光学第一章习题课(1)解析

合集下载

工程光学-第一章-习题及解答

工程光学-第一章-习题及解答

l

B

200mm
●● ●
A’ A B
2. 一束平行细光束入射到一半径r=30mm、 折射率n=1.5的玻璃球上,求其会聚点的位 置。如果在凸面镀反射膜,其会聚点应在何 处?如果在凹面镀反射膜,则折射光束在玻 璃中的会聚点又在何处?反射光束经前表面 折射后,会聚点又在何处?说明各会聚点的 虚实。
1
r5 30mm
代入①式,得:l5' 75mm (虚像)
距 1 面右侧75mm处
1
2
.
C
3. 有平凸透镜r=100mm,r=∞,d=300mm, n=1.5,当物体在-∞时,求高斯像的位置l’。 在第二面上刻一十字丝,
问: 其通过球面的共轭像处? 当入射高度h=10mm时,实际光线的像方 截距为多少?与高斯像面的距离为多少?
l,l ' , r
dl r l r l'
d
l

l'
0
112
l' l r
Q
C
l
ON
M
h
Q’ N O
l' r
6. 两薄透镜的焦距为 f1' 5.0cm

f
' 2
10.0cm
,相距5.0cm。若
一高为2.50cm的物体位于第一透镜前15.0cm处,求最后所成像
4. 一球面镜半径r=-100mm,求β=0,-0.1, -0.2, -1,1,5,10,∞时的物距和像距。
解:
1 12
l
l l r
l
5. 试从费马原理出发,导出凹球面反射镜 近轴成像公式: 1 1 2 ,做出示意图。

工程光学第3版第一章习题答案

工程光学第3版第一章习题答案
• 光的干涉与衍射的关联与区别:光的干涉和衍射是波动性的两种表现形式,理 解它们之间的联系和区别是解决相关问题的关键。需要注意干涉和衍射产生的 条件、现象及其在光学系统中的应用。
• 光学元件的特性与选择:不同光学元件具有不同的特性,如透镜的焦距、折射 率,反射镜的反射率、角度等。在选择和使用光学元件时,需要考虑系统的需 求和限制,如成像质量、光束直径、光谱范围等。
习题1.6
什么是光的衍射?衍射现象有哪些应用?
答案
光的衍射是指光波在遇到障碍物时,绕过障碍物的边缘继 续传播的现象。衍射现象在许多领域都有应用,如全息摄 影、光学仪器制造和光学信息处理等。
习题1.3答案
习题1.7
什么是光谱线及其分类?光谱分析的原理是什么?
答案
光谱线是指物质在特定温度和压力下发射或吸收的特定波长的光。根据产生机理 ,光谱线可分为发射光谱和吸收光谱。光谱分析的原理是利用物质对光的吸收、 发射或散射特性来分析物质的组成和结构。
习题1.2
简述光学显微镜的基本组成部分。
习题1.1答案
习题1.3
如何正确使用光学显微镜?
答案
使用光学显微镜时,应先调节光源亮度,然后调节聚光镜和物镜的焦距,确保 样品清晰可见。接着,通过调节载物台和调焦装置,使样品在显微镜视场中居 中。最后,通过目镜观察并记录观察结果。
习题1.2答案
习题1.4
什么是光的折射?折射率与题考察了光学显微镜的分辨本领与照 明方式、物镜的数值孔径和照明光的波长的 关系。光学显微镜的分辨本领主要取决于物 镜的数值孔径和照明光的波长。数值孔径越 大,照明光的波长越短,则显微镜的分辨本 领越高。同时,照明方式也会影响显微镜的 分辨本领,暗视场显微镜具有较高的对比度
练习题3

光学题目及答案

光学题目及答案

第一章 光的干涉1 波长为500nm 的绿光照射在间距为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长700nm 的红光照射此双缝,两个亮条纹之间的距离又为多少?计算这两种光第二级亮条纹位置的距离。

解:本题是杨氏双缝干涉实验, 其光路、装置如图。

由干涉花样亮条纹的分布规律:λdr j y 0= (j=0、±1、±2、…)得亮条纹间距: λdr y 0=∆ (1) 其中:λ=500nm 和700nm 、d=0.022mm 、r 0=180cm 代入公式(1)计算得到:当λ=500nm 时,两个亮条纹之间的距离:cm y 409.0=∆ 当λ=700nm 时,两个亮条纹之间的距离: cm y 573.0='∆ 第2 级亮条纹的位置:λdr jy 02= 2=j (2) 当λ=500nm 时: cm y 819.02=当λ=700nm 时: cm y 146.12=' 两种光第二级亮条纹位置间的距离: cm y y y 327.0222=-'=∆2 在杨氏实验装置中,光源的波长为640nm ,两缝间距为0.4mm ,光屏离双缝的距离为50cm ,试求:(1)光屏上第一亮条纹和中央亮条纹之间距离;(2)若P 点距离中央亮条纹0.1mm ,则两束光P 点的相位差;(3)P 点的光强度与中央亮条纹的强度之比。

解: (1) 由: λdr j y 0= (1),已知:λ=640nm ,d=0.4mm ,r 0 = 50cm ,j=1代入公式(1)解得,第一亮纹到中央亮纹的距离:y=0.8mm(2)两束光传播到P 点的光程差为:12r y dr r =-=δ 位相差为:022r dy λπδλπϕ==∆代入数据:λ=640nm 、d=0.4mm 、r 0=50cm 、y=0.1mm 得到两束光在P 点的相位差:4/πϕ=∆(3)在中央亮条纹的位置上,两光的相位差为:0=∆ϕ 光强度为:2204)cos 1(2A A I =∆+=ϕP 点的光强度为:2224.3)4/cos 1(2)cos 1(2A A A I p =+=∆+=πϕ 两条纹光强度之比为:2:7.1:0=I I p3 把折射率为1.5的玻璃片插入杨氏双缝的一束光中,光屏上原来第五级亮条纹所在的位置变为中央亮条纹,求插入的玻璃片的厚度。

光学第一章习题及答案解析

光学第一章习题及答案解析

物理与机电工程学院 2011级 应用物理班姓名:罗勇 学号:20114052016第一章 习题一、填空题:1001.光的相干条件为 两波频率相等 、相位差始终不变与 传播方向不相互垂直。

1015、迈克尔逊干涉仪的反射镜M 2移动0、25mm 时,瞧到条纹移动的数目为1000个,若光为垂直入射,则所用的光源的波长为_500nm 。

1039,光在媒介中通过一段几何路程相应的光程等于折射率与__路程_的乘积 。

1089、 振幅分别为A 1与A 2的两相干光同时传播到p 点,两振动的相位差为ΔΦ。

则p 点的光强I =2212122cos A A A A ϕ++∆1090、 强度分别为1I 与2I 的两相干光波迭加后的最大光强max I =12+I I 。

1091、 强度分别为I 1与I 2的两相干光波迭加后的最小光强min I =。

12I I -1092、 振幅分别为A 1与A 2的两相干光波迭加后的最大光强max I =12122A A A A ++。

1093、 振幅分别为A 1与A 2的两相干光波迭加后的最小光强min I =12122A A A A +-。

1094、 两束相干光叠加时,光程差为λ/2时,相位差∆Φ=π。

1095、 两相干光波在考察点产生相消干涉的条件就是光程差为半波长的()2j+1倍,相位差为π的()2j+1倍。

1096、 两相干光波在考察点产生相长干涉的条件就是光程差为波长的2j 倍,相位差为π的2j 倍。

1097、 两相干光的振幅分别为A 1与A 2,则干涉条纹的可见度v=1221221A A A A ⎛⎫⎪⎝⎭⎛⎫+ ⎪⎝⎭。

1098、 两相干光的强度分别为I 1与I 2,则干涉条纹的可见度v=1212I I I I -+。

1099、两相干光的振幅分别为A 1与A 2,当它们的振幅都增大一倍时,干涉条纹的可见度为不变。

1100、 两相干光的强度分别为I 1与I 2,当它们的强度都增大一倍时,干涉条纹的可见度 不变。

工程光学习题解答(第1章)

工程光学习题解答(第1章)

第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用.答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律。

应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量。

(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播.说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。

2.已知真空中的光速c≈3×108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1。

65)、加拿大树胶(n=1.526)、金刚石(n=2。

417)等介质中的光速。

解:v=c/n(1)光在水中的速度:v=3×108/1。

333=2。

25×108 m/s(2)光在冕牌玻璃中的速度:v=3×108/1。

51=1。

99×108 m/s(3)光在火石玻璃中的速度:v=3×108/1。

65=1.82×108 m/s(4)光在加拿大树胶中的速度:v=3×108/1。

526=1。

97×108 m/s(5)光在金刚石中的速度:v=3×108/2。

417=1。

24×108 m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。

那时候的玻璃极不均匀,多泡沫。

除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。

3.一物体经针孔相机在屏上成像的大小为60mm,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离.解:⇒l=300mm4.一厚度为200mm的平行平板玻璃(设n=1。

5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。

光学课后习题解答

光学课后习题解答
4汽1.5x 1.2汉1% CrC
当j=9时,
扎一—3/8 nm
19
所以,在390~760nm的可见光中,从玻璃片上反射最强的光波波长为
423.5 nm,480 nm,553.8 nm,654.5 nm.
12.迈克耳孙干涉仪的反射镜M2移动0.25mm时,看到条纹移过的数目为909个,设光为垂直入射,求所
17.9cm,纸厚0.036mm,求光波的波长。
11.波长为400Ll760nm的可见光正射在一块厚度为1.2×10-6m,折射率为1.5玻璃片上,试问从玻璃片反
射的光中哪些波长的光最强.
解:依题意,反射光最强即为增反膜的相长干涉,则有:
=2n2d =(2j1)-
4n2d2j 1
,=4n2d = 4 1.5 1.2 10^ = 7200nm
用光源的波长。
解:根据课本59页公式可知,迈克耳孙干涉仪移动每一条条纹相当h的变化为:
现因
N =909所对应的h为
2 0.25
909
13.迈克耳孙干涉仪平面镜的面积为4×4c∏t观察到该镜上有20个条纹。当入射光的波长为589nm时,
两镜面之间的夹角为多大?
解:因为S
又因为
所以
2
解:
Δ)
(1)由公式

/ =扎
d
A「0
-y二
50__5_2
6.4 10 =8.0 10 cm

d
=0.4
(2)由课本第
20页图1-2
的几何关系可知
r2-r1dsid tan "^=0.04^=0.8 10
2222八'
I=AA22 A1A2cos=4A CoS
(3)由公式2得

物理光学第1章习题解答

物理光学第1章习题解答

因此,反射光电矢量的振动方向与入射面所成的角度为:
tg 1
0.421 84 18 0.042
14.一个光学系统由两片分离透镜组成,两透镜的折射率分别为1.5和1.7,求此系统的 反射光能损失。如透镜表面镀上增透膜,使表面反射比降为0.01,问此系统的光能损 失又为多少?设光束以接近正入射通过各反射面。 【解】(1)系统包括4个反射面,假设光束是接近正入射情形下通过各反射面,因而各面的反射
(2) 当
n1 1.62, n2 1.52时 sin u 1.62 2 1.52 2 =0.56 u 34
所以最大孔径角为 2u =68
24.利用波的复数表达式求两个波
的合成波。 【解】
E1 =a cos(kx t ) 和 E2 a cos(kx t )
E1和E2的相应的复数表达式为
n1 sin 1 1 sin 50 sin 1.5 n2 sin 1 0.511 30 42
因此 rs rp sin(1 2 ) sin19 18 0.335 sin(1 2 ) sin 80 42
因此, t s t s
2 sin 2 cos 1 2 sin 1 cos 2 sin(1 2 ) sin(1 2 ) sin 1 cos 2 4 sin 2 2 cos 2 1 sin 2 cos 1 sin 2 (1 2 ) s
2 2 2 2
n 1 1.7 1 0.7 R3 3 0.067 n 1 1.7 1 2.7 3 1 1 1 1.7 2 n4 1 1.7 R4 1 0.067 n 1 1 1.7 4 1 1.7

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答 - 百度文库《光学教程》(姚启钧)习题解答第一章光的干涉1 、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2 级亮纹位置的距离。

解:改用两种光第二级亮纹位置的距离为:2 、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第 1 亮条纹和中央亮纹之间的距离;⑵若 P 点离中央亮纹为问两束光在 P 点的相位差是多少?⑶求 P 点的光强度和中央点的强度之比。

解:⑴⑵由光程差公式⑶中央点强度:P 点光强为:3 、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4 、波长为的单色平行光射在间距为的双缝上。

通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解:由干涉条纹可见度定义:由题意,设,即代入上式得5 、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角。

解:由菲涅耳双镜干涉条纹间距公式6 、在题 1.6 图所示的劳埃德镜实验中,光源 S 到观察屏的距离为,到劳埃德镜面的垂直距离为。

劳埃德镜长,置于光源和屏之间的中央。

⑴若光波波长,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域 P 1 P 2 可由图中的几何关系求得)解:由图示可知:①②在观察屏上可以看见条纹的区域为 P 1 P 2 间即,离屏中央上方的范围内可看见条纹。

7 、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。

已知肥皂膜折射率为,且平行光与法向成 30 0 角入射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)
n1
i1 i1D
A
(3)
C
形成明暗相间的同心圆环 n2 i2 E
状干涉条纹。
n3
B
(4) (5)
条纹特点:
• 形状: 具有相同倾角 i1 的光线,
在膜面上入射点的轨迹是一个圆, 因此,典型装置之屏上的等倾条 纹,是一系列同心圆环,圆环的
的半径:r = f tg i1 f sin i1。垂 直入射时,i1=0,r(i1=0)=0, 对k 3, Nhomakorabead3
5 4
7 4
k 4,
d4
7 4
由图知可得明条为8条,
暗条为7条的直线干涉条纹
(图示)。
d 0 d 7 4
1234
暗纹中心 明纹8条 暗纹7条
(2)平板玻璃放在上面,下面是表面 为圆柱面的平凹透镜。
同理,由 2nd k
2
d 0
可观察到第 k 4 的明
条纹,但对应d 7 处, 只有一条明条纹,4 则共 d 0
n1 n2 n3
A
A处条纹明暗 暗
B n1
n2 n3
d
2.杨氏双缝干涉中,若有下列变动,干涉 条纹将如何变化
(1)把整个装置浸入水中,条纹变密?疏?
光程差
n
r
n(r2
r1 )
nd
x d'
条纹间距 x d ' 则条纹变密
nd
S1
S
o
S2
(2)在缝S2处慢慢插入一块楔形玻璃片, 整个干涉条纹上移?下移?
d
2
)
n1
n2 n3
2n
(3)牛顿环干涉
干涉条纹是以接触点为中心的同心圆环,
其明环半径 r (k 1)R
2
暗环半径 r kR
R r
其中R为透镜的曲率半径
5.迈克耳孙干涉仪 利用振幅分割法使两个相互垂直的平面
镜形成一等效的空气薄膜,产生干涉。
视场中干涉条纹移动的数目与相应的空 气薄膜厚度改变(平面镜平移的距离)的
3.图示,设单色光垂直入射,画出干涉 条纹(形状,疏密分布和条纹数)
(1)上表面为平面,下表面为圆柱面的 平凸透镜放在平板玻璃上。
由 2nd 得明纹条件
2
2nd k
7
当 d 7 时,2 k 4
4
4
可观察到第四级明条纹,即
d 0
d 7 4
k 1,
d1
1 4
k 2,
d2
3 4
(2)光程差引起的相位变化为 2
其中为光程差,为真空中光的波长
(3)半波损失与附加光程差
2
两束光(反射光)由于相位突变所引起 的光程差。
3.杨氏双缝干涉(波阵面分
割法)
光程差
r
r2
r1
d
x d'
S1 d
r1 r2
x o
S2
d
得:明纹条件 x k d ' k 0,1,2
d
暗纹条件 x (2k 1) d ' k 0,1,2
光的干涉习题课
一、基本要求
1.理解获得相干光的基本方法,掌握 光程的概念; 2.会分析杨氏双缝干涉条纹及薄膜干 涉条纹的位置和条件; 3.了解迈克耳孙干涉仪的工作原理。
二、基本内容
1.获得相干光的基本方法 (波阵面分割法,振幅分割法)
2.光程
(1)光在折射率n的介质中,通过的几 何路程L所引起的相位变化,相当于光在 真空中通过nL的路程所引起的相位变化。
关系 d N
2
三、讨论 1.单色光λ垂直入射劈尖, 讨论A、B处的情况
n1 n2 n3
B处光程差 A处条纹明暗
2n2d 明
A
B n1
n2 n3
d
n1 n2 n3
B处光程差 2n2d A处条纹明暗 明
n1 n2 n3
B处光程差
2n2d 2
A处条纹明暗 暗
B处光程差
2n2d 2
d2
条纹间距 x d '
d
4.薄膜干涉(振幅分割法)
入射光在薄膜上表面由于反射和折射 而分振幅,在上、下表面的反射光干涉
(1)等倾干涉
光程差
2d
n22
n12
sin
2
i1
2
2dn2
cos i2
2
( n1 n2 n3或n1 n2 n3)
s
F
(2)
上、下表面的反射光(2) 和(3)在F点相遇干涉,
光程差 2d n22 ( n1 n2 n3或n1
n12 n2
sin n3
2 i1

2
i1 0
2n2d 2
n1
n2
2n
n3
所以
2n2 d
2
k
k 1,2,3(明纹)
2n2d 2 (2k 1) 2
k 0,1,2,(暗纹)
相邻两明(暗)条纹处劈
尖厚度差d
(若
2n2
n2 1 ,则
n2 1.62 n1 1.50 n2
n3 1.50 n3'1.75
分别写出左右两侧的反射
光的光程差表示式(对应同一厚度)
左 2n2d 2

右 2n2d
可见,对应同一厚度处,左 右两侧的光程差相差半波长 2 ,
图示S向下移动,此时 S' S1 S' S2 ,于是 中央明纹的位置向上移动。
(7)如果光源S有一定宽
S1
度,情况又如何?(光源 S d
o
的线度的影响)
临界宽度 2SS' r0'
d
S S2
r0'
(8)光源的非单色性的影响?
j
该干涉级对应的光程差为实现相干的最大光程差
max
j(
)
2
相干长度
应条纹中心。
•圆条纹级次j的分布规律: 内高 外低。
r oP
i1 i1
n1 n2 > n1 n1
· S
a1
i1
i1
Ai2···D·BC
f L
a2
h
•膜厚度d变化时条纹分布规律: d增大,条纹向外移动;d减小, 条纹向内移动。
每当 2n2d0 改变一个 ,
视场中就能看到一个条纹 移过。
(2)劈尖等厚干涉
图示由于S2到O点的光程逐渐增加,因 此S1到屏和S2到屏两束光线相遇处的光 程差为零的位置向下移动。
即整个干涉条纹向下移动。
S1
S
o
S2
(3)把缝隙S2遮住,并在两缝垂直平面 上放一平面反射镜,干涉图样如何变化?
此时两束光的干涉如图所示,
由于S1光线在平面镜反射且有半波损失 2 ,
因此干涉条纹仅在O点上方,且明暗条纹位
可看到
d 7 4
d 0
d 7 4
d 0
7条明纹、8条暗纹
(图示)
432 1
明纹7条 暗纹8条
4.图示牛顿环装置中,平板
玻璃由两部分组成的
( n3 1.50, n3 ' 1.75 ),透镜玻
璃的折射率 n1 1.50,玻璃与透镜之间的间
隙充满 n2 1.62的介质,试讨论形成牛顿环
的图样如何? 讨论:
置与原来相反。
S1
S
o
S2
(4)两缝宽度稍有不等, 干涉图样如何变化?
干涉条纹位置不变,但干涉减弱不为零 (暗),整个条纹对比度下降,不够清晰。
(5)分别用红、蓝滤色片各遮住S1和 S2,干涉图样如何变化?
由于两束光频率不同,不
相干,无干涉条纹。
S1
S
o
S S2
(6)将光源沿平行S1S2连线 方向作微移,图样如何变?
相关文档
最新文档