概率论与数理统计二维随机变量39页PPT
合集下载
概率论与数理统计第四章二维随机变量及其分布

(4)
fX Y (x
y)
f (x, y) fY ( y)
= ex
fY X ( y
x)
f (x, y) fX (x)
= ey
(5)
f (x, y) exy fX (x) fY ( y)
因此X ,Y相互独立。
二、二维连续型随机变量函数的分布
1.Z=X+Y的分布 设(X,Y)的联合密度函数为f(x,y),则由分布函数的定义知, Z=X+Y的分布函数为:
3. F (x , y) 为连续函数,且在f(x,y)的连续点处,
2F(x, y) f (x, y) xy
一、二维连续型随机变量概念
定义8 称
f X (x)
f (x, y)dy
( x )
为X的边缘密度函数。
称
fY ( y)
f (x , y)dx
( y )
为Y的边缘密度函数。一、二维连ຫໍສະໝຸດ 型随机变量概念定义9称
fX Y (x
y)
f (x, y) fY ( y)
为在Y=y条件下X的条件概率密
度,称
f (x, y) fY X ( y x) fX (x)
为在X=x条件下Y的条件概率密度.
定理2 设(X,Y)为二维连续型随机变量,则X与Y相互独 立等价于 f (x, y) fX (x) fY ( y)
y)
一、二维随机变量的概念
联合分布函数F(x,y)有如下的性质:
1. 0 F(x , y) 1
2. F(x , y) 关于x、关于y单调不减;
3. F(x , y) 关于x、关于y右连续
4.
lim F(x , y) 0 , lim F(x , y) 1
概率论与数理统计完整ppt课件

化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计 第二章 随机变量及其分布

解:
6 6 X ~ ( ), 且 P X 0 e 即 e e 6
P { X 2 } 1 P { X 2 } 1 P { X 0 } P { X 1 }
6 6 1 e 6 e 0 . 9826
A={X=1},B={X=2},C={X=0}
② 设Y为进行5次试验中成功的次数,则 D={Y=1},F={Y1},G={Y3}
随机变量的分类
离散型随机变量 随机变量 连续型 非离散型 奇异型(混合型)
§2 离散型随机变量的分布律(P27)
定义 若随机变量X取值x1, x2, …, xn, … ,且取这些 值的概率依次为p1, p2, …, pn, …, 则称 P{X=xk}=pk, (k=1, 2, … ) 为X的分布律。 可表为 X~ P{X=xk}=pk, (k=1, 2, … ), 或…
k k n
k 0 , 1 , , n
若以X表示n重贝努里试验中事件A发生的次数, P(A)=p, 则称X服从参数为n,p的二项分布。 记作X~b(n,p), 其分布律为:
P { X k } p ( 1 p ), ( k 0 , 1 ... n ) C n
kk
n k
例2 掷一颗骰子10次,求(1)双数点出现6次的概率? (2)“3”点出现两次的概率? 解:(1)设X表出现双数点的次数,则X~b(10,1/2) 6 6 10 6 6 10 1 1 1 所求概率: P ( X 6 ) C ( ) ( ) C ( ) 10 10 2 2 2 (2) 设Y表出现“3”点的次数,则Y~b(10,1/6) 2 1258 所求概率为: P ( Y 2 ) C () () 10
6 6 X ~ ( ), 且 P X 0 e 即 e e 6
P { X 2 } 1 P { X 2 } 1 P { X 0 } P { X 1 }
6 6 1 e 6 e 0 . 9826
A={X=1},B={X=2},C={X=0}
② 设Y为进行5次试验中成功的次数,则 D={Y=1},F={Y1},G={Y3}
随机变量的分类
离散型随机变量 随机变量 连续型 非离散型 奇异型(混合型)
§2 离散型随机变量的分布律(P27)
定义 若随机变量X取值x1, x2, …, xn, … ,且取这些 值的概率依次为p1, p2, …, pn, …, 则称 P{X=xk}=pk, (k=1, 2, … ) 为X的分布律。 可表为 X~ P{X=xk}=pk, (k=1, 2, … ), 或…
k k n
k 0 , 1 , , n
若以X表示n重贝努里试验中事件A发生的次数, P(A)=p, 则称X服从参数为n,p的二项分布。 记作X~b(n,p), 其分布律为:
P { X k } p ( 1 p ), ( k 0 , 1 ... n ) C n
kk
n k
例2 掷一颗骰子10次,求(1)双数点出现6次的概率? (2)“3”点出现两次的概率? 解:(1)设X表出现双数点的次数,则X~b(10,1/2) 6 6 10 6 6 10 1 1 1 所求概率: P ( X 6 ) C ( ) ( ) C ( ) 10 10 2 2 2 (2) 设Y表出现“3”点的次数,则Y~b(10,1/6) 2 1258 所求概率为: P ( Y 2 ) C () () 10
二维随机变量 PPT

X
1
2
pX (xi )
1/ 2 a 1/9
3 b 1/18
Y
1
2
pY ( y j )
1/3 a b
1/ 3
要使 X 与Y 独立,a,b必须同时满足:
32
p(i, j) 1; p(i, j) pX (i) pY ( j),
i1 j1
i 1,2,3; j 1,2.
问题:已知联合分布,求边缘分布.
1.二维离散随机变量的边缘分布
设 ( X ,Y )表示二维离散随机变量.联合分布为:
p (xi , y j ) P( X xi ,Y y j ),
i 1, 2, , m, ; j 1, 2, , n, .
[X 的边缘概率函数]
pX (xi )
取值: X : x1, x2, , xm, ;
Y : y1, y2, , xn , .
p (xi , y j ) P( X xi ,Y y j )
(i 1, 2, , m, , j 1, 2, , n, )
称为二维离散随机变量 ( X ,Y )的联合概率函数.
联合概率函数的性质
由 p(2,2) 1 9 pX (2) pY (2) 1 3 (a 1 9), p(3,2) 1 18 pX (3) pY (2) (b 1 18) 1 3,
解得 a 2 9, b 1 9. 容易验证 a 2 9,b 1 9满足其余5个等式.
X pX (xi )
F(x, y) FX (x)FY ( y), f (x, y) fX (x) f Y( y).
小结
1. 二维离散随机变量的联合分布:联合概率函数, 二维联合分布表,联合概率函数的性质(非负性,规范 性).
9(3.1二维随机变量)共39页

2020/4/25
西安电子科技大学6
证明 P { x 1 X x 2 ,y 1 Y y 2 } P { X x 2 ,y 1 Y y 2 } P { X x 1 ,y 1 Y y 2 } P { X x 2 ,Y y 2 } P { X x 2 ,Y y 1 }
P { X x 1 ,Y y 2 } P { X x 1 ,Y y 1 } 0, 故 F ( x 2 , y 2 ) F ( x 2 , y 1 ) F ( x 1 , y 1 ) F ( x 1 , y 2 ) 0 .
x 1 x 2 x i
p 11p 21p i1 p 12p 22p i2
p 1 j p 2 j p ij
2020/4/25
ห้องสมุดไป่ตู้
西安电子科技大学10
例1设随机变 X在 量1,2,3,4四个整数中等可 取值 ,另一个随机Y在 变1量 ~X中等可能地取 整数.值 试求 (X,Y)的分布. 律
设(X,Y)是二维随机,对 变于 量任意实 x, y数 , 二元函:数
F(x,y)P{(Xx) (Y y)}P{Xx,Y y} 称为二维随机(X变 ,Y)量 的分布函 ,或数称为随 机变X量和Y的联合分布. 函数
2020/4/25
西安电子科技大学3
F(x,y)的函数值就是 在随 如机 图点 所落
2020/4/25
西安电子科技大学7
二、二维离散型随机变量
1. 定义
若二维随机变量 ( X, Y ) 所取的可能值是有 限对或无限可列多对,则称 ( X, Y ) 为二维离散型 随机变量.
2020/4/25
西安电子科技大学8
2. 二维离散型随机变量的分布律
设二维离散型随机 (X,变 Y)所 量有可能取的 值为(xi, yj),i, j 1, 2,,记
概率论与数理统计图文课件最新版-第3章-第1节-二维随机变量

0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
当 x2 x1 时 F ( x2 , y) F ( x1, y)
对固定的y, X是非减的
当 y2 y1 时 F ( x, y2 ) F ( x, y1 )
对固定的x, y是非减的
性质2 F(x,y) 对每个自变量 x 或 y 是右连续的,
即:
lim
x x0
F
(
x,
y)
F(
x0
,
y)
lim
y y0
FX ( x), FY ( y) 那么它们分别各自又有什么特征呢?
概率统计
注 ▲ X ,Y 均要求定义在同一个样本空间S上. ▲ (X,Y ) 的性质不仅与 X及 Y有关,而且
还依赖于这两个随机变量的相互关系.
概率统计
▲ (X ,Y ) 的几何解释:
y
(X,Y )
0
x
或: e
S
X (e) Y (e)
给出 (X,Y )
平面上的一个随机点(随机向量)
概率统计
定义2 (二维随机变量的分布函数) 设 ( X , Y )是二维
1
dx
1 x
G
e( x y)dy
1
2e 1
0.2642
0
0
以上关于离散型或连续型随机变量的
大学课程概率论与数理统计3.1二维随机变量及其分布课件

x2
,
y
2
y 1
x
0
x2
x1
(图2)
•事实上,由图2可看出关系式
X
x2,Y
y 2
x1
X
x2,
y Y 1
y 2
X
x2,Y
y 1
X
x1,Y
y 2
X
x1,Y
y 1
则
P
X
x2 ,Y
y 2
P
x1
X
x2 ,
y Y 1
y 2
P
X
x2,Y
பைடு நூலகம்
y 1
P
X
x1,Y
y 2
P
X
x1,Y
46
3
解:P(0 X π , π Y π )
Y
46
3
3
F( π , π ) F( π , π ) F(0, π ) F(0, π )
6
43 ππ
46 ππ
3 π
6 π0
X
4
sin sin sin sin sin 0sin sin 0sin
43 46
3
6
1 ( 6 2) 4
引例二
0
炮弹命中点的平面位 置要由水平距离X和 垂直距离Y来确定, 则炮弹命中点的平面 Y 位置(X,Y)也是二维 随机变量.
x, y X
引例三
•一炉钢的综合质量至少要由钢的硬 度(X),含碳量(Y),含硫量(Z)等多个 变量来描述,则一炉钢的综合质量 至少要用三维随机变量(X,Y,Z)来 表示.
F (1,1) F(1,1) F (1,1) F (1,1)
111 0 1 矛盾
概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
①
②
①
1 2 N
①
②
1 2 N
……
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计二维随机变量
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
ቤተ መጻሕፍቲ ባይዱ
谢谢!
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
ቤተ መጻሕፍቲ ባይዱ
谢谢!