发电厂主接线设计毕业设计论文
毕业设计(论文)-风电场电气主接线设计与优化

毕业设计(论文)-风电场电气主接线设计与优化华北电力大学本科毕业设计(论文)摘要风力发电作为一种清洁的可再生能源发电方式,已越来越受到世界各国的欢迎,与此同时,风电场设计也备受重视。
虽然风电场电气设计与传统电厂设计的原理相同,但传统的设计方法并不一定适合风电场设计。
所以有必要进行专门针对风电场电气主接线设计的研究。
风电场的电气设计主要包含几个方面:风力发电机组升压方式、风电场集电线路选择、风机(风电机组)分组及连接方式。
现国内外风力发电机组出线电压多为690V,多采用升至35kV方案。
风电场集电线路方案一般采用架空线或电缆敷设方式。
架空线的成本较低,但可靠性较低,电缆的成本高,可靠性也高;集电线路结构有4种常用方案,链形结构;单边环形结构;双边环形结构;复合环形结构。
链形结构简单,成本不高。
环形设计成本较高,但其可靠性较高。
风力发电机分组多为靠风机的排布位置、及结合现场施工的便捷性制定。
作者主要针对风电场电气主接线进行设计和优化,通过对风机的分组和连接方式、风电场集电线路方案、风电场短路电流计算及设备选取等的问题进行深入的计算与讨论,提出一些关于风机分组连接、集电线路设计的可行方案。
并通过现有风电场的数据,对方案进行技术和经济方面的比较,确定最终方案并对其进行优化。
为今后的风电场设计提供一些经验和参考意见, 便于今后找出一套适用于风电场电气主接线设计的方法。
关键词:风电场,电气设计, 集电系统,优化I华北电力大学本科毕业设计(论文)ABSTRACTBy the wind power as one kind of clean renewable energy source the electricity generation way, the design of wind farm has been popular and been paid attention to with the world. Although the electrical design of wind farm and the traditional design technology at the electrical principle is the same, but sometimes the methods are not suitable in fact. So specifically forthe electrical design of wind farm has come into being.The electrical design of wind farm mainly includes several aspects: wind turbine generators, wind energy booster way of electrical collector system, WGTS’s groupand connection. Now the WGTS’s voltage qualifies for 690V, and much taking the voltage to 35kV. Wind farm electrical collector system generally uses the bus or cable.The cost of bus is relatively lower, but reliability is low, cableis high costs and high reliability; The electrical collector system has four common solutions, stringclustering; Unilateral redundancy clustering; Bilateral redundancy clustering;Composite redundancy clustering. String clustering is simple structure, cost is not high. With redundancy design cost is higher, but it has high reliability. For more on WTGS group and combining lay on its location and the convenient of building.We will discuss about the main points of the wind farm electrical design and optimized. It will get some design which is about thegrouping and connection and the connection lines that can be used, by calculating and discussing, include the grouping and connection of the WTGS, the connection lines, the wind farm electrical short-circuitcurrent computation , the equipment selection and so on. We will compare different schemes from the economic and technical aspects based onexciting wind farm data, then optimizing and being sure these plans. These conclusions and viewpoints can be references for the future wind farm design, and be easy finding out a set of way to be suitable the electrical design of wind farm.KEY WORDS: Wind farm, electrical design, electrical collector system, optimizationII华北电力大学本科毕业设计(论文)目录摘要..............................................................................? ABSTRACT..............................................................................? 第1章绪论 (3)1.1研究背景 (3)1.2研究意义 (4)1.3国内外研究现状 (4)1.4本文主要内容...................................................5 第2章风场介绍及主要设备选型 (6)2.1风电场基本资料 (6)2.2电气主接线设计 (6)2.3主要设备选型 (8)2.3.1风电机组的选型 (8)2.3.2风机箱变的选型 (8)2.3.3主变压器的选型................................................9 第3章风电场接线方案比选 (11)3.1概述 (11)3.2集电线路方案比选 (11)3.2.1方案描述及比较 (11)3.2.1.1技术特点 (11)3.2.1.2经济比较 (12)3.2.2结论 (13)3.3风机分组和连接方案的比选 (13)3.3.1方案描述 (13)3.3.2方案比较 (13)3.3.2.1技术比较 (13)3.3.2.2经济比较 (21)3.3.3结论 (21)1华北电力大学本科毕业设计(论文)3.4本章小结............................................................22 第4章短路电流计算及其它电气设备的选取 (23)4.1计算说明 (23)4.2系统等效简化图 (23)4.3短路电流的计算 (24)4.3.1各元件的标幺值 (24)4.3.2 各短路点的短路电流计算 (24)4.4其它电气设备的选取 (26)4.4.1 断路器的选取 (26)4.4.2隔离开关的选取 (28)4.4.3 电压互感器的选取 (28)4.4.4电流互感器的选取 (28)4.5本章小结............................................................30 第5章方案优化 (31)5.1概述 (31)5.2风机分组的优化 (31)5.2.1技术比较 (31)5.2.2经济比较 (34)5.2.3结论 (34)5.3线路优化 (35)5.3.1线路的选择 (35)5.3.2技术比较 (35)5.3.3经济比较 (38)5.3.4结论……………………………………………………38 5.4本章小结………………………………………………………………39 结论……………………………………………………………………40 参考文献..............................................................................41 附录..............................................................................42 致谢 (45)2华北电力大学本科毕业设计(论文)第1章绪论1.1 研究背景风能是一种无污染的、储量丰富的可再生能源。
电厂电气主接线方案 电力工程论文 精品

摘要摘要本篇论文主要针对主要针对直岗拉卡水电站在电力系统的地位,拟定本电厂的电气主接线方案,经过技术经济比较,确定推荐方案,对其进行短路电流的计算,对电厂所用设备进行选择,然后对各级电压配电装置及总体布置设计。
并且对其发电机继电保护进行设计。
在这些设计过程中需要用到各种电力工程设计手册,并且借用AutoCAD辅助工具画出其电气主接线图、室外配电装置图、发电机保护的原理接线图、展开图、保护屏的布置及端子排接线图。
尤其是厂用电在不同电源切换过程中存在的问题进行了较深入的分析,解决了厂用电切换经常不成功并损坏开关等电力设备这一严重问题。
本人首先分析了厂用电系统的结构及厂用电切换对于电厂安全运行的重要性。
从理论上对厂用电切换过程中电气量的变化规律进行了较深入的分析。
对厂用电切换过程中切换装置所采用的“快速切换”、“残压切换”或“延时切换”及“同期捕捉切换”等方式分别进行了分析研究,特别是对于每种方式可能对厂用电的安全运行所造成的影响进行了分析。
关键词电气主接线厂用电系统- I -目录摘要 (I)第1章电气主接线设计 (1)1.1设计原则 (1)1.2各方案比较 (2)第2章厂用电设计及安全切换 (8)2.1 厂用电设计原则 (8)2.2 厂用电安全切换的重要性 (8)第3章短路电流计算 (10)3.1 对称短路电流计算 (10)第4章电器主设备选择 (12)4.1 对方案I的各主设备选择 (12)4.2 对方案Ⅱ的各主设备选择 (18)第5章发电机继电保护原理设计及保护原理 (19)5.1 初步分析 (19)5.2 对F1的保护整定计算 (19)5.3 对F5的保护整定计算 (22)第6章结论与展望 (27)参考文献 (28)- II -第一章电气主接线设计第1章电气主接线设计1.1设计原则电气主接线是水电站由高压电气设备通过连线组成的接收和分配电能的电路。
电气主接线根据水电站在电力系统中的地位、回路数、设备特点及负荷性质等条件确定,并应满足运行可靠、简单灵活、操作方便、易于维护检修、利于远方监控和节约投资等要求。
发电厂电气部分设计毕业论文

10万kvA发电厂一次部分设计第一章电气主接线的设计1.1 电气主接线的设计1.1.1 电气主接线设计的要求电气主接线图是由各种电气元件如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等,接照一定的要求和顺序接起来,并用国家统一规定图形的文字符号表示的发、变、供电的电路图。
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线是的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择,配电装置布置,继电保护和控制方式的拟定有较大影响。
因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。
1.1.2基本接线及适用X围1.35kV及110kV母线采用单母分段接线(1)优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
(2)缺点:当一段母线或母线隔离开关故障或检修时,该母线的回路都要在检修期间内停电;当出线为回路时,常使架空线路出现交叉跨跃。
(3)适用X围:35-63kV配电装置的出线回路数不超过4-8回;110-220kV配电装置的出线回路数不超过3-4回。
2. 10kV母线采用双母分段接线3. 110kV母线采用内桥接线(1)35-110kV线路为两回及以下时,宜采用桥形、线路变压器组成或线路分支接线。
(2)桥型接线:当只有两台主变压器和两回输电线路时,采用桥型接线。
当只有两台变压器和两回输电线路时采用内桥形式(3)内桥使用X围:内桥接线适用于输电线路较长(则检修和故障机率大)或变压器不需经常投,切及穿越功率不大的小容量配电装置中。
(4)外桥使用X围:外桥接线使用于输电线路较短或变压器需经常投,切及穿越功率较大的小容量配电装置中。
1.2 设计方案比较与确定1.2.1 主接线设计方案图确定采用110kV内桥连接方式.图1-1 接线方案的主接线图由图1-1可以看出该方案中:110kV侧选用内桥接线;35kV侧选用单母分段接线;10kV侧选用双母分段接线。
2×600MW火电厂电气主接线方案初步设计毕业设计论文

2×600MW火电厂电气主接线方案初步设计摘要电气主接线是发电厂、变电所电气设计的主要部分,也是构成电力系统的重要环节。
主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。
并且对电气设备的选择、配电装置的配备、继电器的保护和控制方向的拟定有较大的影响。
发电厂的主接线是保证电网的安全可靠、经济运行的关键,是电气设备布置选择、自动化水平和二次回路设计的原则和基础。
2×600MW 火电机组目前已经是我国电力系统中的主力机组,由 2×600MW 机组为主的火力发电厂也属于我国电力系统的大型主力发电厂。
本设计讨论的是 2×600MW 火电厂电气主接线方案与设备布置,火电厂电气一次部分设计是电力工程设计的主要工作之一,设计的合理与否对于提高电力系统运行的可靠性、经济性具有重要意义。
它对发电厂内电气设备选择和布置,继电保护和自动装置的设计起到决定性作用。
设计详细说明了各种设备选择的基本的要求和依据。
在分析原始资料,确保供电可靠,调度灵活,满足各项技术要求的基础上,选择出一种与发电厂在系统中的地位和作用相适应的接线方式,接下来选择了主变压器,进行了短路计算,设备选择,设备校验,然后进行了设备布置方案的设计,绘制了主接线图、配电装置平面布置图、配电装置进(出)线断面图和配电装置配置图。
本设计注意了新技术和新型设备的应用,把握了当代设计新趋势。
本文本课题的设计内容主要完成 2×600MW 机组火力发电厂的电气主接线方案拟定、设备选型和装置布置的初步设计,同时还应考虑今后扩建的可能性,并采用 CAD 绘制指定的图纸。
通过对原始资料的分析,了解本厂的具体情况及其在系统申的地位,作用:依据可靠性、灵活性、经济性,对电气主接线进行分析,从而选择最适合本厂情况的主扫线方案,为选择最适合的电器设备及继电保护装置进行了短路电流保护的配置及整定,从面满足可靠、灵敏、快速且有选择的要求。
水电站电气主接线毕业设计论文

Southwest university of science and technology本科毕业设计(论文)某水电站电气主接线系统设计学院:年级:专业:电气工程及其自动化姓名:学号:指导教师:二〇一三年六月某水电站电气主接线系统设计摘要:该水电站以发电为主,兼顾拦沙、防洪等综合利用效益。
水电站总装机容量约为 10 MV.A,为小型水电站。
小型水电站的设计需要遵循国家相关设计标准,力求做到经济,安全,实用。
本设计设计从原始资料入手,根据所给发电机的装机容量和相关参数,分析比较了电气主接线的的基本方式,确定35KV母线主接线方式,然后进行主变压器选择。
通过短路电流的计算结果,选择了最终的电气设备,如断路器,隔离开关,电流互感器、电压互感器等,并进行了选型和校验,完成该水电站一次设备装置配置,最后论文对电站常用继电保护以及防雷保护做了基本阐述。
关键字:小型水电站;电气主接线;变压器;电气设备;The design of the main electrical system ofthe Hydropower StationAbstract:The main purpose of power balance of the hydropower station, and comprehensive utilization benefit of sediment, flood control. The total installed capacity of hydropower is about 10M.V A, for small hydropower station! Need to follow the design standard, economy, safety design of small hydropower station, utility! The design begins with primitive data, according to the installed capacity of generators, choice of the main electrical wiring basic way, determine the main wiring of main transformer selection, in the choice of main wiring and main transformer, calculation of short circuit current, after short-circuit current calculation, according to short-circuit current calculation the results of the final selection, electrical equipment, such as circuit breaker, isolating switch, current transformer, complete an equipment area, and finally to two protection calculation options! All selected electrical equipment to CAD, and mark out! Through this design can improve the design of hydropower station master, to raise awareness and understanding each part of hydropower station, the future study and life has a lot of help.Key words:Small hydropower station; the main electrical wiring; transformer; the electrical equipment目录第一章概述 (6)前言 (6)1.1 设计目的 (6)1.2 水电站定型 (6)1.3 设计内容 (7)第二章电气主接线设计 (8)2.1 电气主接线的基本要求 (8)2.2水电站电气主接线基本形式 (8)2.2.1电气主接线的特点 (8)2.2.2 发电机电压侧接线 (9)2.2.3 高压侧接线 (11)2.2.4 原始资料 ................................................................ 错误!未定义书签。
发电厂毕业设计论文

设计题目2×25+2×50MW 发电厂一次部分设计 一、220KV 电网接线图已知条件:1、水电厂水轮机型号:TS854/156-40,P e =2×75MW ,U e =13.8Kv, X d’’=0.229,COS ϕ =0.85。
2、水电厂主变型号:SFP —63000/220,U d %=12,Y/△—11,2台。
二、本厂直接供电的(近区)负荷表 负 荷 名 称 最大功率(MW ) 距 离(km ) COS ϕ最小负荷系 数 T max负荷性质 Ⅰ—% Ⅱ—% Ⅲ—%1 8 0.2 0.8 0.7 5000 50 30 20 2 4 0.5 0.8 0.7 4500 40 40 20 3610.80.6450020403060KmSFP-90000/220 Se=90000KV A Ud%=12火电厂QSQ-50-2 Pe=4×50MWUe=10.5KV Xd ”=0.124 ϕcos =0.81、最大负荷同时系数:0.9,最高日平均气温:36℃,最低气温-3℃,非地震地区,5~8月有雷雨,土地较充裕。
2、负荷1~3为10kv电压等级,负荷4~5为110kv电压等级。
设计要求:第一部分供电方式的设计第二部分主接线的设计及厂用电的设计第三部分短路电流计算第四部分导体和电器的选择计算第一部分供电方式的设计1、设计近区负荷的供电方式,确定出线回路数1.1 10kv负荷供电线路根据负荷性质(Ⅰ、Ⅱ、Ⅲ类负荷比例)和年最大负荷利用小时T max,拟定以下两种近区1、2、3、4四种10kv负荷的供电方式。
(经过比较选择二方案供电方式,即负荷1和负荷2采用双回供电,负荷3和负荷4采用单回供电。
)比较(1、路径长度L:直接距离。
决定线路施工、器材运输、检修等费用。
并考虑5%弯曲度。
2、线路长度1:反映输电线路的投资。
其中:单回线1=L;双回线1=1.75L3、开关台数:反映电厂、变电站配电装置的投资。
发电厂主接线设计毕业设计论文

目录一、题目分析 (1)二、电气主接线方案比较 (1)三、短路电流计算 (4)四、电气设备的选择 (12)五、电气主接线图 (22)一、题目分析某水库电站是一座以灌溉为主,兼顾发电的季节性电站,冬、春季有三个多月因水库不放水或放水量少,电站停止运行不发电。
电站设计容量为三台立式机组,总装机 2000KW ( 2 × 800KW+1 × 400KW ),装机年利用小时为 3760h ,多年平均发电量为 752 万 KW.h 。
根据金塔县的用电负荷情况,该电站距城南变电所较近,因此,除厂用电外全部电能就近送至城南 35KV 变电所联入系统。
鉴于以上特点,本电站电气主接线采用三台发电机两台变压器,高压侧送电电压为35KV,一回出线。
二、电气主接线方案比较方案一:3台发电机共用一根母线,采用单母线接线不分段;设置一台变压器;方案二:1、2号发电机-变压器扩大单元接线;3号发电机-变压器单元接线;设置了2台变压器;35KV线路采用单母线接线不分段。
电气主接线方案比较:(1)供电可靠性方案一供电可靠性较差;方案二供电可靠性较好。
(2)运行上的安全和灵活性方案一母线或母线侧隔离开关故障或检修时,整个配电装置必须退出运行,而任何一个断路器检修时,其所在回路也必须退出运行,灵活性也较差;方案二1、2号发电机-变压器扩大单元接线与3号发电机-变压器单元接线相配合,使供电可靠性大大提高,提高了运行的灵活性。
(3)接线简单、维护和检修方便很显然方案一最简单、维护和检修方便。
(4)经济方面的比较方案一最经济。
各种方案选用设备元件数量及供电性能列表:综合比较:选方案二最合适。
经过综合比较上述方案,本阶段选用方案二作为推荐方案。
2、 变压器容量及型号的确定: 1、1T S =θCOS P ∑=KVA 20008.08002=⨯经查表选择SF7-8000/35型号,其主要技术参数如下: 2、KVA COS P S T 5008.04002===∑θ经查表选择SL7-4000/35型号, 其主要技术参数如下:三、短路电流计算 3.1短路电流计算条件为使所选电气设备具有足够的可靠性、经济性和合理性,并在一定时期内适应电力系统发展的需要,作校验用的短路电流应按下列条件确定。
火力发电主接线设计

摘要随着我国经济发展,对电的需求野越来越大,电作为我国经济发展的最重要的一种能源,主要是可以方便、高效地转换成其他能源形式。
电力工业作为一种先进的生产力,是我国经济发展中最重要的基础能源产业。
而火力发电是电力工业发展的主力军,占每年发电总量的百分之七十以上,由此可见火力电能再我国这个发展中国家的国民经济中的重要性。
火力发电厂简称火电厂,是利用煤,天然气,石油或其他燃料的化学能生产电能的工厂。
火力发电在我国的起步较早,经过近几十年的迅速发展,各项措施已得到了不断的完善,本文将针对某火力发电厂的主接线设计进行探讨,主要是对短路电流,电气设备的选择进行研究,期望提出更加合理的方案。
首先会对火力发电的有关内容做一阐述,并具体介绍主接线的连接方式,随后对火力发电厂的保护措施与照明原理进行介绍,最后将给出该火力发电厂的主接线的具体设计关键词:火电厂主接线电气设备AbstractThe coal-burning generating plant is called heat-engine plant simply. It is a factory using chemical energy such as natural gas, fossil or other fuel to produce electric energy. Heat- engine began early in our country, the kinds of measures were developed better in recent years. This essay will focus on the design of the chief-wiring of a coal- burning generating plant. The main purpose of the essay is studying the choice of the electric and the electrical equipment, expecting to put forward a more reasonable project.At first, this essay will state the related content about the heat-engine, and introduce the connective way in detail. Then, this essay will introduce the protective messures and lighting principle. At last, the concreted design of the chief- wiring will be gave out.目录摘要 (1)第一章绪论 (7)1.1课题提出的背景 (8)1.2课题研究的目的和意义 (8)1.3课题研究的主要内容 (8)1.4本章小结 (8)第二章电气主接线 (9)2.1火力发电厂的电气一次设计 (10)2.2电气主接线的基本要求和设计步骤 (11)2.2.1电气主接线的基本要求 (11)2.2.2设计步骤 (11)2. 3电气主接线分析 (11)2.3.1系统连接 (11)2.3.2本期750kV电气主接线方案 (12)2.4主变压器选型 (15)2.5各级电压中性点接地方式 (16)2.5本章小结 (16)第三章短路电流计算 (17)3.1短路电流计算依据 (17)3. 2短路电流计算过程 (17)3. 2. 1设备参数 (17)3. 2. 2阻抗计算 (18)3. 2. 3网络变换 (19)3.2.4短路电流计算 (22)3. 3短路电流计算结果 (32)3. 4本章小结 (32)第四章电气设备的选择 (33)4.1导体及设备选择的依据和原则 (34)4. 2导体及设备选型及规范 (34)4.2.1导体及设备选择依据及原则 (34)4.2.2导体的选型 (34)4.2.3设备的选型 (37)4.2.4 750kV设备的选型 (38)4. 3本章小结 (44)第五章厂用电接线与布置 (45)5.1主厂房厂用电接线及布置 (45)5. 2辅助厂房厂用电接线及布置 (47)5. 3本章小结 (48)第六章安全措施 (49)6.1事故保安的接线方式及设备选择 (49)6. 2不停电电源系统 (50)6.3电厂主、辅建(构)筑物的防雷保护 (50)6.3.1直击雷保护 (50)6.3.2感应雷保护 (50)6.4防雷电侵入波过电压保护 (50)6. 5环境污秽情况及电气外绝缘防污秽措施 (50)6.6照明供电电压及照明和检修网络供电方式 (51)6.6.1 照明网络供电电压 (51)6.6.2 事故照明供电方式 (51)6.7本章小结 (51)第七章总结与展望 (51)第一章绪论本文论述的某电厂(2x660MW燃煤发电机组)为凝汽式电厂,燃料为宁夏就地所产的优质无烟煤,煤料直接从附近煤矿用皮带传输,该电厂为典型的坑口电厂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、题目分析 (1)二、电气主接线方案比较 (1)三、短路电流计算 (4)四、电气设备的选择 (12)五、电气主接线图 (22)一、题目分析某水库电站是一座以灌溉为主,兼顾发电的季节性电站,冬、春季有三个多月因水库不放水或放水量少,电站停止运行不发电。
电站设计容量为三台立式机组,总装机 2000KW ( 2 × 800KW+1 × 400KW ),装机年利用小时为 3760h ,多年平均发电量为 752 万 KW.h 。
根据金塔县的用电负荷情况,该电站距城南变电所较近,因此,除厂用电外全部电能就近送至城南 35KV 变电所联入系统。
鉴于以上特点,本电站电气主接线采用三台发电机两台变压器,高压侧送电电压为35KV,一回出线。
二、电气主接线方案比较方案一:3台发电机共用一根母线,采用单母线接线不分段;设置一台变压器;方案二:1、2号发电机-变压器扩大单元接线;3号发电机-变压器单元接线;设置了2台变压器;35KV线路采用单母线接线不分段。
电气主接线方案比较:(1)供电可靠性方案一供电可靠性较差;方案二供电可靠性较好。
(2)运行上的安全和灵活性方案一母线或母线侧隔离开关故障或检修时,整个配电装置必须退出运行,而任何一个断路器检修时,其所在回路也必须退出运行,灵活性也较差;方案二1、2号发电机-变压器扩大单元接线与3号发电机-变压器单元接线相配合,使供电可靠性大大提高,提高了运行的灵活性。
(3)接线简单、维护和检修方便很显然方案一最简单、维护和检修方便。
(4)经济方面的比较方案一最经济。
各种方案选用设备元件数量及供电性能列表:综合比较:选方案二最合适。
经过综合比较上述方案,本阶段选用方案二作为推荐方案。
2、 变压器容量及型号的确定: 1、1T S =θCOS P ∑=KVA 20008.08002=⨯经查表选择SF7-8000/35型号,其主要技术参数如下: 2、KVA COS P S T 5008.04002===∑θ经查表选择SL7-4000/35型号, 其主要技术参数如下:三、短路电流计算 3.1短路电流计算条件为使所选电气设备具有足够的可靠性、经济性和合理性,并在一定时期内适应电力系统发展的需要,作校验用的短路电流应按下列条件确定。
(1)容量和接线按本工程设计最终容量计算,并考虑电力系统远景发展规划(一般为本工程建成后5~10年):其接线应采用可能发生最大短路电流的正常接线方式,但不考虑在切换过程中可能短时并列的接线方式。
(如切换厂用变压器时的并列)。
(2)短路种类一般按三相短路验算,若其他种类短路较三相短路严重时,即应按最严重的情况验算。
(3)计算短路点选择通过电器的短路电流为最大的那些点为短路计算点。
3.2短路电流计算书 短路点的选择:因本设计电压等级不多,接线简单,一个单母线接线,一个发电机-变压器组单元接线,两条母线:6.3KV 和35KV ,故在6.3KV 母线、3号发电机出口处及35KV 母线各选取一点作为短路计算点,分别为k1、k2、k3。
发电机,变压器及系统的主要参数如下:1、发电机参数:2⨯800KW+1⨯400KW ,cos θ=0.8,*Xd =0.2,额定电压6.3kV2、变压器参数:2台, 1T:%5.6%=d U 2000KVA,2T:%5.6%=d U , 500KVA3、线路参数:一回35kV 出线经过50km ,接入变电所。
X 321选取基准值:A MV S j ⋅=100 Up U j =发电机G1: 208.0800101002.0.3*2*1*=⨯⨯===Njd S S X X X 发电机G2: 408.0400101002.0.3*3*=⨯⨯==Njd S S X X 变压器T1:N j d S S U X .100%*4==25.32000101001005.63=⨯⨯ 变压器T2:=*5X N j d S S U .100%=13500101001005.63=⨯⨯ 线 路:46.137100504.0221*6=⨯⨯==jj U S L X X3.2.1当k1点发生三相短路时:8312102202*1*7===X X 531340*5*3*8=+=+=X X X01.153146.1125.31111*8*6*41=++=++=∑X X X Y 所以,∑=⨯⨯=⋅⋅=79.401.146.125.31*6*4*9Y X X X 97.17301.15325.31*8*4*10=⨯⨯=⋅⋅=∑Y X X X① ∞S 单独作用下,21.079.411*9*===∞X I 稳态短路电流: KA U S I I j j94.13.631010021.033*=⨯⨯⨯=⋅=∞∞冲击短路电流: KA I i 90.492.155.255.2sh =⨯=⨯=∞② 12G 作用下,2.0101008.08002103*7*7=⨯⨯⨯=⋅=j j S S X X <3 所以,12G 为有限大容量系统。
a 、 t=0s , 526.5*=IKA U S I I j j01.1103.638.08002526.533*''=⨯⨯⨯⨯=⋅= KA I K i 72.201.19.122''sh sh =⨯⨯==b 、 t=2s , 378.3*=IKA U S I I j jZ 62.0103.638.08002378.333*2=⨯⨯⨯⨯=⋅= c 、 t=4s , 234.3*=IKA U S I I j jZ 59.0103.638.08002234.333*4=⨯⨯⨯⨯=⋅= ③ 3G 作用下,86.0101008.040097.1733*10*10=⨯⨯=⋅=j j S S X X <3 所以,3G 为有限大容量系统。
a 、 t=0s , 436.1*=IKA U S I I j j066.03.638.0800436.13*''=⨯⨯=⋅= KA I K i 177.0066.09.122''sh sh =⨯⨯== b 、t=2s , 7494.1*=IKA U S I I j jZ 08.03.638.04007494.13*2=⨯⨯=⋅= c 、t=4s , 8076.1*=IKA U S I I j jZ 083.03.638.04008076.13*4=⨯⨯=⋅=3.2.2当k2点发生三相短路时: 网络简化图如下25.1325.3102*4*1*7=+=+=X X X 84.025.13146.11131111*7*6*52=++=++=∑X X X Y 69.14484.025.13132*7*5*8=⨯⨯=⋅⋅=∑Y X X X 94.1584.046.1132*6*5*9=⨯⨯=⋅⋅=∑Y X X X① ∞S 单独作用下,063.01*9*==∞X I 稳态短路电流: KA U S I I j j577.03.6310100063.033*=⨯⨯⨯=⋅=∞∞冲击短路电流:KAI i 47.1577.055.255.2sh =⨯=⨯=∞② 12G 作用下,89.2101008.0800269.1443*8*8=⨯⨯⨯=⋅=j j S S X X <3 所以,12G 为有限大容量系统。
a 、 t=0s , 845.0*=IKA U S I I j j155.03.638.08002845.03*''=⨯⨯⨯=⋅=1238KA I K i 405.0155.085.122''sh sh =⨯⨯==b 、 t=2s , 933.0*=IKA U S I I j jZ 171.03.638.08002933.03*2=⨯⨯⨯=⋅= c 、 t=4s , 933.0*=IKA U S I I j jZ 171.03.638.08002933.03*4=⨯⨯⨯=⋅= ③ 3G 作用下,2.0101008.0800403*3*3=⨯⨯=⋅=j j S S X X <3 所以,3G 为有限大容量系统。
a 、 t=0s , 526.5*=IKA U S I I j j253.03.638.0400526.53*''=⨯⨯=⋅= KA I K i 663.0253.085.122''sh sh =⨯⨯==b 、t=2s , 378.3*=IKA U S I I j jZ 155.03.638.0400378.33*2=⨯⨯=⋅= c 、t=4s , 234.3*=IKA U S I I j jZ 148.03.638.0400234.33*4=⨯⨯=⋅=3.2.3当k3点发生三相短路时: 网络简化图如下:25.1325.3102*4*1*7=+=+=X X X 521240*5*3*8=+=+=X X X① ∞S 单独作用下,685.046.111*6*===∞X I 稳态短路电流: KA U S I I jj 06.1373100685.03*=⨯⨯=⋅=∞∞ 冲击短路电流: KA I i 703.206.155.255.2sh =⨯=⨯=∞123② 12G 作用下,265.0101008.0800225.133*7*7=⨯⨯⨯=⋅=j j S S X X <3 所以,12G 为有限大容量系统。
a 、 t=0s , 064.4*=IKA U S I I jj 127.03732000064.43*''=⨯⨯=⋅= KA I K i 34.0127.09.122''sh sh =⨯⨯==b 、 t=2s , 069.3*=IKA U S I I jj Z 096.03732000069.33*2=⨯⨯=⋅= c 、 t=4s , 056.3*=IKA U S I I jj Z 095.03732000056.33*4=⨯⨯=⋅= ③ 3G 作用下,26.0101008.0400523*8*8=⨯⨯=⋅=j j S S X X <3 所以,3G 为有限大容量系统。
a:t=0s , 1415.4*=IKA U S I I jj 032.03735001415.43*''=⨯⨯=⋅= KA I K i im im 087.0032.09.122''=⨯⨯==b:t=2s , 091.3*=IKA U S I I jj Z 024.0373500091.33*2=⨯⨯=⋅= C:t=4s , 0705.3*=IKA U S I I jj Z 024.03735000705.33*4=⨯⨯=⋅=3.2.4短路电流计算成果表四、电气设备的选择4.1电气设备选择的一般条件:电气设备选择是发电厂和变电所设计的主要内容之一,在选择时应根据实际工作特点,按照有关设计规范的规定,在保证供配电安全可靠的前提下,力争做到技术先进,经济合理。