m连续梁张拉控制应力调整计算
MIDAS连续梁计算书

目录第1章设计原始资料 (1)1.1设计概况 (1)1.2技术标准 (1)1.3主要规范 (1)第2章桥跨总体布置及结构尺寸拟定 (2)2.1尺寸拟定 (2)2.1.1 桥孔分跨 (2)2.1.2 截面形式 (2)2.1.3 梁高 (3)2.1.4 细部尺寸 (4)2.15 主要材料及材料性能 (6)2.2模型建立与分析 (7)2.2.1 计算模型 (8)第3章荷载内力计算 (9)3.1荷载工况及荷载组合 (9)3.2作用效应计算 (10)3.2.1 永久作用计算 (10)3.3作用效应组合 (16)第4章预应力钢束的估算与布置 (20)4.1力筋估算 (20)4.1.1 计算原理 (20)4.1.2 预应力钢束的估算 (24)4.2预应力钢束的布置(具体布置图见图纸) (27)第5章预应力损失及有效应力的计算 (29)5.1预应力损失的计算 (29)5.1.1摩阻损失 (29)5.1.2. 锚具变形损失 (30)5.1.3. 混凝土的弹性压缩 (30)5.1.4.钢束松弛损失 (31)5.1.5.收缩徐变损失 (31)5.2有效预应力的计算 (32)第6章次内力的计算 (33)6.1徐变次内力的计算 (33)6.2预加力引起的次内力 (33)第7章内力组合 (35)7.1承载能力极限状态下的效应组合 (35)7.2正常使用极限状态下的效应组合 (37)第8章主梁截面验算 (41)8.1正截面抗弯承载力验算 (41)8.2持久状况正常使用极限状态应力验算 (44)8.2.1 正截面抗裂验算(法向拉应力) (44)8.2.2 斜截面抗裂验算(主拉应力) (46)8.2.3混凝土最大压应力验算 (49)8.2.4 预应力钢筋中的拉应力验算 (50)8.3挠度的验算 (51)小结 (53)第1章设计原始资料1.1 设计概况设计某预应力混凝土连续梁桥模型,标准跨径为35m+50m+35m。
施工方式采用满堂支架现浇,采用变截面连续箱梁。
30+45+30m预应力连续梁计算书

30+45+30米连续梁计算书一、预应力钢筋砼上部结构纵向计算书(一)工程概况:本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。
桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。
箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。
箱梁顶板厚22cm。
为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。
其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。
结构支承形式见图1.3。
主梁设纵向预应力。
钢束采用Øj15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。
预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。
纵向钢束采用大吨位锚。
钢束为19Øs15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。
图1.1 中跨跨中截面形式图1.2 横梁边截面形式图1.3 结构支承示意图(二)设计荷载结构重要性系数:1.0设计荷载:桥宽9.5米,车道数为2,城-A汽车荷载。
人群荷载:没有人行道,所以未考虑人群荷载。
设计风载:按平均风压1000pa计,地震荷载:按基本地震烈度7度设防,温度变化:结构按整体温升200C,整体温降200C计,桥面板升温140C,降温70C。
基础沉降:桩基础按下沉5mm计算组合。
其他荷载:(三)主要计算参数材料:C50砼;预应力钢束:高强度低松弛钢绞线,抗拉标准强度fpk=1860MPa,抗拉设计强度fpd=1260MPa,抗压设计强度fpd=390Mpa。
一期恒载 容重325/kN m γ=;二期恒载:防撞墙砼重量为0.34722517.35/kN m ⨯⨯=,花槽填土重量为0.419208.38/kN m ⨯=;桥面铺装:沥青砼323/kN m γ=,计算每延米重量为7.750.092316.04/kN m ⨯⨯=;(四)计算模型结构计算、施工模拟分析以设计图纸所示跨度、跨数、断面尺寸及支承形式为基础,有关计算参数和假定以现行国家有关设计规范规程为依据。
(40+64+40)m连续梁0#块支架计算书

跨渝宜高速(40+64+40)连续梁0#块支架计算书一、工程简介连续梁里程为D1K71+802.4~D1K71+947.6,全长145.2m,悬臂现浇法施工。
连续梁中墩为32#、33#墩,墩高分别为7.5m、12m;边墩为31#、34#墩,墩高分别为14.5m、15m。
梁体中支点梁高为5.29m,跨中梁高为2.89m,边支座中心线至梁端0.6m,边支座横桥向中心距4.6m,中支座横桥向中心距4.4m。
0#块施工时采用碗扣式支架现浇。
支架间距腹板底:0.3m×0.6m ×1.2m(横×纵×竖),底板底0.6m×0.6m×1.2m(横×纵×竖),翼缘板底0.9m×0.6m×1.2m(横×纵×竖)。
支架搭设完后搭设剪刀撑。
剪刀撑采用Φ48×3.5mm普通钢管、与地面呈45°~60°搭设,每隔四跨搭设一道。
完后再钢管顶部安装顶托作为脱模杆件,顶托上横向摆放10×15cm方木,再纵向分布摆放10×10cm方木作为面板加劲肋,中心间距为20cm,面板采用1.5cm厚竹胶板。
二、计算参数:1)、梁体混凝土容重:26.0kN/m3;2)、混凝土超重系数:1.05;3)、方木弹性模量取:9×103MPa;4)、竹胶板弹性模量取:3.1×103MPa;5)、杆件承担混凝土重的弹性挠度取构件跨度的L/400;6)、冲击系数取:1.2;7)、施工荷载取:2.5kN/m 2;8)、应力取值:A 3钢: [σ轴]=140MPa ,[σ弯]=145MPa ,[τ]=85MPa ;方木: [σ弯]=9MPa, [τ]=1.5MPa;竹胶板: [σ弯]=55MPa, [τ]=12.1MPa 。
三、计算支架主要承受的荷载:底模、内模支架及内模自重取1.5KN/m 2,侧模自重取2KN/m,施工荷载取:2.5KN/m 2。
梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。
在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。
梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。
梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。
在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。
下面将分别对这三种类型的应力计算公式进行详细解释。
1. 弯曲应力计算公式。
梁在受到外部力的作用时,会产生弯曲应力。
弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。
其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。
弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。
2. 剪切应力计算公式。
梁在受到外部力的作用时,会产生剪切应力。
剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。
其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。
剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。
3. 轴向应力计算公式。
梁在受到外部力的作用时,会产生轴向应力。
轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。
连续梁张拉压浆培训

( 8)张拉钢绞线时,必须两边同时给千斤顶主油缸徐徐供油张拉, 两端伸长应基本保持一致,严禁一端张拉,如设计有特殊规定可按 设计要求办理。
横向张拉
1、横向预应力索采用单侧交错张拉,具体张拉工艺及要 求同纵向预应力索。 2、横向预应力筋的张拉端及锚固端的锚垫板顶面距离模 板面为15cm。
竖向预应力筋采用精轧螺纹钢螺母体系采用JLM-25锚具, 包括:锚垫板、螺旋筋、锚固螺母。
夹片式锚具
群锚体系是用一组内带齿槽的圆锥形夹片(由2片式或3 片式组成)单独夹持一根钢绞线,与预留有多个圆锥形 锚孔的锚板组成。使用时将整束钢绞线捆扎成束,穿入 孔内,将各根钢绞线穿入永久施加预应力锚板(又称 “工作锚”)的各个锥形小孔内,装上锥形夹片组,然 后装上相应的吨位的千斤顶。千斤顶的尾部装有与工作 锚板的相同原理的锥形锚板及夹片(又称“工具锚”, 以拉紧钢绞线作为张拉的工具。当千斤顶张拉到设计张 拉力时把千斤顶回油,钢绞线就自行被锚住。
张拉工艺及要求
连续梁分节段一次张拉完成,精扎螺纹钢不需要冷拉。 张拉应在梁体混凝土强度达到设计值的 95%及弹性模量 达到设计值的 100% 后,且必须保证梁体混凝土龄期不 小于7天。 预应力张拉严格按照施工图要求顺序进行张拉,预应力 钢束采用两端张拉时,两端应保持对称张拉,最大不平 衡束不应超过1束,张拉顺序先腹板束,后顶板束,从外 到内左右对称进行。
竖向张拉
张拉工艺与要求
张拉前准备工作 (1)检查梁体混凝土强度、弹性模量以及龄期是否达到 设计要求。 (2)在雨季钢绞线易生锈,为了避免滑丝,在穿好钢绞 线后,应在钢绞线的锚固及外露部分穿塑料套进行密封。 (3)锚具支承板上的灰渣应预先清除,以防管道压浆时 跑浆。 (4)如果管道口歪斜,在张拉时必须配偏垫,以免刻断 钢绞线。 (5)检查各项设备是否正常,并测定有关数据。
连续梁临时固结计算书

附件三:连续梁临时固结计算书一、墩梁临时固结的设置本桥墩梁铰接,为避免悬灌梁施工时前后梁段荷载不平衡产生倾斜,且不使永久支座过早受力,在悬灌梁施工过程中,应设置临时支座,并临时将桥墩与梁体固结。
临时固结施工步骤如下:墩身施工时在墩顶上设置强度等级为C40,横截面为0.9×2.7m的砼临时固结支墩(中间设两层5cm厚40号硫磺砂浆层)。
其余部分与梁体钢筋焊接,形成墩梁临时固结,以抵抗墩梁节点处不平衡弯矩作用。
顺桥向中心距2.7m。
图1-1 墩顶临时锚固构造示意图二、荷载计算纵向最大不平衡弯矩由悬臂灌注两端混凝土灌注不平衡重、成型后各节段由于施工误差产生的不平衡重、不对称设置的锯齿块的不平衡重等引起的。
表2-1给出了(48+80+48)m连续梁的节段长度、节段重量等主要计算参数。
图2-1给出了临时锚固受力简图。
图2-1 临时锚固受力简图临时支座处的精轧螺纹钢承担。
在结构最大双悬臂状态,劲性骨架锁定前,临时压重已经加载,为临时支座受力的最不利状态。
由于上部结构自重产生的临时支座竖向反力为(考虑了挂篮自重、压重自重):tR R 9.171525.592709.1215.1208.1.1234.1188.1324.1380.1450.1327.1368.1505.29621=⎥⎦⎤⎢⎣⎡+⨯⎪⎪⎭⎫ ⎝⎛+++++++++++== 在结构最大双悬臂状态,考虑一侧各节段混凝土自重超重5%,并考虑另外一侧挂篮与梁段混凝土掉落(考虑1.2的冲击系数),由此产生的不平衡弯矩为最不利受力状态。
其弯矩为:()mt M .1.101582.10.27309.4508%50.27309.45087.39774.35694.29884.28873.25258.21383.15182.11624.8290.593=⨯++⨯⎥⎦⎤⎢⎣⎡+++++++++++=临时支座中心距2.7m ,由于不平衡弯矩导致临时支座处的竖向力为:t d M R 3.37627.212.10158===' t R R 2.54783.37629.1715max 2max 1=+==t R R 4.20463.37629.1715min 2min 1-=-==三、临时锚固的检算连续梁在悬灌施工过程中由于在不同工况下,施工管理与控制差异、认为操作的不准确等因素,连续梁会产生一定的不平衡力矩,本段(48+80+48)m 悬灌连续梁不平衡力矩约为10158.1t ·m 。
连续梁张拉记录表(纵向)

新建云桂铁路(云南段)
连续梁张拉记录表编号:
千斤顶工作部分伸长值计算:
⊿L工作=σ锚外·L/E
式中:
⊿L工作--- 千斤顶工作部分伸长值(mm);
σ锚外 --- 锚外张拉控制应力(MPa);
L --- 工作锚具至工具锚之间钢绞线长度(mm);
E --- 预应力筋的弹性模量(MPa)。
()张拉时千斤顶工作部分伸长值计算:
现场实际量测每端工作锚具至工具锚之间钢绞线长度为()mm
⊿L工作=σ锚外·L/E =()×()/195000=()mm ,两端合计()×2=9mm。
()张拉时千斤顶工作部分伸长值计算:
现场实际量测每端工作锚具至工具锚之间钢绞线长度为530mm
⊿L工作=σ锚外·L/E =()×()/195000=()mm ,两端合计()×2=7.5mm。
连续梁5#段预应力筋张拉计算书

永定新河特大桥DK90+922.84—DK90+036.26跨京蓟公路连续梁(32+48+32m)5#块预应力筋张拉计算书计算:复核:监理:中铁十七局集团京津城际轨道交通项目部第四分部二○○七年三月一日永定新河特大桥DK90+922.84—DK90+036.26跨京蓟公路连续梁(32+48+32m)5#块预应力筋张拉计算书一、预应力筋张拉程序为:0→0.2σ→0.8σ→σ→锚固(σ为张拉控制应力)。
二、张拉预应力计算1、腹板F6预应力筋张拉计算:腹板控制应力σ=1302Mpa;根据试验得预应力锚口摩阻力损失为控制应力7.4%,弹性模量201 GPa,所以锚外张=1302/(1-7.4%)=1406.048 Mpa拉控制应力:σcon锚外张拉控制力:P=1406.048×140×9=1771.62kN根据设计说明查得管道摩阻系数µ=0.23;管道偏差系数k=0.0025;张拉孔道长l=41.358m(包括千斤顶内钢绞线长);曲线部分弯起角度和θ=0.358rad;计算锚外平均拉力得:Pp=P(1-e-(kl+µθ))/(kl+µθ)=1617.4kN伸长量计算得:Δl= Ppl[(1-e-(kl+µθ))/(kl+µθ)]/AρE s =0.241m=241㎜(Δl包括千斤顶内伸长量)一侧241/2=120.5㎜腹板预应力筋张拉用400t千斤顶4个,顶号分别是顶07008、07009、06301、06302。
2、顶板T5预应力筋张拉计算:顶板控制应力σ=1209Mpa;根据试验得预应力锚口摩阻力损失为控制应力7.4%,弹性模量201 GPa,所以锚外张=1209/(1-7.4%)=1305.62 Mpa拉控制应力:σcon锚外张拉控制力:P=1305.62×140×15=2741.79kN根据设计说明查得管道摩阻系数µ=0.23;管道偏差系数k=0.0025;张拉孔道长l=40.962m(包括千斤顶内钢绞线长);曲线部分弯起角度和θ=0rad;计算锚外平均拉力得:Pp=P(1-e-(kl+µθ))/(kl+µθ)=2607.39kN伸长量计算得:Δl= Ppl[(1-e-(kl+µθ))/(kl+µθ)]/AρE s =0.241m=241㎜(Δl包括千斤顶内伸长量)一侧241/2=120.5㎜顶板预应力筋张拉用400t千斤顶4个,顶号分别是顶07008、07009、06301、06302。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m连续梁张拉控制应力
调整计算
公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-
新建成都至蒲江铁路工程C P Z Q-1标(DK6+190.0)成都西特大桥
(32+48+32)m连续梁纵向预应力筋
张拉控制应力调整计算
中国中铁二局
中铁二局股份有限公司
成都至蒲江铁路站前工程项目经理部
2014.05 成都
新建成都至蒲江铁路工程CPZQ-1标
(DK6+190.0)成都西特大桥
(32+48+32)m连续梁纵向预应力筋
张拉控制应力调整计算
计算:
复核:
审核:
中铁二局股份有限公司
成都至蒲江铁路站前工程项目经理部
2014.05 成都
目录
1编制依据
⑴新建成都至蒲江铁路工程成都西特大桥(32+48+32)m双线预应力混凝土连续箱梁图号:《成蒲施桥-01-T-05》
⑵国家和铁路总公司相关方针政策、规范、验收标准及施工指南等;
⑶中铁二局股份有限公司修建类似工程的经验。
2 适用范围
适用于新建成都至蒲江铁路站前工程成都西特大桥五联
(32+48+32)m连续梁纵向预应力体系。
3工程概况
本连续梁采用两向预应力体系,即为纵向、竖向。
⑴纵向预应力筋采用抗拉强度标准值为fpk=1860Mpa,弹性模量为Ep=195Gpa,公称直径为15.20mm的高强度钢绞线。
顶板、腹板及底板纵向预应力每根管道均采用9根/束;采用外径87mm,内径80mm金属波纹管成孔,M15A-9圆塔形锚具锚固,张拉千斤顶采用YCW250B。
⑵梁体腹板中的竖向预应力筋采用公称直径25mm的预应力砼用螺纹钢筋(PSB830)(精轧螺纹钢筋),内径?35mm铁皮管成孔,YCW60B 型千斤顶张拉,JLM-32型锚具锚固。
4设计预应力损失
4.1预应力损失计算参数
本工程采用外径87mm,内径80mm金属波纹管成孔,钢束与孔道壁之间的摩阻系数U取0.25,管道位置的偏差系数K取0.0025;锚具的锚口摩
按锚外控制应力的6%计算;根据阻损失与锚下喇叭口摩阻损失之和σ
k
设计文件的要求,在施工时应按(1)、(2)项实测结果调整张拉控制应力。
4.2工程实例
新建成都至蒲江铁路工程成都西特大桥(32+48+32)m双线预应力混凝土连续箱梁图号:《成蒲施桥-01-T-05》中所有纵向预应力钢束
均为:1302MPa,根据设计文件要求,N1~N25(备)的锚下控制应力σ
con
施工时需按照实际测定的管道摩阻和锚具应力损失对张拉控制应力σ
进
k
行调整。
4.2.1管道摩阻系数的测定
(1)测试原理
本次测试方法与常规测试方法比较,主要特点是:
图l中约束垫板的圆孔直径与管道直径相等,预应力筋
以直线形式穿过喇叭口和压力传感器,预应力筋与二者没有
接触,故所测数据仅包括管道摩阻力,保证了管道摩阻损失测
试的正确性。
而常规测试所测摩阻力包括了喇叭口的摩阻力,
测试原理上存在缺陷。
2)摩阻损失的计算公式
平面曲线和空间曲线力筋的管道摩阻损失的计算公式统一为:
σ
s =σ
con
[1-e-(Uθ+KX)]
式中:
σ
con
:钢筋(锚下)控制应力(MPa):
σ
s
:由摩擦引起的应力损失(MPa):
θ:从张拉端至计算截面的长度上,钢筋弯起角之和(rad):
X:从张拉端至计算截面的管道长度(m);
U:钢筋与管道壁之间的摩擦系数:
K:考虑每米管道对其设计位置的偏差系数。
(3)测试结果与分析
通过委托“国家金属制品质量监督检验中心”对新建成都至蒲江铁路工程成都西特大桥(32+48+32)m双线预应力混凝土连续箱梁0#梁段纵向钢绞线束进行摩阻损失测试。
预应力管道采用外径87mm,内径80mm金属波纹管成孔,对该梁的Nl左外、N1右外、N9左、N9右四个孔道进行管道摩阻测试,实测结果为:U =0.2643,k=0.00213。
实测结果的摩阻系数U比设计值的U=0.25大,实测结果的管道位置的偏差系数K 比设计值的K=0.0025小。
4.2.2锚口摩阻和喇叭口摩阻的测定
(1)测试原理
锚口摩阻及喇叭口摩阻试验在混凝土试件上进行,截面中心处的预应力管道为直线管道,采用的成孔方式及锚具、锚垫板与梁体相同。
试
×Ap 验采用单端张拉方式,试验张拉控制力为预应力钢绞线的0.8 f
ptk (A,为9根钢绞线的面积)。
(2)测试结果及分析
通过委托“国家金属制品质量监督检验中心”,根据上述的测试原理,经过现场试验3个试验试件,得出测试结果见表l,锚口摩阻和喇叭口摩阻损失的平均值为4.6%。
该实测值比设计值(6%)偏小1.4%。
表l锚具摩阻损失测试结果
5张拉控制应力的调整
5.1调整锚下控制应力和锚外控制应力
为保证梁体的设计张拉应力准确的施加于梁体,须根据实际的管道摩阻和锚具摩阻对设计张拉应力进行调整。
下面对新建成都至蒲江铁路工程(DK6+190.0)成都西特大桥(32+48+32)m双线预应力混凝土连续箱梁进行纵向预应力体系张拉控制应力的调整。
σ
con =σ
K
×(1-σ
12
) (1)
σ
1 =σ
con
×e-(Uθ+KX) (2)
σ
i =σ
i-1
×e-(Uθ+KX) (3)
式中:
σ
con
:预应力筋锚下控制应力(M Pa):
σ
k
:预应力筋锚外控制应力(M Pa):
σ
12
:由锚口及喇叭口造成的摩阻损失(M Pa);
σ
1
:第一段末控制应力(M Pa);
σ
i
:第i段末控制应力(M Pa);
σ
i-1
:第i段首控制应力(M Pa):
θ:力筋张拉端曲线的切线与计算截面曲绒的切线之夹角,称为曲线包角;
X:从张拉端至计算截面的管道长度;
U:力筋与管道壁之间的摩擦系数;
K:考虑管道对其设计位置的偏差系数。
根据式(1)、(2)、(3)和设计参数可得表2。
表2设计参数计算数据
注:设计的管道摩阻系数u=0.25,偏差系数k=0.0025 5.1.2计算施工锚下控制应力
根据实测的管道摩阻和锚具摩阻,运用式(1)、(2)、(3)
反算施工锚下控制应力和锚外控制应力。
各项参数及结果见表3。
表3施工参数计算数据
注:实测的管道摩阻系数u=0.2643,偏差系数k=0.00213
5.2计算的结果与分析
由表2和表3的数据可知,根据实测的管道摩阻和锚具
摩阻参数计算出的张拉控制应力比设计值平均小-2.22 %,偏差
比较大。
其原因是:施工中预应力管道不平顺,另外锚具的摩阻4.6%比设计值6%小。