If thefirst process writes thefile through to the disk after caching it, and server2checks the disk on every read to see if its cached copy is up-to-date,the system can be made to work,but it is precisely all these disk ac-cesses that the caching system is trying to avoid.7.No.If a single-threaded process is blocked on the keyboard,it cannot fork.8.A worker thread will block when it has to read a Web page from the disk.Ifuser-level threads are being used,this action will block the entire process, destroying the value of multithreading.Thus it is essential that kernel threads are used to permit some threads to block without affecting the others.9.Yes.If the server is entirely CPU bound,there is no need to have multiplethreads.It just adds unnecessary complexity.As an example,consider a tele-phone directory assistance number(like555-1212)for an area with1million6PROBLEM SOLUTIONS FOR CHAPTER2people.If each(name,telephone number)record is,say,64characters,the entire database takes64megabytes,and can easily be kept in the server’s memory to provide fast lookup.10.When a thread is stopped,it has values in the registers.They must be saved,just as when the process is stopped the registers must be saved.Multipro-gramming threads is no different than multiprogramming processes,so each thread needs its own register save area.11.Threads in a process cooperate.They are not hostile to one another.If yield-ing is needed for the good of the application,then a thread will yield.After all,it is usually the same programmer who writes the code for all of them. er-level threads cannot be preempted by the clock unless the whole proc-ess’quantum has been used up.Kernel-level threads can be preempted indivi-dually.In the latter case,if a thread runs too long,the clock will interrupt the current process and thus the current thread.The kernel is free to pick a dif-ferent thread from the same process to run next if it so desires.13.In the single-threaded case,the cache hits take15msec and cache misses take90msec.The weighted average is2/3×15+1/3×90.Thus the mean re-quest takes40msec and the server can do25per second.For a multithreaded server,all the waiting for the disk is overlapped,so every request takes15 msec,and the server can handle662/3requests per second.14.The biggest advantage is the efficiency.No traps to the kernel are needed toswitch threads.The biggest disadvantage is that if one thread blocks,the en-tire process blocks.15.Yes,it can be done.After each call to pthread create,the main programcould do a pthread join to wait until the thread just created has exited before creating the next thread.16.The pointers are really necessary because the size of the global variable isunknown.It could be anything from a character to an array offloating-point numbers.If the value were stored,one would have to give the size to create global,which is all right,but what type should the second parameter of set global be,and what type should the value of read global be?17.It could happen that the runtime system is precisely at the point of blocking orunblocking a thread,and is busy manipulating the scheduling queues.This would be a very inopportune moment for the clock interrupt handler to begin inspecting those queues to see if it was time to do thread switching,since they might be in an inconsistent state.One solution is to set aflag when the run-time system is entered.The clock handler would see this and set its ownflag, then return.When the runtime systemfinished,it would check the clockflag, see that a clock interrupt occurred,and now run the clock handler.PROBLEM SOLUTIONS FOR CHAPTER27 18.Yes it is possible,but inefficient.A thread wanting to do a system callfirstsets an alarm timer,then does the call.If the call blocks,the timer returns control to the threads package.Of course,most of the time the call will not block,and the timer has to be cleared.Thus each system call that might block has to be executed as three system calls.If timers go off prematurely,all kinds of problems can develop.This is not an attractive way to build a threads package.19.The priority inversion problem occurs when a low-priority process is in itscritical region and suddenly a high-priority process becomes ready and is scheduled.If it uses busy waiting,it will run forever.With user-level threads,it cannot happen that a low-priority thread is suddenly preempted to allow a high-priority thread run.There is no preemption.With kernel-level threads this problem can arise.20.With round-robin scheduling it works.Sooner or later L will run,and eventu-ally it will leave its critical region.The point is,with priority scheduling,L never gets to run at all;with round robin,it gets a normal time slice periodi-cally,so it has the chance to leave its critical region.21.Each thread calls procedures on its own,so it must have its own stack for thelocal variables,return addresses,and so on.This is equally true for user-level threads as for kernel-level threads.22.Yes.The simulated computer could be multiprogrammed.For example,while process A is running,it reads out some shared variable.Then a simula-ted clock tick happens and process B runs.It also reads out the same vari-able.Then it adds1to the variable.When process A runs,if it also adds one to the variable,we have a race condition.23.Yes,it still works,but it still is busy waiting,of course.24.It certainly works with preemptive scheduling.In fact,it was designed forthat case.When scheduling is nonpreemptive,it might fail.Consider the case in which turn is initially0but process1runsfirst.It will just loop forever and never release the CPU.25.To do a semaphore operation,the operating systemfirst disables interrupts.Then it reads the value of the semaphore.If it is doing a down and the sema-phore is equal to zero,it puts the calling process on a list of blocked processes associated with the semaphore.If it is doing an up,it must check to see if any processes are blocked on the semaphore.If one or more processes are block-ed,one of them is removed from the list of blocked processes and made run-nable.When all these operations have been completed,interrupts can be enabled again.8PROBLEM SOLUTIONS FOR CHAPTER226.Associated with each counting semaphore are two binary semaphores,M,used for mutual exclusion,and B,used for blocking.Also associated with each counting semaphore is a counter that holds the number of up s minus the number of down s,and a list of processes blocked on that semaphore.To im-plement down,a processfirst gains exclusive access to the semaphores, counter,and list by doing a down on M.It then decrements the counter.If it is zero or more,it just does an up on M and exits.If M is negative,the proc-ess is put on the list of blocked processes.Then an up is done on M and a down is done on B to block the process.To implement up,first M is down ed to get mutual exclusion,and then the counter is incremented.If it is more than zero,no one was blocked,so all that needs to be done is to up M.If, however,the counter is now negative or zero,some process must be removed from the list.Finally,an up is done on B and M in that order.27.If the program operates in phases and neither process may enter the nextphase until both arefinished with the current phase,it makes perfect sense to use a barrier.28.With kernel threads,a thread can block on a semaphore and the kernel canrun some other thread in the same process.Consequently,there is no problem using semaphores.With user-level threads,when one thread blocks on a semaphore,the kernel thinks the entire process is blocked and does not run it ever again.Consequently,the process fails.29.It is very expensive to implement.Each time any variable that appears in apredicate on which some process is waiting changes,the run-time system must re-evaluate the predicate to see if the process can be unblocked.With the Hoare and Brinch Hansen monitors,processes can only be awakened on a signal primitive.30.The employees communicate by passing messages:orders,food,and bags inthis case.In UNIX terms,the four processes are connected by pipes.31.It does not lead to race conditions(nothing is ever lost),but it is effectivelybusy waiting.32.It will take nT sec.33.In simple cases it may be possible to determine whether I/O will be limitingby looking at source code.For instance a program that reads all its inputfiles into buffers at the start will probably not be I/O bound,but a problem that reads and writes incrementally to a number of differentfiles(such as a compi-ler)is likely to be I/O bound.If the operating system provides a facility such as the UNIX ps command that can tell you the amount of CPU time used by a program,you can compare this with the total time to complete execution of the program.This is,of course,most meaningful on a system where you are the only user.34.For multiple processes in a pipeline,the common parent could pass to the op-erating system information about the flow of data.With this information the OS could,for instance,determine which process could supply output to a process blocking on a call for input.35.The CPU efficiency is the useful CPU time divided by the total CPU time.When Q ≥T ,the basic cycle is for the process to run for T and undergo a process switch for S .Thus (a)and (b)have an efficiency of T /(S +T ).When the quantum is shorter than T ,each run of T will require T /Q process switches,wasting a time ST /Q .The efficiency here is thenT +ST /QT which reduces to Q /(Q +S ),which is the answer to (c).For (d),we just sub-stitute Q for S and find that the efficiency is 50%.Finally,for (e),as Q →0the efficiency goes to 0.36.Shortest job first is the way to minimize average response time.0<X ≤3:X ,3,5,6,9.3<X ≤5:3,X ,5,6,9.5<X ≤6:3,5,X ,6,9.6<X ≤9:3,5,6,X ,9.X >9:3,5,6,9,X.37.For round robin,during the first 10minutes each job gets 1/5of the CPU.Atthe end of 10minutes,C finishes.During the next 8minutes,each job gets 1/4of the CPU,after which time D finishes.Then each of the three remaining jobs gets 1/3of the CPU for 6minutes,until B finishes,and so on.The fin-ishing times for the five jobs are 10,18,24,28,and 30,for an average of 22minutes.For priority scheduling,B is run first.After 6minutes it is finished.The other jobs finish at 14,24,26,and 30,for an average of 18.8minutes.If the jobs run in the order A through E ,they finish at 10,16,18,22,and 30,for an average of 19.2minutes.Finally,shortest job first yields finishing times of 2,6,12,20,and 30,for an average of 14minutes.38.The first time it gets 1quantum.On succeeding runs it gets 2,4,8,and 15,soit must be swapped in 5times.39.A check could be made to see if the program was expecting input and didanything with it.A program that was not expecting input and did not process it would not get any special priority boost.40.The sequence of predictions is 40,30,35,and now 25.41.The fraction of the CPU used is35/50+20/100+10/200+x/250.To beschedulable,this must be less than1.Thus x must be less than12.5msec. 42.Two-level scheduling is needed when memory is too small to hold all theready processes.Some set of them is put into memory,and a choice is made from that set.From time to time,the set of in-core processes is adjusted.This algorithm is easy to implement and reasonably efficient,certainly a lot better than,say,round robin without regard to whether a process was in memory or not.43.Each voice call runs200times/second and uses up1msec per burst,so eachvoice call needs200msec per second or400msec for the two of them.The video runs25times a second and uses up20msec each time,for a total of 500msec per second.Together they consume900msec per second,so there is time left over and the system is schedulable.44.The kernel could schedule processes by any means it wishes,but within eachprocess it runs threads strictly in priority order.By letting the user process set the priority of its own threads,the user controls the policy but the kernel handles the mechanism.45.The change would mean that after a philosopher stopped eating,neither of hisneighbors could be chosen next.In fact,they would never be chosen.Sup-pose that philosopher2finished eating.He would run test for philosophers1 and3,and neither would be started,even though both were hungry and both forks were available.Similarly,if philosopher4finished eating,philosopher3 would not be started.Nothing would start him.46.If a philosopher blocks,neighbors can later see that she is hungry by checkinghis state,in test,so he can be awakened when the forks are available.47.Variation1:readers have priority.No writer may start when a reader is ac-tive.When a new reader appears,it may start immediately unless a writer is currently active.When a writerfinishes,if readers are waiting,they are all started,regardless of the presence of waiting writers.Variation2:Writers have priority.No reader may start when a writer is waiting.When the last ac-tive processfinishes,a writer is started,if there is one;otherwise,all the readers(if any)are started.Variation3:symmetric version.When a reader is active,new readers may start immediately.When a writerfinishes,a new writer has priority,if one is waiting.In other words,once we have started reading,we keep reading until there are no readers left.Similarly,once we have started writing,all pending writers are allowed to run.48.A possible shell script might beif[!–f numbers];then echo0>numbers;ficount=0while(test$count!=200)docount=‘expr$count+1‘n=‘tail–1numbers‘expr$n+1>>numbersdoneRun the script twice simultaneously,by starting it once in the background (using&)and again in the foreground.Then examine thefile numbers.It will probably start out looking like an orderly list of numbers,but at some point it will lose its orderliness,due to the race condition created by running two cop-ies of the script.The race can be avoided by having each copy of the script test for and set a lock on thefile before entering the critical area,and unlock-ing it upon leaving the critical area.This can be done like this:if ln numbers numbers.lockthenn=‘tail–1numbers‘expr$n+1>>numbersrm numbers.lockfiThis version will just skip a turn when thefile is inaccessible,variant solu-tions could put the process to sleep,do busy waiting,or count only loops in which the operation is successful.SOLUTIONS TO CHAPTER3PROBLEMS1.It is an accident.The base register is16,384because the program happened tobe loaded at address16,384.It could have been loaded anywhere.The limit register is16,384because the program contains16,384bytes.It could have been any length.That the load address happens to exactly match the program length is pure coincidence.2.Almost the entire memory has to be copied,which requires each word to beread and then rewritten at a different location.Reading4bytes takes10nsec, so reading1byte takes2.5nsec and writing it takes another2.5nsec,for a total of5nsec per byte compacted.This is a rate of200,000,000bytes/sec.To copy128MB(227bytes,which is about1.34×108bytes),the computer needs227/200,000,000sec,which is about671msec.This number is slightly pessimistic because if the initial hole at the bottom of memory is k bytes, those k bytes do not need to be copied.However,if there are many holes andmany data segments,the holes will be small,so k will be small and the error in the calculation will also be small.3.The bitmap needs1bit per allocation unit.With227/n allocation units,this is224/n bytes.The linked list has227/216or211nodes,each of8bytes,for a total of214bytes.For small n,the linked list is better.For large n,the bitmap is better.The crossover point can be calculated by equating these two formu-las and solving for n.The result is1KB.For n smaller than1KB,a linked list is better.For n larger than1KB,a bitmap is better.Of course,the assumption of segments and holes alternating every64KB is very unrealistic.Also,we need n<=64KB if the segments and holes are64KB.4.Firstfit takes20KB,10KB,18KB.Bestfit takes12KB,10KB,and9KB.Worstfit takes20KB,18KB,and15KB.Nextfit takes20KB,18KB,and9 KB.5.For a4-KB page size the(page,offset)pairs are(4,3616),(8,0),and(14,2656).For an8-KB page size they are(2,3616),(4,0),and(7,2656).6.They built an MMU and inserted it between the8086and the bus.Thus all8086physical addresses went into the MMU as virtual addresses.The MMU then mapped them onto physical addresses,which went to the bus.7.(a)M has to be at least4,096to ensure a TLB miss for every access to an ele-ment of X.Since N only affects how many times X is accessed,any value of N will do.(b)M should still be atleast4,096to ensure a TLB miss for every access to anelement of X.But now N should be greater than64K to thrash the TLB, that is,X should exceed256KB.8.The total virtual address space for all the processes combined is nv,so thismuch storage is needed for pages.However,an amount r can be in RAM,so the amount of disk storage required is only nv−r.This amount is far more than is ever needed in practice because rarely will there be n processes ac-tually running and even more rarely will all of them need the maximum al-lowed virtual memory.9.The page table contains232/213entries,which is524,288.Loading the pagetable takes52msec.If a process gets100msec,this consists of52msec for loading the page table and48msec for running.Thus52%of the time is spent loading page tables.10.(a)We need one entry for each page,or224=16×1024×1024entries,sincethere are36=48−12bits in the page numberfield.。

操作系统第三版习题答案

操作系统第三版习题答案
计算 程序 A 程序 B 输入设备 打印机 计算 打印 计算 打印 输入 计算
输入 程序 B 打印 程序 B 打印
CPU 时间
程序 A
程序 B
程序 A
50
100
130
(2) CPU 有空闲等待,它发生在 100ms∼130ms 时间段内,此时间段内程序 A 与程序 B
200
230
280
380
ms
都在进行 I/O 操作。 (3) 程序 A 无等待现象,程序 B 在 0ms∼50ms 时间段与 200ms∼230ms 时间段内有等待 现象。 3、设三道程序,按照 A、B、C 优先次序运行,其内部计算和 I/O 操作时间由图给出。 A B C C11=30ms C21=60ms C31=20ms | | | I12=40ms I22=30ms I32=40ms | | | C13=10ms C23=10ms C33=20ms 试画出按多道运行的时间关系图(忽略调度执行时间)。完成三道程序共花多少时间?比 单道程序节省了多少时间?若处理器调度程序每次运行程序的转换时间花 1ms,试画出 各程序状态转换的时间关系图。 解答:完成三道程序抢占式花费时间是 190 ms,非抢占花费时间是 180 ms,单道花费 时间是 260 ms,抢占式比单道节省时间为 70 ms。 单道程序运行时间:260ms A:30+40+10=80 ms B:60+30+10=100 ms C:20+40+20=80 ms 4、在单 CPU 和两台 I/O(I1 和 I2)设备的多道程序设计环境下,同时投入三个作业运行。 它们的执行轨迹如下: Job1:I2(30ms)、CPU(10ms)、I1(30ms)、CPU(10ms)、I2(20ms) Job2:I1(20ms)、CPU(20ms)、I2(40ms) Job3:CPU(30ms)、I1(20ms) 、CPU(10ms)、I1(10ms) 如果 CPU、I1 和 I2 都能并行工作,优先级从高到低为 Job1、Job2 和 Job3,优先级高 的作业可以抢占优先级低的作业的 CPU,但是不抢占 I1 和 I2。试求: (1)每个作业从投入到完成分别需要多少时间。 (2)从投入到完成 CPU 的利用率。 (3) I/O 设备的利用率。 答:(1)JOB1,JOB2,JOB3 从投入到完成分别所需时间为 110,90,110。 (2)每个作业从投入到完成 CPU 的利用率是 72.7%。 (3)I1 的利用率是 72.7%,I2 的利用率是 81.8%。 5、在单 CPU 和两台 I/O(I1 和 I2)设备的多道程序设计环境下,同时投入三个作业运行。 它们的执行轨迹如下: Job1:I2(30ms)、CPU(10ms)、I1(30ms)、CPU(10ms) Job2:I1(20ms)、CPU(20ms)、I2(40ms) Job3:CPU(30ms)、I1(20ms)

计算机操作系统第三版课后习题答案

计算机操作系统第三版课后习题答案

第一章1.设计现代OS的主要目标是什么?答:(1)有效性(2)方便性(3)可扩充性(4)开放性2.OS的作用可表现在哪几个方面?答:(1)OS作为用户与计算机硬件系统之间的接口(2)OS作为计算机系统资源的管理者(3)OS实现了对计算机资源的抽象3.为什么说OS实现了对计算机资源的抽象?答:OS首先在裸机上覆盖一层I/O设备管理软件,实现了对计算机硬件操作的第一层次抽象;在第一层软件上再覆盖文件管理软件,实现了对硬件资源操作的第二层次抽象。

OS通过在计算机硬件上安装多层系统软件,增强了系统功能,隐藏了对硬件操作的细节,由它们共同实现了对计算机资源的抽象。

4.试说明推动多道批处理系统形成和収展的主要动力是什么?答:主要动力来源于四个方面的社会需求与技术发展:(1)不断提高计算机资源的利用率;(2)方便用户;(3)器件的不断更新换代;(4)计算机体系结构的不断发展。

5.何谓脱机I/O和联机I/O?答:脱机I/O 是指事先将装有用户程序和数据的纸带或卡片装入纸带输入机或卡片机,在外围机的控制下,把纸带或卡片上的数据或程序输入到磁带上。

该方式下的输入输出由外围机控制完成,是在脱离主机的情况下进行的。

而联机I/O 方式是指程序和数据的输入输出都是在主机的直接控制下进行的。

6.试说明推动分时系统形成和发展的主要动力是什么?答:推动分时系统形成和发展的主要动力是更好地满足用户的需要。

主要表现在:CPU 的分时使用缩短了作业的平均周转时间;人机交互能力使用户能直接控制自己的作业;主机的共享使多用户能同时使用同一台计算机,独立地处理自己的作业。

7.实现分时系统的关键问题是什么?应如何解决?答:关键问题是当用户在自己的终端上键入命令时,系统应能及时接收并及时处理该命令,在用户能接受的时延内将结果返回给用户。

解决方法:针对及时接收问题,可以在系统中设置多路卡,使主机能同时接收用户从各个终端上输入的数据;为每个终端配置缓冲区,暂存用户键入的命令或数据。

操作系统(第三版)习题答案

操作系统(第三版)习题答案

:第一章操作系统引论1.设计现代OS的主要目标是什么答:(1)有效性(2)方便性(3)可扩充性(4)开放性2.OS的作用可表现在哪几个方面答:(1)OS作为用户与计算机硬件系统之间的接口(2)OS作为计算机系统资源的管理者(3)OS实现了对计算机资源的抽象3.为什么说OS实现了对计算机资源的抽象、答:OS首先在裸机上覆盖一层I/O设备管理软件,实现了对计算机硬件操作的第一层次抽象;在第一层软件上再覆盖文件管理软件,实现了对硬件资源操作的第二层次抽象。

OS通过在计算机硬件上安装多层系统软件,增强了系统功能,隐藏了对硬件操作的细节,由它们共同实现了对计算机资源的抽象。

4.试说明推动多道批处理系统形成和发展的主要动力是什么答:主要动力来源于四个方面的社会需求与技术发展:(1)不断提高计算机资源的利用率;(2)方便用户;(3)器件的不断更新换代;(4)计算机体系结构的不断发展。

5.何谓脱机I/O和联机I/O%答:脱机I/O 是指事先将装有用户程序和数据的纸带或卡片装入纸带输入机或卡片机,在外围机的控制下,把纸带或卡片上的数据或程序输入到磁带上。

该方式下的输入输出由外围机控制完成,是在脱离主机的情况下进行的。

而联机I/O方式是指程序和数据的输入输出都是在主机的直接控制下进行的。

6.试说明推动分时系统形成和发展的主要动力是什么答:推动分时系统形成和发展的主要动力是更好地满足用户的需要。

主要表现在:CPU的分时使用缩短了作业的平均周转时间;人机交互能力使用户能直接控制自己的作业;主机的共享使多用户能同时使用同一台计算机,独立地处理自己的作业。

7.实现分时系统的关键问题是什么应如何解决答:关键问题是当用户在自己的终端上键入命令时,系统应能及时接收并及时处理该命令,在用户能接受的时延内将结果返回给用户。

解决方法:针对及时接收问题,可以在系统中设置多路卡,使主机能同时接收用户从各个终端上输入的数据;为每个终端配置缓冲区,暂存用户键入的命令或数据。

现代操作系统(原书第3版)部分课后答案-第4章

现代操作系统(原书第3版)部分课后答案-第4章

1.这些系统直接把程序载入内存,并且从word0(魔数)开始执行。

为了避免将header作为代码执行,魔数是一条branch指令,其目标地址正好在header之上。

按这种方法,就可能把二进制文件直接读取到新的进程地址空间,并且从0开始运行。

5.rename 调用不会改变文件的创建时间和最后的修改时间,但是创建一个新的文件,其创建时间和最后的修改时间都会改为当前的系统时间。

另外,如果磁盘满,复制可能会失败。

10.由于这些被浪费的空间在分配单元(文件)之间,而不是在它们内部,因此,这是外部碎片。

这类似于交换系统或者纯分段系统中出现的外部碎片。

11.传输前的延迟是9ms,传输速率是2^23Bytes/s,文件大小是2^13Bytes,故从内存读取或写回磁盘的时间都是9+2^13/2^23=9.977ms,总共复制一个文件需要9.977*2=19.954ms。

为了压缩8G磁盘,也就是2^20个文件,每个需要19.954ms,总共就需要20,923 秒。

因此,在每个文件删除后都压缩磁盘不是一个好办法。

12.因为在系统删除的所有文件都会以碎片的形式存在磁盘中,当碎片到达一定量磁盘就不能再装文件了,必须进行外部清理,所以紧缩磁盘会释放更多的存储空间,但在每个文件删除后都压缩磁盘不是一个好办法。

15.由于1024KB = 2^20B, 所以可以容纳的磁盘地址个数是2^20/4 = 2^18个磁盘地址,间接块可以保存2^18个磁盘地址。

与 10 个直接的磁盘地址一道,最大文件有 262154 块。

由于每块为 1 MB,最大的文件是262154 MB。

19.每个磁盘地址需要D位,且有F个空闲块,故需要空闲表为DF位,采用位图法则需要B位,当DF<B时,空闲表采用的空间少于位图,当D=16时,得F/B<1/D=6.25%,即空闲空间的百分比少于6.25%.20.a)1111 1111 1111 0000b)1000 0001 1111 0000c)1111 1111 1111 1100d)1111 1110 0000 110027.平均时间T = 1*h + 40*(1-h)=-39h+40ms28.1500rpm(每分钟1500转),60s/1500=0.004s=4ms,即每转需要4ms,平均旋转延迟为2ms;读取一个k个字节的块所需要的时间T是平均寻道时间,平均旋转延迟和传送时间之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、在建立一个操作系统时有几个设计目的,例如资源利用、及时性、健壮性等。 请列举两个可能互相矛盾的设计目的。 答:考虑公平和实时。公平要求每一个进程都以公平的方式分配资源,没有进程 能得到超过公平份额的资源。另一方面,实时要求使进程在规定的时间内执行完 毕的基础上分配资源。一个实时的进程可能会得到一个不成比例的资源份额。(非
3、在早期计算机中,每个字节的读写直接由 CPU 处理(即没有 DMA),对于多 道程序而言这种组织方式有什么含义? 答:多道程序的主要原因是当等候 I/O 完成时 CPU 有事可做。如果没有 DMA。 I/O 操作时 CPU 被完全占有,因此,多道程序无利可图(至少在 CPU 利用方面)。 无论程序作多少 I/O 操作,CPU 都是 100%的忙碌。当然,这里假定主要的延迟 是数据复制时的等待。如果 I/O 很慢的话,CPU 可以做其它工作。
5、缓慢采用 GUI 的一个原因是支持它的硬件的成本(高昂)。为了支持 25 行 80 列字符的单色文本屏幕应该需要多少视颊 RAM? 对于 1024x768 像素 24 位色彩 位图需要多少视频 RAM? 在 1980 年($5/KB)这些 RAM 的成本是多少?现在它的 成本是多少? 答:25*80 字符的单色文本屏幕需要 2000 字节的缓冲器。1024*768 像素 24 位颜 色的位图需要 2359296 字节。1980 年这两种选择将分别地耗费$10 和$11520。而 对于当前的价格,将少于$1/MB。
4、系列计算机的思想在 20 世纪 60 年代由 IBM 引入进 System/360 大型机。现 在这种思想已经消亡了还是继续活跃着? 答:它依然存在。例如,Intel 以各种各样的不同的属性包括速度和能力消耗来生 产 Pentium I,II,III 和 4。所有这些机器的体系结构都是兼容的,仅仅是价格上 的不同,这些都是家族思想的本质。
cztqwan 2017-06-19
现代操作系统(第三版)习题答案
cztqwan 2017-06-19
(部分内容来源于网络,转载请注明出处)
cztqwan 2017-06-19
目录
第一章 绪论..................................................................................................................1 第二章 进程与线程......................................................................................................8 第三章 存储管理........................................................................................................21 第四章 文件系统........................................................................................................32 第五章 输入/输出 ......................................................................................................42 第六章 死锁................................................................................................................55 第七章 多媒体操作系统............................................................................................ 65 第八章 多处理机系统................................................................................................ 76 第九章 安全................................................................................................................88 第十章 实例研究 1:Linux .....................................................................................100 第十一章 实例研究 2:Windows Vista .................................................................. 110 第十二章 实例研究 3:Symbian 操作系统 ........................................................... 110 第十三章 操作系统设计.......................................................................................... 110
cztq序设计? 答:多道程序设计技术是指在内存同时放若于道程序,使它们在系统中并发执行, 共享系统中的各种资源。当一道程序暂停执行时,CPU 立即转去执行另一道程 序。
2、什么是 SPOOLing? 读者是否认为将来的高级个人计算机会把 SPOOLing 作 为标准功能? 答:(假脱机技术)输入 SPOOLing 是作业中的读入技术,例如,从卡片在磁盘, 这样当当前执行的进程完成时,将等候 CPU。输出 SPOOLing 在打印之前首先 复制打印文件, 而非直接打印。在个人计算机上的输入 SPOOLing 很少,但是 输出 SPOOLing 非常普遍。
相关文档
最新文档