ANSYS中简支梁的模拟计算
基于ANSYS的钢筋混凝土简支梁桥极限承载力分析研究

基于ANSYS的钢筋混凝土简支梁桥极限承载力分析研究一、本文概述随着现代工程技术的飞速发展,钢筋混凝土简支梁桥作为桥梁工程中的重要结构形式,其极限承载力分析对于确保桥梁的安全性和稳定性具有至关重要的意义。
本文旨在通过基于ANSYS的数值模拟方法,深入研究钢筋混凝土简支梁桥的极限承载力,以期为实际工程应用提供理论依据和技术支持。
本文首先介绍了钢筋混凝土简支梁桥的基本结构特点和应用现状,阐述了进行极限承载力分析的必要性。
接着,详细介绍了ANSYS 有限元分析软件在桥梁工程中的应用及其优势,为后续的研究工作奠定了理论基础。
在研究方法上,本文采用ANSYS软件建立钢筋混凝土简支梁桥的数值模型,通过施加不同的荷载工况,模拟桥梁在实际运营过程中的受力状态。
在此基础上,对桥梁的极限承载力进行分析,探究其破坏模式、应力分布及变形特征。
本文还将考虑不同因素(如材料性能、截面尺寸、配筋方式等)对桥梁极限承载力的影响,以期获得更为全面和准确的分析结果。
本文将对所得的研究结果进行总结,提出钢筋混凝土简支梁桥极限承载力分析的关键问题和改进措施,为实际工程设计和施工提供有益的参考和借鉴。
通过本文的研究,不仅能够加深对钢筋混凝土简支梁桥极限承载力的认识和理解,还能够推动桥梁工程领域的科技进步和创新发展。
二、钢筋混凝土简支梁桥的基本原理钢筋混凝土简支梁桥,作为桥梁工程中的一种基本结构形式,其基本原理主要基于材料力学和结构力学的理论。
简支梁桥是一种静定结构,其特点是梁的两端搁置在支座上,梁端无水平推力,当梁上作用有荷载时,梁内产生的弯矩和剪力仅与荷载的大小和分布有关,而与两端支承处的约束情况无关。
在钢筋混凝土简支梁桥中,混凝土主要承担压应力,而钢筋则主要承受拉应力。
这种组合使得钢筋混凝土结构既具有混凝土的高抗压强度,又具有钢筋的高抗拉强度,从而实现了优势互补,提高了结构的整体承载能力。
钢筋混凝土简支梁桥的设计还需考虑桥梁的使用功能、荷载等级、材料性能、施工工艺等因素。
ansys瞬态缩减法分析简支梁实例

瞬态缩减法分析简支梁-质量系统实例在这个实例中要用缩减法进行瞬态动力学分析以确定对有有限上升时间的恒定力的动力学响应。
问题的实际结构是一根钢梁支撑着集中质量并承受一个动态载荷。
钢梁长为,支撑着一个集中质量。
这根梁承受着一个上升时间为,最大值为的动载荷。
梁的重量可以忽略,确定产生最大位移响应时的时间及响应。
同时要确定梁中的最大弯曲应力。
求解过程中用不到梁的特性,其截面积可随意输入一个单位值。
取加载结束时间为0.1秒以使质量体达到最大弯曲。
在质量体的侧向设定一个主自由度。
第一个载荷步用于静力学求解。
可以在此模型中可以使用对称性。
选定在最大响应时间(0.092秒)处做扩展处理计算。
已知下列数据:材料特性:=30×103=0.0259067几何数据:载荷:图9钢梁支撑集中质量的几何模型§1GUI方式分析过程第 1步:指定分析标题1.选取菜单途径Utility Menu>File>Change Title。
2.输入文字“瞬态response to a constant force with a finite rise time.”单击OK。
第 2步:指定单元类型1.选取菜单途径Main Menu>Preprocessor>ElementType>Add/Edit/Delete。
Element Type对话框将出现。
2.单击Add。
Library of Element Types对话框出现。
3.在左边的滚动框中,单击“Structural Beam”。
4.在右边的滚动框中,单击“2D elastic 3”,然后单击Apply。
5.在左边的滚动框中,单击“Structural Mass”。
6.在右边的滚动框中,单击“3D mass21”,然后单击OK。
7.在Element Types对话框中,在“Type2”上单击仅一次,然后单击Options。
8.在Rotary inertia options下拉列表中,滚动到“2-D w/o rot iner”并选中它。
ANSYS应用实例:钢筋混凝土简支梁数值模拟

(ii )纵向钢筋:PIPE20 (iii )横向箍筋:PIPE202.2 材料性质(i )、混凝土材料表5-4 混凝土材料的输入参数一览表[16~19]·单轴受压应力-应变曲线(εσ-曲线)在ANSYS ○R程序分析中,需要给出混凝土单轴受压下的应力应变曲线。
在本算例中,混凝土单轴受压下的应力应变采用Sargin 和Saenz 模型[17,18]:221⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-+=c c s c c E E E εεεεεσ (5-30)式中取4'4')108.0028.1(c c c f f -=ε;断面图配筋图断面图配筋图断面图配筋图RCBEAM-01 RCBEAM-02 RCBEAM-03图5-12 各梁FEM模型断面图(a)单元网格图(b)钢筋单元划分图图5-13 算例(一)的FEM模型图2.4 模型求解在ANSYS○R程序中,对于非线性分析,求解步的设置很关键,对计算是否收敛关系很大,对于混凝土非线性有限元分析,在计算时间容许的情况下,较多的求解子步(Substeps)或较小的荷载步和一个非常大的最大子步数更容易导致收敛[2]。
在本算例中,设置了100个子步。
最终本算例收敛成功,在CPU为P41.6G、内存为256MB的微机上计算,耗时约为8小时。
2.5 计算结果及分析2.5.1 荷载—位移曲线图5-14为ANSYS○R程序所得到的各梁的荷载-跨中挠度曲线,从图中可以看出:(i)、梁RCBEAM-01:曲线形状能基本反映钢筋混凝土适筋梁剪切破坏的受力特点,而且荷载-跨中挠度曲线与钢筋混凝土梁的弯剪破坏形态非常类似,即当跨中弯矩最大截面的纵筋屈服后,由于裂缝的开展,压区混凝土的面积逐渐减小,在荷载几乎不增加的情况下,压区混凝土所受的正应力和剪应力还在不断增加,当应力达到混凝土强度极限时,剪切破坏发生,荷载突然降低。
(ii)、梁RCBEAM-02:荷载-跨中挠度曲线与超筋梁的试验荷载-跨中挠度曲线很相似,在荷载达到极限情况下,没有出现屈服平台,而是突然跌落。
钢筋混凝土简支梁模拟计算 ansys命令流

lsel,r,loc,y,0
dl,all,,uy
dl,all,,uz
lsel,all
lsel,s,loc,z,3பைடு நூலகம்00
lsel,r,loc,y,0
dl,all,,uy
lsel,all
ksel,s,loc,x,0
ksel,r,loc,y,0
!方法:分离式;solid65和link8
!材料:混凝土采用concr和钢筋为弹性材料,但不考虑压碎
!---------------------------------------------------
!为方便,假定钢筋置于梁底两侧.
!===================================================
lesize,all,,,20
lmesh,all
lsel,s,loc,z,0
lesize,all,,,4
vsel,all
vatt,1,1,1
mshape,0,3d
mshkey,1
vmesh,all
allsel,all
finish
/solu
!施加约束
/config,nres,2000
/prep7
!定义单元及其材料特性等
rd0=20.0 !钢筋直径
et,1,solid65
et,2,link8
mp,ex,1,33e3
mp,prxy,1,0.20
r,1
hntra=28
hntrl=2.6
tb,concr,1
/post1
pldisp,1
(整理)ansys简支梁分析.

(整理)ansys简支梁分析.图b所示的矩形截面的简支梁,受到竖直向下的2q 均布载荷作用。
100mKN图b 梁受力情况及截面尺寸表1 梁的几何参数及材料参数(三)研究方法及模型的建立(包括单元的选取,边界条件的简化等)。
1.梁单元⑴建模:由于对称性,取梁的右半部分为研究对象。
①选择梁单元,设置材料常数定义梁的横截面面积、惯性矩及截面高度。
②建立2个关键点:1(0,0,0);2(8,0,0)。
③生成直线:ANSYS Main Menu>Preprocessor>Modeling>Lines>Lines>Stright Line,依次连接关键点,点击ok即可。
④划分单元:ANSYS Main Menu>Preprocessor>Meshing>SizeCntrls>ManualSize>Lines>Picked Lines,选择直线,将梁划分为80份;ANSYS Main Menu>Preprocessor>Meshing>MeshTool>Shape>Mech>pickall,完成划分。
⑤施加约束:ANSYS Main Menu>Solution>Difine Loads>Apply>Structural>Displacement>On Nodes,选取对称轴上的节点,施加x方向的约束;选取右下角的节点施加y方向约束。
⑥施加载荷:ANSYS Main Menu>Solution>Difine Loads>Apply>Pressure>On Beams>Pick All,V ALI Pressure Value at I输入100000,V ALJ Pressure Value at J输入100000,即施加了均布载荷。
建好的模型如图1.1所示。
ANSYS简支梁有限元分析与设计计算

有限元大作业计算
依据已知条件,将梁转化为平面实体模型,可得梁的面荷载等效为4000N/m,弹性模量为28E9N/㎡,泊松比为0.16,梁长8m,高1m,定义实体模型厚度为0.4m。
利用solid材料选项命令建立实体模型,添加各项材料属性,建立实体模型后,以0.1m作为单元长度进行剖分,在模型中轴线左端加上位移X和Y方向的约束,右端加上位移Y方向的约束,加上4000N/m的线荷载后进行模型求解,通过后处理器中PLOT命令导出计算应力云图(如图1所示)和位移图(如图2所示),通过query命令中的Subgrid Solu命令对下边中点处的应力值进行提取(如图3所示)。
图1 实体单元建模应力云图
图2 实体单元建模位移图
图3 实体单元建模中值点应力值
采用beam命令对进行梁单元材料定义,并输入对应参数,之后进行对应建模计算,导出计算结果,应力云图(如图4所示)、位移图(如图5所示)和中
值点应力值(如图6所示)。
图4 梁单元建模应力云图
图5 梁单元建模位移图
图6 梁单元建模中值点应力值
可知,在实体单元建模中,中点处位移为:m 410954.0-⨯,中点处应力值为:192655N/㎡;在梁单元建模中,中点处位移为:m 310227.0-⨯,中点处应力值为:457840N/㎡。
(手算结果见附页)
姓名:吴 小 超
学号:2140720060
班级:研1420班
任课教师:简 政。
简支梁的ansys分析

简支梁的ANSYS分析题目:如下图所示一个简支梁及其所受载荷情况,求解材料的最大正应力和切应力,其中b=80mm,h=200mm。
已知结构的最大许用正应力为15MPa,最大许用剪切应力为1MPa。
图1 简支梁尺寸结构及受力情况理论计算:由材料力学可知,按照正应力强度条件计算其中:M max=q*l2/8=10*2*2/8=5KN*mW z=b*h2/6=0.08*0.2*0.2/6=5.33e-4m^3所以最大正应力结果为σ=M max/W z=5e3/5.33e-4=9.38MPa<15Mpa此时结构正应力的安全系数n=15/9.38=1.6结合材料力学公式,校核其剪应力强度如下所示:F qmax=q*l/2=10*2/2=10KNτmax=F qmax*S zmax/(I z*b)=3*F qmax/(2*A)=0.22MPa<1MPa 此时结构正应力的安全系数n=1/0.22=4.55通过理论计算可知,结构满足强度要求,正应力和切应力都小于许用应力。
有限元分析:采用ANSYS软件对上述结构进行分析,得出结构的受力情况。
有限元分析流程如下所示:建立几何模型,该结构为梁结构,在ANSYS中采用梁单元来模拟,那么几何模型为线体,即长度为2m的线,然后赋予梁的截面形状。
单元类型选择beam188单元类型。
该单元类型具有两个节点,每个节点具有六个自由度,分别为空间坐标系下的三个平动自由度和三个转动自由度。
图2 beam188单元类型操作流程如下:GUI:Utility Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出【Element Types】对话框,单机Add按钮,弹出【Library of Element Types】对话框,设置下面选项:左边列表框中选择Beam;右边列表框中选择 2 node 188;图3 单元类型定义定义梁单元的截面属性,操作流程如下:GUI:Utility Menu→Preprocessor→Sections →Beam→Common Sections,弹出如下对话框,并进行如下所示设置,点击Ok。
ANSYS对简支梁的数值模拟

ANSYS对简支梁的数值模拟
段敬民;冯波涛;李伟
【期刊名称】《低温建筑技术》
【年(卷),期】2009(031)012
【摘要】采用Solid65单元和Link8单元对钢筋混凝土简支梁进行了数值模拟计算,模拟结果表明用Solid65单元和Link8单元模拟钢筋混凝土简支梁破坏是可行的,基本上能反映梁破坏时的力学特征,说明了利用ANSYS有限元程序作为辅助的研究手段来模拟试验过程的可行性的,也是可靠的.
【总页数】3页(P53-55)
【作者】段敬民;冯波涛;李伟
【作者单位】河南理工大学土木工程学院,河南,焦作,454000;河南理工大学土木工程学院,河南,焦作,454000;河南理工大学土木工程学院,河南,焦作,454000
【正文语种】中文
【中图分类】TU311.41
【相关文献】
1.基于ANSYS的简支梁桥柔性墩纵向力分配研究 [J], 丁剑霆;庞静;刘春川
2.基于ANSYS的简支T梁桥桥面连续结构的空间仿真分析 [J], 凌青松
3.基于ANSYS有限元法的简支梁力学计算与优化设计 [J], 吕凯;张文辉
4.基于ANSYS的单跨简支梁钢桥的谐响应分析 [J], 王冬丽;袁朝庆
5.基于ANSYS钢筋混凝土简支梁极限荷载研究 [J], 周广强;王康入
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(ii )纵向钢筋:PIPE20 (iii )横向箍筋:PIPE20
2.2 材料性质
(i )、混凝土材料
表5-4 混凝土材料的输入参数一览表
[16~19]
·单轴受压应力-应变曲线(εσ-曲线)
在ANSYS ○R
程序分析中,需要给出混凝土单轴受压下的应力应变曲线。
在本算例中,混凝土单轴
受压下的应力应变采用Sargin 和Saenz 模型[17,18]
:
2
21⎪⎪⎭
⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-+=
c c s c c E E E εεεεε
σ (5-30)
式中取4'
4')108.0028.1(c c c f f -=ε;
断面图配筋图断面图配筋图断面图配筋图RCBEAM-01RCBEAM-02RCBEAM-03
图5-12 各梁FEM模型断面图
(a)单元网格图(b)钢筋单元划分图
图5-13 算例(一)的FEM模型图
2.4 模型求解
在ANSYS○R程序中,对于非线性分析,求解步的设置很关键,对计算是否收敛关系很大,对于混凝土非线性有限元分析,在计算时间容许的情况下,较多的求解子步(Substeps)或较小的荷载步和一个非常大的最大子步数更容易导致收敛[2]。
在本算例中,设置了100个子步。
最终本算例收敛成功,在CPU为P41.6G、内存为256MB的微机上计算,耗时约为8小时。
2.5 计算结果及分析
2.5.1 荷载—位移曲线
图5-14为ANSYS○R程序所得到的各梁的荷载-跨中挠度曲线,从图中可以看出:
(i)、梁RCBEAM-01:曲线形状能基本反映钢筋混凝土适筋梁剪切破坏的受力特点,而且荷载-跨中挠度曲线与钢筋混凝土梁的弯剪破坏形态非常类似,即当跨中弯矩最大截面的纵筋屈服后,由于裂缝的开展,压区混凝土的面积逐渐减小,在荷载几乎不增加的情况下,压区混凝土所受的正应力和剪应力还在不断增加,当应力达到混凝土强度极限时,剪切破坏发生,荷载突然降低。
(ii)、梁RCBEAM-02:荷载-跨中挠度曲线与超筋梁的试验荷载-跨中挠度曲线很相似,在荷载达到极限情况下,没有出现屈服平台,而是突然跌落。
极限弯矩值相对梁RCBEAM-01增加约30%,与受拉区配筋率的增加量(100%)相比要低,表明受拉区所增加的钢筋没有完全发挥作用,与超筋梁类似。
(iii)、梁RCBEAM-03:荷载-跨中挠度曲线形状介于适筋梁与超筋梁的试验曲线之间,随着挠度的增加,荷载几乎成线性地增长,在荷载达到极限情况下,曲线出现一个较短的屈服平台,随后出现突然跌落情况。
由于受拉区配筋量的加倍,极限弯矩值增加较大,相当于梁RCBEAM-01的两倍,表明受拉区所增加钢筋发挥了完全作用。
表5-6 计算结果与理论值比较
表5-6为理论计算结果与ANSYS○R程序计算结果的对比,从表5-6中可以看出,
(1)、ANSYS○R程序计算的跨中最大弯矩值与理论计算值比较接近,RCBEAM-01和RCBEAM-02最大剪力比梁的斜截面抗剪能力低,即纵筋屈服决定梁的承载能力,压区混凝土的剪断决定梁的最大变形能力,梁的强度仍然由跨中垂直截面弯曲强度决定;而RCBEAM-03的最大剪力比梁的斜截面抗剪能力要大,所以,梁的极限承载能力由梁的斜截面抗剪能力决定,但从表中也可以看出,极限状态下的最大弯矩计算值与理论计算值比较接近,表明梁ANSYS○R程序计算的抗剪能力值为203.433 kN,比理论计算的148.9kN值高,这可能是因为纵筋的梢栓作用比较突出。
从表5-6还可以看出,在纵筋屈服时刻,ANSYS○R程序计算的梁跨中最大挠度值比理论计算值略小,原因可能是由于没有考虑钢筋-混凝土之间的粘结滑移,而使整个梁的整体刚度有所增加。
2.5.2 混凝土应力-应变本构关系比较
图5-15为混凝土应力-应变曲线计算结果和输入曲线对比图,从图中看出,混凝土计算输出本构关系与输入曲线吻合较好。
2.5.3 钢筋应力发展曲线
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。