M模拟退火最短距离问题 Matlab代码 亲测完美运行
matlab计算两个区域的最小距离函数

一、概述MATLAB是一种流行的数学软件,用于进行数值计算和数据可视化。
在许多科学和工程领域,MATLAB都被广泛地应用。
其中一个非常有用的功能就是计算两个区域的最小距离函数。
这个功能在图像处理、计算几何学和机器人学等领域都有着广泛的应用。
二、MATLAB中的最小距离函数在MATLAB中,可以使用内置函数或编写自定义函数来计算两个区域的最小距离。
下面我们将介绍MATLAB中计算最小距离的几种常见方法。
1. 使用内置函数MATLAB提供了一些内置函数来计算两个区域之间的最小距离,比如pdist2函数和bwdist函数。
pdist2函数可以用来计算两个不同数据集之间的距离,而bwdist函数则可以计算二进制图像中每个像素到最近的非零像素的距离。
这两个函数都是非常高效、准确的计算最小距离的工具。
2. 编写自定义函数除了使用内置函数,我们还可以编写自定义函数来计算两个区域的最小距离。
这种方法可以根据具体的问题需求进行灵活的定制,但是需要一定的编程能力。
通常可以使用广度优先搜索、最短路径算法或者动态规划等方法来编写自定义函数。
三、最小距离函数的应用最小距离函数在许多领域都有着重要的应用。
下面将介绍一些常见的应用场景。
1. 图像处理在图像处理中,最小距离函数可以用来计算图像中不同物体或区域之间的距离。
比如在医学图像中,可以用最小距离函数来计算肿瘤与周围组织的距离,以辅助医生进行诊断。
2. 计算几何学在计算几何学中,最小距离函数可以用来计算两个几何体之间的最短距离,比如计算两个多边形之间的最小距离。
这对于设计和制造工程师来说是非常重要的。
3. 机器人学在机器人学中,最小距离函数可以用来规划机器人的路径,以避免障碍物或与其他机器人发生碰撞。
这对于自动驾驶车辆和工业机器人来说有着重要的意义。
四、总结在MATLAB中,计算两个区域的最小距离函数是非常有用的功能,它可以用来解决许多现实生活中的问题。
通过内置函数或编写自定义函数,我们可以轻松地实现这一功能。
matlab带约束模拟退火算法

【文章】matlab带约束模拟退火算法深入探讨和分析matlab带约束模拟退火算法在现代科学和工程领域,优化问题是十分常见的。
而其中,约束优化问题更是一种常见的形式。
为了解决这类问题,人们经过长时间的探索,提出了许多方法,其中模拟退火算法便是一种被广泛应用的优化算法之一。
而在matlab中,带约束的模拟退火算法更是得到了丰富的实现和应用。
本文将从简单到复杂,由浅入深地介绍matlab带约束模拟退火算法,以帮助读者更好地理解和掌握这一优化方法。
1. 什么是模拟退火算法?模拟退火算法是一种基于模拟退火过程的全局优化算法。
它模拟了金属在高温下退火时的物理过程,通过不断降低系统的温度来寻找全局最优解。
在matlab中,模拟退火算法通常通过设置初始温度、终止温度、温度下降率等参数来实现。
2. 为什么需要约束?在实际问题中,许多优化问题都存在着一定的约束条件。
比如工程设计中的材料强度、生产计划中的资源限制等。
如何在求解优化问题时满足这些约束条件便成为了一个重要的问题。
3. matlab带约束模拟退火算法是如何工作的?在matlab中,带约束的模拟退火算法通过引入罚函数、拉格朗日乘子等方法来处理约束条件。
它不仅要寻找全局最优解,还要确保解满足一定的约束条件。
这就需要在温度下降的过程中,不断调整解的位置,以在搜索最优解的同时满足约束条件。
4. 代码实现及应用在matlab中,带约束的模拟退火算法通常通过调用现成的优化工具箱来实现。
我们可以通过设置目标函数、约束条件等参数,来对不同的优化问题进行求解。
可以用该算法来求解工程设计中的优化问题、生产计划中的调度优化问题等。
总结回顾通过本文的介绍,我们对matlab带约束模拟退火算法有了一个较为全面的了解。
我们知道了模拟退火算法是如何工作的,以及在matlab中如何处理带约束的优化问题。
在实际应用中,我们可以根据具体的问题,合理地设置参数和约束条件,来求解复杂的优化问题。
使用matlab实现模拟退火算法

使用matlab实现模拟退火算法标题:使用MATLAB实现模拟退火算法:优化问题的全局搜索方法引言:模拟退火算法(Simulated Annealing)是一种经典的全局优化算法,常用于解决各种实际问题,如组合优化、参数优化、图形分割等。
本文将详细介绍如何使用MATLAB实现模拟退火算法,并介绍其原理、步骤以及代码实现。
1. 模拟退火算法简介模拟退火算法借鉴了金属退火的物理过程,在解空间中进行随机搜索,用于找到全局最优解。
其核心思想是通过接受一定概率的劣解,避免陷入局部极小值,从而实现全局优化。
2. 模拟退火算法步骤2.1 初始参数设置在使用MATLAB实现模拟退火算法之前,我们需要配置一些初始参数,包括起始温度、终止温度、温度衰减系数等。
这些参数的合理设定对算法的效果至关重要。
2.2 初始解的生成在模拟退火算法中,我们需要随机生成一个初始解,作为搜索的起点。
这个初始解可以是随机生成的,也可以是根据问题本身的特性生成的。
2.3 判定条件模拟退火算法需要一个判定条件来决定是否接受新解。
通常我们使用目标函数值的差异来评估新解的优劣。
如果新解更优,则接受;否则,按照一定概率接受。
2.4 温度更新模拟退火算法中最重要的一步是对温度的更新。
温度越高,接受劣解的概率就越大,随着迭代的进行,温度逐渐降低,最终达到终止温度。
2.5 迭代过程在每次迭代中,我们通过随机生成邻近解,计算其目标函数值,并根据判定条件决定是否接受。
同时,根据温度更新的规则调整温度。
迭代过程中,不断更新当前的最优解。
3. MATLAB实现模拟退火算法在MATLAB中,我们可以通过编写函数或使用内置函数来实现模拟退火算法。
具体的实现方法取决于问题的复杂度和求解的要求。
我们需要确保代码的可读性和可复用性。
4. 示例案例:TSP问题求解为了演示模拟退火算法的实际应用,我们将以旅行商问题(Traveling Salesman Problem,TSP)为例进行求解。
matlab模拟退火法

模拟退火算法是一种基于物理中退火过程的优化算法,适用于解决全局优化问题。
以下是一个基本的MATLAB模拟退火算法实现示例:
matlab
function SA()
% 参数设置
T = 1000; % 初始温度
alpha = 0.95; % 降温系数
x = rand(1,10); % 初始解
f = @(x) sum(x.^2 - 10*cos(2*pi*x) + 10); % 目标函数
while T > 1e-5
% 随机生成新解
x_new = x + randn(1,10);
% 计算新解的函数值
f_new = f(x_new);
% 计算接受概率
p = exp(-(f_new - f(x))/T);
% 以概率p接受新解,否则拒绝
if rand() < p
x = x_new;
f = f_new;
end
% 降温
T = T*alpha;
end
% 输出最优解和最优值
fprintf('最优解:%f\n', x);
fprintf('最优值:%f\n', f);
end
这个示例中,我们定义了一个目标函数f,它是一个简单的多峰函数。
我们使用一个随机生成的初始解作为初始解x,然后在一个循环中不断生成新的解,并计算其函数值。
我们根据接受概率决定是否接受新解,如果新解更好,则接受;否则,我们以一定的概率接受新解。
在每次迭代中,我们都会降低温度T,直到达到预设的终止条件。
最后,我们输出最优解和最优值。
数学建模 模拟退火

例已知敌方100个目标的经度、纬度如下:我方有一个基地,经度和纬度为(70,40)。
假设我方飞机的速度为1000公里/小时。
我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。
在敌方每一目标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。
这是一个旅行商问题。
我们依次给基地编号为1,敌方目标依次编号为2,3,…,101,最后我方基地再重复编号为102(这样便于程序中计算)。
距离矩阵102102)(⨯=ij d D ,其中ij d 表示表示j i ,两点的距离,102,,2,1, =j i ,这里D 为实对称矩阵。
则问题是求一个从点1出发,走遍所有中间点,到达点102的一个最短路径。
上面问题中给定的是地理坐标(经度和纬度),我们必须求两点间的实际距离。
设B A ,两点的地理坐标分别为),(11y x ,),(22y x ,过B A ,两点的大圆的劣弧长即为两点的实际距离。
以地心为坐标原点O ,以赤道平面为XOY 平面,以0度经线圈所在的平面为XOZ 平面建立三维直角坐标系。
则B A ,两点的直角坐标分别为:)s i n ,c o s s i n ,c o s c o s(11111y R y x R y x R A )s i n ,c o s s i n ,c o s c o s(22222y R y x R y x R B 其中6370=R 为地球半径。
B A ,两点的实际距离⎫⎛=R d arccos , 化简得]s i n s i n c o s c o s )(a r c c o s [co s 212121y y y y x x R d +-=。
求解的模拟退火算法描述如下:(1)解空间解空间S 可表为{102,101,,2,1 }的所有固定起点和终点的循环排列集合,即}102,}101,,3,2{),,(,1|),,{(102101211021===ππππππ的循环排列为 S其中每一个循环排列表示侦察100个目标的一个回路,j i =π表示在第i 次侦察j 点,初始解可选为)102,,2,1( ,本文中我们使用Monte Carlo 方法求得一个较好的初始解。
如何在Matlab中进行模拟退火算法的优化

如何在Matlab中进行模拟退火算法的优化模拟退火算法是一种用于求解复杂问题的全局优化算法。
在Matlab中,我们可以利用其强大的数值计算和优化工具箱来实现模拟退火算法的优化。
本文将介绍如何在Matlab中进行模拟退火算法的优化,并通过一个实际的案例来演示其应用。
一、模拟退火算法简介模拟退火算法是一种启发式的全局优化算法,模拟了固体物体在退火过程中的特性。
其基本原理是通过模拟固体退火过程,逐渐降低系统能量,从而找到全局最优解。
在模拟退火算法中,由于退火过程中存在较高的温度,使算法有机会跳出局部极小值点,因此能够在搜索空间中全面地寻找最优解。
二、Matlab中的模拟退火算法优化函数Matlab提供了优化工具箱,在其中包含了一系列优化函数,其中包括模拟退火算法。
我们可以使用"simulannealbnd"函数来在Matlab中实现模拟退火算法的优化。
三、案例演示:函数最优化假设我们要求解以下函数的最小值:f(x) = x^2 + sin(5x)我们可以使用Matlab中的模拟退火算法优化函数来找到该函数的全局最小值。
1. 定义目标函数首先,我们需要在Matlab中定义目标函数:function y = myfunc(x)y = x.^2 + sin(5*x);2. 编写优化代码接下来,我们可以编写优化代码,利用"simulannealbnd"函数进行模拟退火算法的优化:options = saoptimset('Display','iter','TolFun',1e-6);[x,fval] = simulannealbnd(@myfunc, [-10,10],[],[],options);在上述代码中,"options"用于设置优化选项,"@myfunc"是要优化的目标函数,[-10,10]为变量的取值范围,[]表示无约束条件。
matlab最短路径算法代码

matlab最短路径算法代码dijkstra算法如下:function [dist,path] = dijkstra(A,Start)% A是负责表示网络图的邻接矩阵% 前提:随路网络中不存在负值回路if Start==0 %默认起点为1Start=1;endN=size(A,1); %N是有向网络中结点的数目dist=inf*ones(1,N); %dist保存结点间最短距离,初始化为无穷大dist(1,Start)=0; %将起始点的距离初始化为0path=zeros(N,N); %path保存路径% 标志向量flag,元素值为1表示相应结点已成为最短路径结点flag=zeros(1,N);for i=2:(N-1)% 找出距离当前最短路径最近的结点mini=inf;n=-1;for j=2:(N-1)if flag(1,j)==0 && dist(1,j)<mini %flag(1,j)==0说明未找出最短路径n=j;mini=dist(1,j);endendflag(1,n)=1; %将新找到的最短路径结点标记for j=2:(N-1) %对所有没有找到最短路径结点if A(n,j)~=inf && flag(1,j)==0 %未找到最短路径if A(n,j)+dist(1,n)<dist(1,j) %更新最短距离path(j,n)=1; %增加一条边dist(1,j)=A(n,j)+dist(1,n); %更新最短距离endendendenddist(1,N-1)=dist(1,N); %终点(0,0)处没有结点end。
模拟退火算法节约里程法求解VRP问题Matlab程序

通过序贯节约里程法可得三条路径:0-6-3-4-0,0-1-2-0,0-5-0,三条路径的 运行距离分别为:141、138、108,总运行距离为 385。 (2)并行节约里程法
并行节约里程法是指在一次搜索中并行生成全部路径。以上面的算例为例,
第五章 模拟退火算法求解 VRP 问题
讲解标准的车辆路径问题以及节约里程法、模拟退火算法求解 VRP 问题的 Matlab 程序。 Created by Jiannywang@, 20180727
5.1 车辆路径问题(Vehicle Routing Problem,VRP)
车辆路线问题(VRP)最早是由 Dantzig 和 Ramser 于 1959 年首次提出,它 是指一定数量的客户,各自有不同数量的货物需求,配送中心向客户提供货物, 由一个车队负责分送货物,组织适当的行车路线,目标是使得客户的需求得到满 足,并能在一定的约束下,达到诸如路程最短、成本最小、耗费时间最少等目的。
不论哪种合并程序,该算法的前期步骤都是一样的,下面以图 5.1 所示算例
的具体数值来说明。
(1) 给出任意节点对之间的距离,给出所有需求节点的需求量和车辆容量数据;
表 5.1 节点间相互距离
01 2 34 56
0
30 65 67 53 54 28
1
43 72 50 74 53
2
52 27 89 65
车辆容量将多个节点的运输集中到一辆车运输,从而最大程度的节约运输里程,
C-W 算法另一个需要解决的任务就是进行运输任务合并从而实现运输里程的最
大化 节约。
C-W 算法中里程节约的合并过程分为两种:序贯节约里程法和并行节约里程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟退火算法
基于模拟退火算法的TSP问题求解具体步骤如下:
1)随机产生一个初始解path(作为当前最优路径),计算目标函数值pathfare(fare,path)=e0,并设置初始温度t0,内循环终止方差istd,外循环终止方差ostd降温系数lam,温度更新函数tk=lam*tk-1,并令k=1,输入各城市坐标coord,计算城市间的距离fare。
2)根据控制参数更新函数来控制温度的下降过程,给定最大循环步数iLK,设置循环计数器的初始值in=1。
3)对当前的最优路径作随机变动,产生一个新路径newpath,计算新路径的目标函数值pathfare(fare,newpath)=e1和目标函数值的增量e1-e04)根据Metropolis准则,如果增量(e1-e0)<0,则接受新产生的路径newpath作为当前最优路径;如果(e1-e0)>=0,则以公式(1)来决定新路径newpath是否代替path。
rand()随机产生一个在[0,1]之间的随机数。
exp[-(e1-e0)/t]>rand()
4)如果目标函数值小于istd,则直接跳出内循环。
5)如果in<iLK,则in=in+1并且转向3)。
6)如果目标函数值小于ostd,则算法结束;否则,转向2)。
1. distance.m
function [fare]=distance(coord)
%coord为各城市的坐标
%fare为城市间的距离矩阵
[~,m]=size(coord); %m为城市的个数
fare=zeros(m);
for i=1:m %外层为行
for j=1:m %内层为列
fare(i,j)=(sum((coord(:,i)-coord(:,j)).^2))^0.5;
fare(j,i)=fare(i,j); %距离矩阵对称
end
end
2. myplot.m
function []=myplot(path,coord,pathfar)
%做出路径的图形
%path为要做图的路径,coord为各个城市的坐标
%pathfar为路径path对应的费用
len=length(path);
clf;
hold on;
title(['近似最短路径下的目标函数值',num2str(pathfar)]); xlabel('各城市坐标x');
ylabel('各城市坐标y');
plot(coord(1,:),coord(2,:),'ok');
pause(0.4);
for ii=2:len
plot(coord(1,path([ii-1,ii])),coord(2,path([ii-1,ii])),'-b');
x=sum(coord(1,path([ii-1,ii])))/2;
y=sum(coord(2,path([ii-1,ii])))/2;
text(x,y,['(',num2str(ii-1),')']);pause(0.4);
end
plot(coord(1,path([1,len])),coord(2,path([1,len])),'-b');
x=sum(coord(1,path([1,len])))/2;
y=sum(coord(2,path([1,len])))/2;
text(x,y,['(',num2str(ii-1),')']);
pause(0.4);hold off;
3. swap.m
function [newpath,position]=swap(oldpath,number)
%对oldpath进行互换操作
%number为将要产生的新路径的个数
% position为对应newpath互换的位置
m=length(oldpath); %城市的个数
newpath=zeros(number,m);
position=sort(randi(m,number,2),2); %随机产生交换的位置for i=1:number
newpath(i,:)=oldpath; %交换路径中选中的城市newpath(i,position(i,1))=oldpath(position(i,2));
newpath(i,position(i,2))=oldpath(position(i,1));
end
4. pathfare.m
function[objval]=pathpare(fare,path)
%计算路径path的目标函数值objval=pathpare(fare,path)
%path为1到m的排列,代表城市的访问顺序
[m,n]=size(path);
objval=zeros(1,m);
for i=1:m
for j=2:n
objval(i)=objval(i)+fare(path(i,j-1),path(i,j));
end
objval(i)=objval(i)+fare(path(i,n),path(i,1));
end
5. 主程序
clear all;
%输入各城市坐标
coord=[0.6683,0.6195,0.4,0.2439,0.1707,0.2293,0.5171,0.8732,0. 6878,0.8488;
0.2536,0.2634,0.4439,0.1463,0.2293,0.761,0.9414,0.6536,0.5219, 0.3609];
%参数的设定
t0=1; %初始温度
iLK=20; %内循环最大迭代次数
oLK=50; %外循环最大迭代次数
lam=0.95; %降温系数
istd=0.001; %内循环结束标准
ostd=0.001; %外循环结束标准
ilen=5; %内循环保存的目标函数值的个数
olen=5; %外循环保存的目标函数值的个数
[~,m]=size(coord); %城市的个数
fare=distance(coord); %计算城市间的距离矩阵
path=1:m; %产生初始解(作为当前最优路径)pathfar=pathfare(fare,path); %计算目标函数值
ores=zeros(1,olen); %外循环保存的目标函数值
e0=pathfar;
t=t0;
for out=1:oLK %外循环
ires=zeros(1,ilen); %内循环保存的目标函数值
for in=1:iLK %内循环
[newpath,~]=swap(path,1); %产生新路径
e1=pathfare(fare,newpath); %计算目标函数值
r=min(1,exp(-(e1-e0)/t)); %metropolis准则函数
if rand<r
path=newpath;
e0=e1;
end
ires=[ires(2:end),e0];
if std(ires,1)<istd%内循环终止条件:连续ilen个目标函数值波动小于istd
break;
end
end
ores=[ores(2:end),e0];
if std(ores,1)<ostd%外循环终止条件:连续olen个目标函数值波动小于ostd
break;
end
t=lam*t;
end
pathfar=e0;
fprintf('近似最优路径为:\');
disp(path);
fprintf('近似最优路径长度\tpathfare='); disp(pathfar);
myplot(path,coord,pathfar);。