细胞核与染色质
第十章 细胞核与染色体(共62张PPT)

45S rRNA
32S rRNA 20S rRNA
28S rRNA 5.8S rRNA
18S rRNA
5S rRNA
rRNA的加工
核糖体亚单位的装配
核糖体组成:蛋白质+rRNA rRNA前体结合蛋白质—核糖核蛋白体颗粒; 核糖核蛋白体—大亚基和小亚基; 5SrRNA合成后转运至核仁参与核糖核蛋白体
致密纤维组分
核仁内电子密度最高的区域,位于浅染区的周围;
所含主要成分为正在转录的rRNA,此外还有一些RNA结
合蛋白; 颗粒组分
由直径15-20 nm的颗粒构成,是不同加工阶段的核糖
核蛋白体。
2 核仁的功能 rRNA前体的合成、加工 核糖体亚单位的装配
rRNA前体的合成及加工
rDNA的初级产物为rRNA前体
数量,位置、大小相对恒定,可作为鉴别特定染色 体的一个标志。
核仁组织区
位置:位于染色体的次缢痕部位; 含有编码核糖体的rRNA基因;
功能:在间期缔合核仁。
随体
位置:位于染色体末端的球形染色体节段
是鉴别染色体的一个重要标志 —— 通过次缢痕与染色体主体部分相连
端粒
是染色体末端富含G的重复序列; 作用:维持染色体的稳定性
Gp210位于孔膜区,功能包括:介导核孔复合体与核被膜连接;
—— X染色体失活
概念:构成真核生物染色体的基本结构蛋白, rRNA前体的合成及加工
核型(karyotype) :染色体组在有丝分裂周期的表现,包括染色体的数目、大小和形态特征。
1号染色体中的DNA包装倍数
主动运输的选择性:
富含带正电荷的赖氨酸和精氨酸。 组成:DNA、组蛋白、非组蛋白、少量RNA。
第十一章细胞核与染色质

6
(一)结构模型
核孔的直径为80~120nm,而核孔复合体直径为120-150nm。
20 世纪 80 年代,计算机图像处理技术,高分辨率场发射扫描电镜技术 (HR—FESEM)以及快速冷冻—冷冻干燥制样技术出现。 捕鱼笼式(fish-trap)的核孔复合体模型
7
核孔复合体主要结构组分
①胞质环:外环,环上8条短纤维对称分 布伸向胞质; ②核质环:内环, 8 条细长的纤维末端 形成一个直径为60nm的小环,小环由8个 颗粒组成 ③辐(spoke):由核孔边缘伸向中心,呈 辐射状八重对称。分为三个结构域:柱 状亚单位 (column subunit)、腔内亚单 位 ( luminal subunit)、 环 带 亚 单 位 (annular subunit); 中央栓 核质环 胞质环
20
第二节 染色质
染色质( chromatin) 是遗传物质的载体。 1879年,W.Fleming 染色质 1888年,Waldeyer 染色体 染色质和染色体是在细胞周期不同阶段可 以互相转变的形态结构。
- 染色质:间期细胞核内由DNA、组蛋白、 非组蛋白及少量RNA组成的线性复合结构, 是间期细胞遗传物质存在的形式。
- 染色体:细胞在有丝分裂或减数分裂的特 定阶段,由染色质缩聚而成的棒状结构。
14
15
RNA及核糖体亚单位的出核转运机制
真核细胞中 RNA一般要经过转录后加工、修饰成为成熟的 RNA分子后才 能 被转运出核。 ①由 RNA聚合酶I转录的rRNA分子,总是在核仁中与从胞质中转运进来 的核糖体蛋白结合形成核糖体亚单位,以核糖核蛋白颗粒(RNP)的形式 离开细胞核,核糖体蛋白分子上含有出核信号 (nuclear export signal, NES)。转运过程需要能量; ②由 RNA 聚合酶 Ⅲ转录的 5SrRNA 与 tRNA 的转运是一种由蛋白质介导的 过程; ③由 RNA 聚合酶Ⅱ转录的 mRNA 前体只有在核内经过转录后加工、修饰 成为成熟的RNA分子后才能被转运出核。 哺乳类细胞每5-20 min就产生一个成熟的 mRNA分子,几分钟后即被运 出细胞核。
细胞核与染色质—《细胞生物学》笔记

细胞核与染色质—《细胞生物学》笔记●第一节细胞核的基本概念●一.定义●细胞核(nucleus, 复数:nuclei):真核细胞中由双层膜所包被、包含染色质的细胞器,是遗传信息储存和复制、RNA合成和加工、核糖体亚基形成的场所,是细胞遗传与代谢的调控中心。
●二.主要组成●核被膜,核纤层,染色质,核仁,核体。
●第二节核被膜Nuclear envelope●一、核被膜●(一) 核被膜的结构组成●由内外两层平行但不连续的单位膜构成。
由外到内分别为●①外(层)核膜(outer nuclear membrane)●面向胞质的一层膜,厚约7.5nm,表面常附有核糖体颗粒,且常与粗面内质网相连;●②核周间隙(perinuclear space)●内外核膜之间的透明空隙,20~40nm;●③内(层)核膜(inner nuclear membrane)●面向核质的一侧,厚约7.5nm,表面光滑,无核糖体颗粒附着;在内表面有特有的蛋白成分(如核纤层蛋白 B受体lamin B receptor,LBR)●④核纤层(nuclear lamina)●紧贴内核膜下,是一层由纤维蛋白构成的网络结构;可支持核膜,并与染色质及核骨架相连;●⑤核孔(nuclear pore)●内外核膜在某些部位相互融合形成的环状开口;●⑥核孔复合体(nuclear pore complex, NPC)●在核孔上镶嵌着的一种复杂结构;有特有的蛋白成分(如跨膜糖蛋白gp210、Pom121等)。
●(二) 核膜在细胞周期中的崩解与重建●(1)将被³H 标记核被膜的细胞核,移植到正常的去核变形虫中,发现子代细胞核的核被膜中带有放射性标记,证明旧核膜参与了新核膜的构建。
●(2)以非洲爪蟾卵提取物为基础的非细胞核装配体系,成功地模拟出细胞核的构建及解体过程。
●(3)对 HeLa 细胞有丝分裂的研究证明核被膜的去组装不是随机的,具有区域特异性domain-specific。
细胞生物学-第九章细胞核与染色质

§2 染色质
• 染色质和染色体是由相同 的物质组成的,其主要成 分是DNA、组蛋白、非组 蛋白以及少量的RNA。
• DNA :组蛋白 :非组蛋 白 :RNA =
1 :1 :0.6 :0.1
• DNA和组蛋白的含量比较 稳定,非组蛋白和RNA的 含量依细胞生理状态而改 变。
(三)功能
1、通过核孔复合体的被动扩散 • NPC作为被动扩散的亲水通道,其有效直径为9-10nm。 • NPC象一个分子筛,它允许离子、小分子、直径小于
10nm的物质原则上自由通过。
(三)功能
2、核孔复合体的主动运输 • 生物大分子的转运如蛋白质、RNA分子的核质交换主
要是通过NPC的主动运输完成的。 • NPC最重要的功能是主动运输,并且这种主动运输具
(三)功能
• 除信号识别外,通过NPC 的主动运输还是一个载体 介导的过程,其载体是一 些胞质中的蛋白因子:如 输入蛋白α、输入蛋白β等。 在这些载体的帮助下,亲 核蛋白才能穿过NPC。
• 亲核蛋白入核转运的步骤: 5个。书P183图。
(三)功能
②RNA及核糖体亚基的核输出机制 • RNA转录后一般需要经过加工、修饰成为成熟的RNA
• 细胞核由核被膜、染色质、 核仁和核基质组成。
§1 核被膜
• 核被膜是细胞核与细胞质之间的 界膜。
s 一方面构成核、质之间天然选择 性屏障,将细胞分为细胞核和细 胞质两大结构与功能区;
s 另一方面又通过核孔复合体控制 着细胞核与细胞质之间的物质交 换和信息交流。
• 核被膜由双层核膜、核孔复合体 及核纤层3种结构组分构成。
11-细胞核与染色质

第11章细胞核是真核细胞内最大、最重要的细胞器,是细胞遗传与代谢的调控中心。
细胞核主要由核被膜(包括核孔复合体)、核纤层、染色质、核仁及核体组成。
核被膜与核孔复合体是真核细胞所特有的结构。
核被膜作为细胞核与细胞质之间的界膜,将细胞分成核与质两大结构与功能区域。
与核被膜相联系的核孔复合体是一种复杂的跨膜运输蛋白复合体。
核质之间的大分子主要通过核孔复合体实现频繁的物质交换与信息交流。
染色质是间期细胞核内由DNA、组蛋白、非组蛋白及少量RNA组成的线性复合结构。
一个双倍体体细胞内所有DNA的总和的一半构成该生物基因组。
到目前为止,包括人类在内的许多生物(特别是诸多模式生物)的基因组序列已得到解析。
真核细胞染色质DNA序列的组成复杂,包括单一序列、中度重复序列和高度重复序列。
构成染色质的蛋白参与DNA遗传信息的组织、复制和阅读。
其中组蛋白是染色质的基本组成蛋白,与DNA的结合没有序列特异性;非组蛋白多数是序列特异性DNA结合蛋白,是重要的基因表达调控蛋白。
它们具有不同的结构模式,形成不同的DNA 结合蛋白家族。
核小体是构成染色质的基本结构单位,每个核小体由组蛋白八聚体核心及200 bp左右的DNA 和一分子组蛋白H1组成。
染色质组装是一个动态过程,它与DNA复制、修复和重组直接相关。
间期染色质可分为常染色质与异染色质两类。
按其功能状态染色质又被分为活性染色质和非活性染色质。
在真核细胞,染色质的结构与基因表达有密切关系。
引起染色质结构变化的事件和因子包括DNA局部结构与核小体相位的改变、组蛋白的修饰(甲基化、乙酰化和磷酸化等)、DNA甲基化、HMG结构域蛋白、特殊RNA分子以及染色质重构因子等。
可遗传的、与核酸序列没有直接关系的控制基因活性的调控方式称之为表观遗传调控。
染色体是细胞有丝分裂时遗传物质存在的特殊形式,是间期染色质紧密组装的结果。
中期染色体具有比较稳定的形态。
要确保其正常复制和稳定遗传,染色体起码具备3种功能元件: 一个DNA复制起始点、一个着丝粒和两个端粒。
细胞核小体组装与染色质结构调控

细胞核小体组装与染色质结构调控在我们的身体中,细胞是基本的单位,而细胞核则是细胞中最重要的结构之一。
细胞核中的染色体是DNA最重要的组织形式,负责细胞的遗传特征和遗传信息的传递。
为了实现这个任务,染色体需要在一定的空间范围内以非常复杂的方式排列,这就涉及到了细胞核小体组装与染色质结构调控这个问题。
一、细胞核小体的组装细胞核小体是由组成核酸的核心粒(核小体核心粒)和贡献空间结构的蛋白质组成。
核小体核心粒是DNA和蛋白质的基本单位。
核小体蛋白质主要组成为酸性蛋白质(H2A,H2B,H3和H4)和包裹DNA的非酸性蛋白H1。
核小体中的蛋白质与DNA结合形成连续的螺旋形结构。
由于在染色体表面形成了非常密集的结构,核小体起到了维护染色体结构和DNA修复的作用。
核小体组装的机制至今未被完全解决,但从最近的研究中可以看出,细胞核小体会沿着DNA序列均匀分布,碱基组合成不同的序列,与酸性蛋白质结合,最终形成核小体。
二、染色质结构调控通过标记特定的基因和染色质区域,人们已经证明了细胞核中的染色质并不是随机排列的。
研究表明,活性基因通常是在染色体表面,而沉默的基因则在核小体组件内部。
这个结构与转录因子和染色质的结构紧密相关。
如何通过调节这些因素来达到调节染色质结构的目的呢?(一)通过组蛋白化来实现染色质结构的调节组蛋白是一类轻质子蛋白,它们与DNA相互作用导致染色体的那些特定区域呈现出不同的状态。
组蛋白化作用影响了DNA的染色质结构。
当组蛋白处理后染色质会由密集的状态解开,这有助于转录复合物接近并读取DNA。
逆转录复合物操作类似,有时候需要高度密集的染色质来防止DNA损伤。
染色质中具体的组蛋白化状态可以影响染色体结构,另外一些新研究还表明,组蛋白化也涉及到染色体形成过程中的其他细节。
(二)通过转录因子活性来实现染色质结构调节转录因子是能够推动特定基因转录的蛋白质,它们能够结合到 DNA 的编码区域(即启动子),引导RNA聚合酶在该基因上转录RNA。
细胞核与染色质(共69张PPT)

细胞核与细胞质之间的界膜
3. 核孔复合体解散, 30 nm的螺线管折叠成环,沿染色体纵轴,由中央向四周伸出,构成复制环,每18个复制环呈放射状平面排列,结合在核基质上形成微带,
约106个微带沿纵轴构成染色单体。 核质环:位于核孔边缘的核质面一侧,又称内环;
H1组蛋白:在构成核小体时H1起连接作用, 形成染色体 高级结构,
(二)非组蛋白(nonhistone):
序列特异性(相对的)DNA结合蛋白,占染色体蛋白的6070% 。
特性: 1. 具有多样性和异质性:包括参与核酸代谢和修饰的酶类、核质 蛋白、染色体骨架蛋白、基因表达调控蛋白等; 2. 识别DNA具有特异性,识别与结合靠氢键和离子键,位于DNA双
薄层网状结构的核纤层
第二节、染色质 (chromatin)
1879年,W. Flemming(德) 提出 Chromatin——染色质 ——描述细胞核中被碱性染料着色的物质, 1888年,Waldeyer (德)提出 Chromosome——染色体。
染色质:
指间期细胞核内由DNA、组蛋白、非组蛋白及少量RNA组 成的线性复合结构, 是间期细胞遗传物质存在的形式。
传统观点认为染色质是组蛋白包裹在DNA外面形成的纤维状结 构。
1974,Kornberg根据染色质的酶切和电镜观察,发现核小体
是染色质组装的基本结构单位,提出染色质结构的“串珠”模型 。
核小体是染色质的基本构成单位。
(一)核小体的发现
一级结构:铺核小展体染(nu色cleo质som的e) 电镜观察,经盐溶液处理后解聚的染色质呈现10 nm串 珠状结构; 用非特异性微球菌核酸酶消化染色质,部分酶解片段分析结果: 200 bp片段为单位;
细胞核和染色质的结构和功能

细胞核和染色质的结构和功能细胞核和染色质是生物学的重要组成部分,二者都具有重要的结构和功能。
在细胞的各项生命活动中,细胞核、染色质发挥着至关重要的作用。
本文将从两部分分别阐述细胞核和染色质的结构和功能,希望能够让读者对这两个生物学概念更深入地了解。
一、细胞核的结构与功能细胞核是细胞内最大的膜包裹结构,通常位于细胞中央。
正常情况下,细胞每个核都包含一个细胞核,它主要起着控制遗传信息的作用。
细胞核由核膜、核仁、染色体和核质等部分组成。
1、核膜核膜是包围细胞核的双层膜结构,每一层膜之间相隔10到50纳米,中间有一层叫做核孔复合体( NPC) 的结构,能够向外传递物质。
核膜的主要成分是各种蛋白质和不同形式的脂类。
2、核仁核仁是细胞核的一个圆形或椭圆形团块,由核仁固有的核糖体RNA (rRNA) 和蛋白质组成。
核仁的功能是参与到核糖体的合成过程中。
3、染色体染色体是可以看到的,线性排列并缠绕于某些蛋白质中的DNA分子集合体。
在细胞分裂和修复DNA时,染色体的分布和排布是相当重要的。
人类的每个细胞核都包含46根染色体,但在不同物种和不同细胞类型中,染色体数量可能是不同的。
4、核质细胞核质是指细胞核内剩余的任何物质。
通常由水和杂质组成,起支撑和代谢功能,能够为核糖体提供所需要的原料和信息。
二、染色质的结构与功能染色质是指DNA与其相关的蛋白质在细胞核中形成的可见固体物质,是细胞遗传物质(DNA)的载体,是生命活动的基础。
在核自动融合过程中,染色体起到一定的支持作用,找到需要和某种特定物质结合的DNA序列,协同使基因表达循序渐近。
1、染色质的结构染色质结构复杂,主要由DNA、组蛋白、非组蛋白和其他附属蛋白组成。
组蛋白、非组蛋白和DNA都是DNA-蛋白质复合物的一部分,是染色体上的核小球体。
图1是染色体复合物的结构示意图。
2、染色质的功能染色质在细胞生命过程中发挥着非常重要的角色。
在遗传学的研究中,染色质帮助开发了许多方法,如序列定位、新基因的发现和DNA改造技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、核 膜nuclear membrane), 2. 外层核膜(outer nuclear membrane), 3. 核周间隙(perinuclear space), 4. 外层核膜与内质网相通,常带有核
控机制,其中,至少有多个核孔复合体蛋白、内层核膜上的 LaminB 受体以及核纤层蛋白等都被磷酸化。
—组装
1. 有丝分裂中期到后期,激酶失活,磷酸化的核膜、核孔、 核纤层成分去磷酸化,激活核膜重建,
2. 核膜成分与染色体结合,膜泡融合,其中,Lamin、 Lamin B 受体等都可以与DNA直接或间接结合,
高分辨率扫描电镜观察NPC
• 1949-1950年,Callan和Tomlin发现, • 一个典型的哺乳动物细胞核上约3000-4000个, • 细胞核活动旺盛的细胞中核孔数目较多,反之较少, • 在电镜下观察,核孔是呈圆形或八角形,现在一般认为
其结构如fish-trap, • 核质交换的双向、选择性、亲水通道。
核输出:RNA,组装好的核糖体亚单位等
亲核蛋白(karyophilic protein):
细胞质内合成,进入细胞核内发挥功能的一类蛋白质 可停留于核内,也可穿梭于核、质之间 含有核定位信号( nuclear localization signal,NLS)
核输入
核定位序列验证试验
第一个被鉴定的NLS:猴肾病毒的T抗原
核纤层由核纤肽(lamin)构成,核纤肽是一类中间纤维, 分为A、B、C三型。带NLS(核定位信号);
Lamin A/C的表达:具有组织与发育时期的特异性; Lamin B:所有哺乳动物细胞均有表达。
功能:
1、结构支撑,保持核的形态与大小 2、调节基因表达, 3、调节DNA修复——Lamin A 4、与细胞周期相关——解聚和重组装
——崩解
1. 有丝分裂早前期,核膜崩解,是一个受调控的过程,Cdk1, PKC,
2. 染色体凝集, 3. 核孔复合体解散, 4. 核纤层解聚, 5. 双层核膜膜泡化,以膜泡或膜片的形式分散到细胞质中, 6. 内层核膜蛋白也随膜成分分散于细胞质中。 7. 在核膜崩解中,核膜成分中的蛋白质被磷酸化是最主要的调
第十一章 细胞核与染色质
第一节 核被膜 第二节 染色质 第三节 染色质的复制与表达 第四节 染色体 第五节 核仁与核体 第六节 核基质
细胞核截面图
细胞核的分布、形态、大小、数目
分布: 绝大多数真核生物细胞中; 例外:哺乳动物的成熟的红细胞,高等植物成熟的筛管 细胞等极少数的细胞。
形态: 球形或者卵形或圆形
(一)结构模型
核孔复合体结构模型
结构组分: 1. 胞质环:位于核孔边缘的胞质面一侧,又称外环; 2. 核质环:位于核孔边缘的核质面一侧,又称内环; 3. 辐:由核孔边缘伸向中心,呈辐射状八重对称的纤维; 4. 栓:又称中央栓。位于核孔中心,呈颗粒状或棒状(有争议)。
胞质面结构
核质面结构:篮状复合体
薄层网状结构的核纤层
第二节、染色质 (chromatin)
1879年,W. Flemming(德) 提出 Chromatin——染色 质——描述细胞核中被碱性染料着色的物质,
(二)组成成分
gp210
介导核孔复合体与核被膜的链接, 提供NPC组装起始位点
介导内、外核膜融合形成核孔
核孔蛋白
介导核、质交换功能
疏水性N端区:直接参与核质交换 p62
C端区:疏水性7肽重复序列, 稳定p62分子
30多种不同的多肽,1000多个蛋白质分子。
(三)功 能
NPC的功能特点 双向性:
入核——蛋白质, 出核——RNA、 核酸核蛋白复合体(RNP) 。
Wild-type: T-antigen in nucleus
Mutant-type: T-antigen in cytosol
亲核蛋白通过NPC的主动运输
核输出
• CRM1 识别 NES(核输出信号) 从而介导出核, • CRM1 与 Cargo 的结合也是受到Ran-GTP 活性的调控, • CRM1 像 Importin 一样,可以与 NPC 直接结合,
大小: 约占细胞总体积的10%
数目: 一般一个:大多数生物体细胞中都是一个 有的多个:植物个体发育过程中的多数胚乳核,草履虫 等原生动物;人的骨胳肌细胞中的细胞核可达数百个。
第一节、核被膜
细胞核与细胞质之间的界膜
功能: 核、质之间的天然选择屏障:核酸复制、转录和加工 在核内,蛋白质翻译在细胞质中 调控核内外的物质交换和信息交流——核孔复合体
糖体, 5. 内核膜光滑,无核糖体,内贴核纤
层,借助核纤层蛋白B受体(Lamin B receptor, LBR)等与核纤层连接, 6. 内外膜平行,融合处形成核孔 (nuclear pore), 核孔处镶嵌着核孔复 合体(nuclear pore complex, NPC)
(二)核膜的崩解和组装
• 由RNA聚合酶Ⅰ转录的rRNA, 在核仁中合成,形成核糖 体亚基后以RNP形式被运出核外,
• 由RNA聚合酶Ⅲ转录的5sRNA和tRNA, 由蛋白介导出核, • 由RNA聚合酶Ⅱ转录的核内异质RNA(hnRNA), 加帽、
加尾、剪切加工后形成成熟的mRNA出核。
三、核纤层 (nuclear lamina)
3. 核孔形成,核孔复合体装配, 4. 核纤层形成,细胞核体积增大, 5. Ran-GTP、Ran-GTP 修饰因子等在核膜重建中起到重要
作用。
二、核孔复合体 (Nuclear Pore Complex,NPC)
NPC 经典研究手段: ✓树脂包埋超薄切片, ✓负染色技术, ✓冷冻蚀刻。
冷冻蚀刻电镜技术观察NPC
双功能:
被动扩散——离子、小分子等(直径<10 nm) 主动运输——亲核蛋白输入、RNA及RNP输出等。
核孔复合体的主动运输
高度选择性:
运输颗粒直接10-20nm,且大小可调节 需要消耗ATP的信号识别与载体介导的过程 具有饱和动力学特征
双向性:
核输入:DNA复制转录、染色体构建和核糖体亚单位组装等所需 的各种因子