2018高三数学(理)一模考试题(潍坊市含答案)
2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
2018年 高三数学第三次模拟考试题(理科)含答案

2017—2018学年度高三第三次调研测试理科数学本试卷共23小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用0.5毫米黑色字迹的签字笔书写,字体工整、 笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案 无效。
4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。
一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求。
1. 若集合{|0}B x x =≥,且A B A =,则集合A 可以是A .{1,2}B .{|1}x x ≤C .{1,0,1}-D .R2. 已知复数1z i =+(i 为虚数单位)给出下列命题:①||z =;②1z i =-;③z 的虚部为i . 其中正确命题的个数是A. 0B. 1C. 2D. 33. 若1sin ,3α=且2παπ<<,则sin 2α=A .B .C .D . 4. 已知等差数列{}n a 的公差不为0,11a =,且248,,a a a 成等比数列,设{}n a 的前n 项和为n S ,则n S =A. (1)2n n +B. 2(1)2n +C. 212n + D. (3)4n n +5. 若1()n x x-的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是A . 462-B . 462C . 792D . 792-6. 执行如图所示的程序框图,输出的S 值为 A.12018B. 12019C. 20172018D. 201820197. 10|1|x dx -=⎰A .12B . 1C . 2D . 38. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是 (0,0,0),(1,0,1),(0,1,1)1,(,1,0)2,绘制该四面体三视图时,按照如图所示的方向画正视图,则得到左视图可以为 A.B.C.D.9. 设曲线()cos (*)f x m xm R =∈上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为10.平行四边形ABCD 中,2,1,1,AB AD AB AD ===-点M 在边CD 上,则MA MB 的 最大值为A. 2B. 1C. 5D.111. 等比数列{}n a 的首项为32,公比为12-,前n 项和为n S ,则当*n N ∈时,1n nS S -的最 大值与最小值的比值为A. 125-B. 107- C. 109D.12512.已知函数13,1()22ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩(ln x 是以e 为底的自然对数, 2.71828e =),若存在实数,()m n m n <,满足()()f m f n =,则n m -的取值范围为 A. 2(0,3)e +B. 2(4,1]e -C. 2[52ln2,1]e --D. [52ln2,4)-二、填空题:本大题共4个小题,每小题5分。
山东、湖北部分重点中学2018届高三高考冲刺模拟考试理科数学试题(解析版)

齐鲁名校教科研协作体山东、湖北部分重点中学2018年高考冲刺模拟试卷(一)数学(理科)试题一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集1=|0,A={1,2,4},5x U x N CuA x +⎧⎫∈≤=⎨⎬-⎩⎭则( ) A. {3}B. {0,3,5}C. {3,5}D. {0,3} 【答案】D【解析】 因为全集1=|05x U x N x +⎧⎫∈≤⎨⎬-⎩⎭{}0,1,2,3,4=,{},A=1,2,4,所以{}0,3U A =,故选D.2. 已知i 为虚数单位,现有下面四个命题p 1:复数z 1=a +bi 与z 2=-a +bi ,(a ,b R ∈)在复平面内对应的点关于实轴对称;p 2:若复数z 满足(1-i )z =1+i ,则z 为纯虚数;p 3:若复数z 1,z 2满意z 1z 2R ∈,则z 2=1z ;p 4:若复数z 满足z 2+1=0,则z =±i .其中的真命题为( )A. p 1,p 4B. p 2,p 4C. p 1,p 3D. p 2,p 3 【答案】B【解析】对于11:p z 与2z 关于虚轴对称,所以1p 错误;对于2:p 由()1i 1i 1i i 1iz z +-=+⇒==-,则z 为纯虚数,所以2p 正确;对于3:p 若122,3z z ==,则126z z =,满足12z z R ∈,而它们实部不相等,不是共轭复数,所以3p 不正确;4p 正确,故选B.3. 已知2:2,:,10p a q x R x ax p q >∀∈++≥是假命题,则是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。
2018高三数学试题(理科)第三次诊断性考试(有答案)

6
【答案】 【解析】由三视图知:几何体是长方体中挖去一个半径为 1 的圆柱,且圆柱与长方体的高都 是 1, 长方体的长为 2+1+1=4,宽为 0.5+2+0.5=3, ∴几何体的体积 V=V 长方体﹣V 圆柱=4×3×1﹣π×12×1=12﹣π.
2. 设向量
,则实数 x 的值是
A. 0 B. 【答案】D
C. 2 D. ±2
【解析】向量
因为 ,由向量平行的坐标运算得到
故答案为:D。
3. 己知实数 满足约束条件
的最大值为
A. B. C. 3 D. 4
【答案】C
【解析】根据不等式组画出可行域,可得可行域是一个封闭的三角形区域,记 和
交于点 A(1,1),目标函数化为
个公共点,则实数 k 的取值范围是
5
A.
B.
C.
D.
【答案】C
【解析】根据题意知道函数 是偶函数,且满足
,故函数还是周期为 4 的函
数,根据表达式画出图像是定义在 R 上的周期性的图像,一部分是开口向下的二次函数,
一部分是一次函数,当 k>0 时,根据题意知两图像有两个交点,当直线
和图像
,
,相切时是一种临界,要想至少有 4 个交点,斜率要变小;所得各点的横坐标变为原来的 ,纵坐标不变 B. 向左平移至 个长度单位,再把所得各点的横坐标变为原来的 2 倍,纵坐标不变 C. 向左平移 个长度单位,再把所得各点的横坐标变为原来的 ,纵坐标不变 D. 向左平移 个长度单位,再把所得各点的横坐标变为原来的 2 倍,纵坐标不变 【答案】A
当 k<0 时,临界是过点(-6,1)时,此时 ,要想至少有 4 个交点需要逆时针继续旋转,
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018届山东省潍坊市青州市高三第三次高考模拟考试数学(文)试题(解析版)
2018届山东省潍坊市青州市高三第三次高考模拟考试数学(文)试题(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,若全集,则()A. B. C. D.【答案】A【解析】分析:利用一元二次不等式的解法化简集合,然后利用补集的定义求解即可.详解:因为集合,集合,所以,故选A.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.2. 总体由编号为的个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始从左到右依次选取两个数字,则选出的第个个体的编号为()附:第行至第列的随机数表:A. B. C. D.【答案】C【解析】分析:从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,列举出选出来的个个体的编号,即可得结果.详解:从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,列举出选出来编号在的前个个体的编号为,所以选出来的第个个体的编号为,故选C.点睛:本题考查选随机数表的应用,是基础题,解题时要认真审题,注意随机数表示法的合理运用. 3. 设是虚数单位,若复数是纯虚数,则( )A.B. C.D.【答案】D 【解析】解:,由纯虚数的定义可得: .本题选择D 选项.4. 已知等差数列的前项和为,若则( )A. B. C. D.【答案】D【解析】分析:由,可得,则化简,即可得结果.详解:因为,所以可得,所以,故选D. 点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.5. 如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为,则输出的( )A. B. C. D.【答案】D【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.详解:由程序框图可知:输入,第一次循环,;第二次循环,;第三次循环,;,退出循环输出,输出因此输出的为,故选D.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6. 如图,在正方体中,分别是的中点,则下列说法错误的是()A. B. 平面 C. D. 平面【答案】C【解析】分析:先利用三角形中位线定理证明,因为,平面,可得正确从而可得结果.详解:如图:连接,由三角形中位线定理可得与不可能平行,错误;因为在平面内,由线面平行的判定定理可得,平面,正确;平面与垂直,正确;因为平面,所以,平面,正确,故选C.点睛:本题主要通过对多个命题真假的判断,主要综合考查正方体中的线面平行于线面垂直关系,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.7. 函数在区间上的图象大致为()A. B.C. D.【答案】B【解析】分析:用排除法,当时,函数的零点为,可排除选项;当时,,可排除选项,从而可得结果.详解:当时,由,可得函数的零点为,可排除选项;当时,,对应点在轴下方,可排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8. 某旅行社租用两种型号的客车安排名客人旅行,两种车辆的载客量分别为人和人,租金分别为元/辆和元/辆,旅行社要求租车总数不超过辆,且型车不多于型车辆,则租金最少为()A. 元B. 元C. 元D. 元【答案】C【解析】设租A型车x辆,B型车y辆时租金为z元则z=1600x+2400yx、y满足画出可行域观察可知,直线过点A(5,12)时纵截距最小,∴z min=5×1 600+2 400×12=36800,故租金最少为36800元.选C.视频9. 点是双曲线右支上一点,分别为左、右焦点,的内切圆与轴相切于点,若点为线段中点,则双曲线的离心率为()A. B. C. D.【答案】B【解析】分析:设切点分别为,并设,根据双曲线的定义可得,再根据点为线段中点,可得,即可得到从而可得结果.详解:的内切圆与轴相切于点,设切点分别为,并设,根据双曲线的定义,,解得,点为线段中点,,,,故选B.点睛:本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.10. 已知函数的图象过点,区间上为单调函数,且的图象向左平移个单位后与原来的图象重合,则()A. B. C. D.【答案】A【解析】分析:由函数的图象过点,可得,可求得的值,由的图象向左平移个单位后与原来的图象重合,可得结合区间上为单调函数可得的值,从而可得结果.详解:由函数的图象过点,,解得,又,,又的图象向左平移个单位之后为,由两函数图象完全重合知,又,,所以,,故选A.点睛:本题考查了三角函数的图象与性质以及利用函数性质求解析式,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.11. 已知函数与的图象上存在关于轴对称的点,则实数的取值范围是()A. B. C. D.【答案】A【解析】分析:函数与的图象上存在关于轴对称的点,等价于存在,使,即在上有解,从而化为函数上有零点,进而可得结果.详解:若函数与图象上存在关于轴对称的点,则等价为,在时,方程有解,即在上有解,令,则在其定义域上是增函数,且时,,若时,时,,故在上有解,当时,则在上有解可化为,即,故,综上所述,,故选A.点睛:转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,函数与的图象上存在关于轴对称的点,转化为存在,使是解题的关键.12. 已知数列,定义数列为数列的“倍差数列”,若的“倍差数列”的通项公式为,且,若函数的前项和为,则()A. B. C. D.【答案】B【解析】分析:由可得,从而得数列表示首项为,公差的等差数列,求得,再根据错位相减法即可得结果.详解:根据题意得,,数列表示首项为,公差的等差数列,,,,,,,故选B.点睛:本题主要考查等差数列的通项、等比数列求和公式以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,其中,且,则向量的夹角为__________.【答案】【解析】分析:由,且,可得,即,从而可求出向量与的夹角.详解:,且,,即,解得,向量与的夹角是,故答案为.点睛:本题主要考查向量的夹角及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...14. 已知曲线在处的切线方程为,则实数__________.【答案】【解析】分析:求得函数的导数,可得切线的斜率,由切线方程为可得关于的方程,解方程可得的值.详解:因为,所以,可得曲线在处切线斜率为,由曲线方程,可得,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.15. 下列命题中,正确的命题序号是__________.(请填上所有正确的序号)①已知,两直线,则“”是“”的充分条件;②“”的否定是“”;③“”是“”的必要条件;④已知,则“”的充要条件是“”【答案】①③④【解析】分析:对于①,利用直线平行的性质判断即可;对于②,利用全称命题的否定判断即可;对于③,正弦函数的性质判断即可;对于④,利用不等式的性质判断即可.详解:对于①,时,把代入直线方程,得,故正确;对于②,命题“”的否定是“”,故错误;对于③,“”不能得到“”,“”,一定有“”,故正确;对于④,已知,则“”“”反之也成立,故正确,故答案为①③④.点睛:本题主要考查直线平行的性质、全称命题的否定以及充要条件的判断,属于难题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.16. 已知三角形所在平面与矩形所在平面互相垂直,若点都在同一球面上,则此球的表面积等于__________.【答案】【解析】分析:根据三角形所在平面与矩形所在平面互相垂直,可得外接球球心就是三角形的外接圆圆心,球半径等于圆半径,利用正弦定理求出半径,由球表面积公式可得结果.详解:由,由余弦定理可得,在矩形中,设对角线交于,设三角形的外心为,连接,则因为三角形所在平面与矩形所在平面互相垂直,则平面,所以,由于点都在同一球面上,,由正弦定理可得,则此球的表面积为,故答案为.点睛:本题主要考查线面垂直的性质、正弦定理与余弦定理的应用,外接球表面积的求法,属于难题.求外接球面积的关键是求出半径,对特殊的三棱锥可转化为求长方体的外接球的半径,本题根据矩形的性质以及面面垂直的性质将球心转化为三角形外接圆圆心,利用正余弦定理求出半径进行解答.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角的对边分别为,已知(1)求;(2)若,边上的中线,求的面积.【答案】(1)2;(2)4或12【解析】分析:(1)由,利用诱导公式以及两角和的余弦公式可得,进而,由此能求出;(2)求出,由余弦定理求出,从而利用三角形面积公式可求出的面积.详解:(1)由已知得所以因为在中,,所以则(2)由(1)得,,在中,,代入条件得,解得或当时,;当时,.点睛:本题主要考查三角函数的恒等变换以及余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18. 在如图所示的多面体中,平面,平面,且. (1)请在线段上找到点的位置,使得恰有直线平面,并证明;(2)在(1)的条件下,求多面体的体积.【答案】(1)见解析;(2)【解析】分析:(1)由均垂直于底面,可以断定两线段平行,且,取的中点,可得四边形是平行四边形,∴,易证明平面,∴平面;(2)由,即可的结果.详解:(1)为线段的中点.证明如下:由已知平面,平面∴,设是线段的中点,连接,则,且∵,且∴四边形是平行四边形,∴∵,,,∴平面∴平面(2)∵∴多面体的体积为点睛:证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19. 近年来,随着我国汽车消费水平的提高,二手车行业得到迅猛发展,某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.(1)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中);①根据回归方程类型及表中数据,建立关于的回归方程;②该汽车交易市场对使用年以内(含年)的二手车收取成交价格的佣金,对使用时间年以上(不含年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为②参考数据:【答案】(1)0.40;(2)①,②0.29【解析】分析:(1)由频率分布直方图得,二手车使用时间在的频率为,在的频率为,由互斥事件的概率公式可得结果;(2)①由得,即关于的线性回归方程为求得,利用样本中心点的性质求得,所以关于的线性回归方程为,即关于的回归方程为;②根据①中的回归方程和图1,对成交的二手车可预测各使用时间段上的频率,从而可得该汽车交易市场对于成交的每辆车可获得的平均佣金.详解:(1)由频率分布直方图得,该汽车交易市场 2017 年成交的二手车使用时间在的频率为,在的频率为所以(2)①由得,即关于的线性回归方程为因为所以关于的线性回归方程为,即关于的回归方程为②根据①中的回归方程和图 1,对成交的二手车可预测:使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;所以该汽车交易市场对于成交的每辆车可获得的平均佣金为:万元点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 已知是直线上的动点,点的坐标是,过的直线与垂直,并且与线段的垂直平分线相交于点 .(1)求点的轨迹的方程;(2)设曲线上的动点关于轴的对称点为,点的坐标为,直线与曲线的另一个交点为(与不重合),是否存在一个定点,使得三点共线?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1);(2)存在定点,使得三点共线【解析】试题分析:(Ⅰ)由题意可知:,即曲线为抛物线,焦点坐标为,点的轨迹的方程;(Ⅱ)设,则,直线的方程,代入抛物线方程,求得的坐标,的方程为,则令,则,直线与轴交于定点,即可求得存在一个定点,使得三点共线.试题解析:(Ⅰ)依题意,,即曲线为抛物线,其焦点为,准线方程为:,所以曲线的方程为.(Ⅱ)设,则,直线的斜率为,直线的方程为.由方程组得.设,则,,,所以,又,所以的方程为.令,得.即直线与轴交于定点.因此存在定点,使得,,三点共线.21. 已知,函数(是自然对数的底数)(1)求函数的单调区间;(2)若函数在区间内无零点,求的最大值.【答案】(1)见解析;(2)【解析】分析:(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)求出函数求其导函数,可知当时函数在区间上单调递减,可得,函数在区间上无零点;当时,分和分类讨论,即可筛选出函数在区间内无零点的的范围.详解:(1)∵∴当时,在上恒成立,增区间为,无减区间;当时,令得的增区间为,减区间为.(2)函数,∴①当时,在上恒成立,函数在区间上单调递减,则,∴时,函数在区间上无零点;②当时,令得,令,得,令,得,因此,函数的单调递增区间是,单调递减区间是.(i)当,即时,函数的单调递减区间是,∴要使函数在区间内无零点,则,得;(ii)当,即时,函数的单调递减区间是,单调递增区间是,∴设∴∴在上单调递减,∴,而当时,,∴函数在区间内有零点,不合题意.综上,要使函数在区间内无零点,则的最大值为点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22. 在平面直角坐标系中,曲线的参数方程为(为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点(1)求曲线的普通方程和的直角坐标方程;(2)若点在曲线上,求的值.【答案】(1),;(2)【解析】试题分析:(1)利用消去参数,可求得的方程为,对,依题意设方程为,的直角坐标为,代入求得,故圆的方程为:;(2)曲线的方程为,将代入可求得,进一步代入.试题解析:(1)将及时对应的参数,, 代入得,所以的方程为,设圆的半径,则圆的方程为(或),将点代入得:圆的方程为:( 或).(2)设曲线的方程为,将代入得,,所以.考点:极坐标与参数方程.23. 已知函数.(1)求的解集;(2)设函数,若对成立,求实数的取值范围【答案】(1)或;(2)【解析】分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)即的图象恒在,图象的上方,作出函数图像,根据直线恒过定点,结合函数图象即可的结果.详解:(1)∴,即∴①或②或③解不等式①:;②:无解;③:,所以的解集为或(2)即的图象恒在,图象的上方,可以作出的图象,而,图象为恒过定点,且斜率变化的一条直线,作出函数,图象如图,其中,可求:∴,由图可知,要使得的图象恒在图象的上方,实数的取值范围为.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)
2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高三数学(理)一模考试题(潍坊市含答案)
2018高三数学(理)一模考试题(潍坊市含答案) 山东省潍坊市2018届高三下学期一模考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数满足,则()A. B. C. D. 2.已知集合,则() A. B. C. D. 3.若函数(且)在上为减函数,则函数的图象可以是() A. B. C. D. 4.已知满足约束条件,则函数的最小值为() A. B. C.1 D. 5. 的内角的对边分�e为,已知,则的面积是() A. B. C.1 D. 6.对于实数,定义一种新运算“ ”:,其运算原理如程序框图所示,则() A.26 B.32 C.40 D.46 7.若函数为奇函数,则() A. B. C. D.0 8.如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D. 9.已知函数的最小正周期为,其图象关于直线对称.给出下面四个结论:①函数在区间上先增后减;②将函数的图象向右平移个单位后得到的图象关于原点对称;③点是函数图象的一个对称中心;④函数在上的最大值为1.其中正确的是()A.①② B.③④ C.①③ D.②④ 10.甲、乙、丙、丁四位同学参加一次数学智力竞赛,决出了第一名到第四名的四个名次.甲说:“我不是第一名”;乙说:“丁是第一名”;丙说:“乙是第一名”;丁说:“我不是第一名”.成绩公布后,发现这四位同学中只有一位说的是正确的.则获得第一名的同学为() A.甲 B.乙 C.丙 D.丁 11.双曲线的左右焦点分别为,过的直线交曲线左支于两点, 是以
为直角顶点的直角三角形,且 .若该双曲线的离心率为,则()A. B. C. D. 12.函数的图象关于直线对称,且在上单调递减.若时,不等式恒成立,则实数的取值范围为()
A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 实数满足,则的最大值为. 14. 展开式中的系数为. (用数字填写答案) 15.已知抛物线的准线为,若与圆相交所得弦长为,则. 16.正四棱柱中,底面边长为2,侧棱,为上底面上的动点,给出下列四个结论:①若,
则满足条件的点有且只有一个;②若,则点的轨迹是一段圆弧;
③若平面,则与平面所成角的正切的最大值为;④若平面,则平面截正四棱柱的外接球所得图形面积最大值为 . 其中所有正确结论的序号为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 公差不为0的等差数列的前项和为,已知,且成等比数列. (1)求的通项公式;(2)求数列的前项和 . 18.如图,直三棱柱中,,点是棱上不同于的动点. (1)证明: ;(2)若平面把此棱拄分成体积相等的两部分,求此时二面角的余弦值. 19.某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测.现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图.以频率值作为概率估计值. (1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率):① ② ③ 评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望 . 20.如图,椭圆的左右焦点分别为,左右顶点分别为为椭圆上任一点(不与重合).已知的内切圆半径的最大值为,椭圆的离心率为 . (1)求椭圆的方程;(2)直线过点且垂直于轴,延长交于点,以为直径的圆交于点,求证: 三点共线. 21.函数 . (1)求的单调区间;(2)对,使成立,求实数的取值范围;(3)设在上有唯一零点,求正实数的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为)(为参数,),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为 . (1)求曲线的直角坐标方程;(2)设点的坐标为,直线与曲线相交于两点,求的值. 23.选修4-5:不等式选讲设函数 . (1)当时,求不等式的解集;(2)已知,求的取值范围.
试卷答案一、选择题 1-5:CCDBB 6-10:CBCCA 11、12:DB 二、填空
题13. 14. 120 15. 16.①②③ 三、解答题 17. (1)设的公差为,由题设可得,,∴ ,解得. ∴ . (2)令,则,① ,② ①-②得:,∴ . 18.(1)解:在中,由余弦定理得,,∴ ,则有,∴ ,∴ ,又∵ ,∴ 平面,又平面,∴ . (2)解:由题设知,平面把此三棱柱分成两个体积相等的几何体为四棱锥和四棱锥 . 由(1)知四棱的高为,∵ ,∴ ,又,∴ ,∴ . 此时为中点,以点为坐标原点,的方向为轴,轴,轴建立如图所示的空间直角坐标系. ∴ . ∴ ,设是平面的一个法向量,∴ ,即,令,可得,设是平面的一个法向量,∴ ,即,令,可得,∴ 。
所以二面角的余弦值等于 . 19.解:(1)由题意知,,由频率分布直方图得,,,∵不满足至少两个不等式成立,∴该生产线需检修. (2)由(1)知,所以任取―件是次品的概率为,所以任取两件产品得到的次品数可能值为0,1,2,则;;;∴ 的分布列为∴ . 20.解:(1)由题意知: ,∴ ,又,∴ ,设的内切圆半径为,则,,故当面积最大时,最大,即点位于椭圆短轴顶点时,,∴ ,把代入,解得,∴椭圆方程为 . (2)由题意知,直线的斜率存在,设为,则所在直线方程为,联立,消去,得,则有,∴ ,,得,又,∴ ,则,∴ 而在以为直径的圆上,∴ ,∴ 三点共线. 21.解:(1),当,即时,单调递增;当,即时,单调递减;综上,的单调递增区间为,的单调递减区间为 . (2),即,设,则原问题等价于,一方面由(1)可知,当时,,故在单调递增,∴ 另―方面:,,由于,∴ ,又,当,,在为增函数,,所以, . (3), .
①若,则单调递增,无零点,②若时,设,则,故单调递增,∵ ,所以存在,使,因此当时,,即单调递减;当时,即单调递增. 故当时,无零点,当时,,存在唯一零点,综上,时,有唯一零点. 22.解:(I )曲线,即,∵ ,∴曲线的直角坐标方程为即 . (2)将代入并整理得,∴ . 23.解:(1)当时,不等式即,当时,,∴ 或,∴此时,,当时,,∴ 或,∴此时,,当时,,∴ 或此时,,∴不等式的解集为或 . (2)若则,∴ ,解得: 或,∴ ,若则,∴ ,
综上所述, .。