《离散型随机变量》教案
离散型随机变量教案

离散型随机变量教案教案标题:离散型随机变量教案一、教学目标:1. 了解离散型随机变量的基本概念和性质;2. 掌握离散型随机变量的概率质量函数和累积分布函数的计算方法;3. 理解离散型随机变量的期望值和方差的含义和计算方法;4. 能够应用离散型随机变量的知识解决实际问题。
二、教学内容:1. 离散型随机变量的概念和特点;2. 离散型随机变量的概率质量函数和累积分布函数;3. 离散型随机变量的期望值和方差;4. 离散型随机变量的应用实例。
三、教学重点和难点:1. 离散型随机变量的概念和性质;2. 离散型随机变量的概率质量函数和累积分布函数的计算方法;3. 离散型随机变量的期望值和方差的含义和计算方法。
四、教学方法:1. 讲授与示范相结合的方法,通过具体的例子引导学生理解离散型随机变量的概念和性质;2. 引导学生通过计算概率质量函数和累积分布函数来掌握离散型随机变量的计算方法;3. 通过实际问题的分析和解决,帮助学生理解离散型随机变量的应用。
五、教学工具:1. 教材:离散型随机变量相关章节;2. 计算器;3. 板书。
六、教学过程:1. 导入:通过一个具体的例子引导学生思考,什么是随机变量,什么是离散型随机变量。
2. 概念讲解:介绍离散型随机变量的定义、概率质量函数和累积分布函数的概念和计算方法。
3. 计算练习:让学生通过计算给定离散型随机变量的概率质量函数和累积分布函数,加深对概念和计算方法的理解。
4. 期望值和方差:讲解离散型随机变量的期望值和方差的定义和计算方法,并通过实例进行说明。
5. 应用实例:给出几个实际问题,引导学生运用离散型随机变量的知识解决问题。
6. 总结与拓展:对本节课的内容进行总结,并引导学生思考离散型随机变量的更多应用领域。
七、教学评估:1. 课堂练习:布置一些计算题,检查学生对离散型随机变量的概念和计算方法的掌握程度;2. 问题解答:鼓励学生提问,解答他们在学习过程中遇到的问题;3. 实际应用评估:通过学生对应用实例的解答,评估他们运用离散型随机变量知识解决实际问题的能力。
离散型随机变量教案

离散型随机变量及其分布列第一课时2.1.1离散型随机变量教学目标:1.知识与技能:理解随机变量和离散型随机变量的概念,能够应用随机变量表示随机事件,学会恰当的定义随机变量;2.过程与方法:在教学过程中,以不同的实际问题为导向,引导学生分析问题,归纳共性,提高分析能力和抽象概括能力;3.情感、态度与价值观:列举生活实例,使学生进一步感受到数学与生活的零距离,增强数学的应用意识.教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用.教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识.教学方法:问题情境法、引导探究.教学手段:多媒体.教学过程:一、创设情境,引出随机变量问题1:掷一枚骰子,向上的点数有哪些?问题2:某人射击一次,射中的环数有哪些?问题3:掷一枚硬币的结果有哪些?思考:掷一枚硬币的结果是否也可以用数字来表示?任何随机试验的结果都可以用数字表示吗?二、探究发现,归纳概念问题4:从装有黑色,白色,黄色,红色四个球的箱子中摸出一个球,可能会出现哪几种结果?能否用数字来刻画这种随机试验的结果?引导学生从例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示。
由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量.随机变量的概念:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示,在这个对应关系下,数字随着试验结果的变化而变化。
像这种随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示.思考:随机变量和函数有类似的地方吗?函数随机变量问题5:在掷骰子的试验中,如果我们仅关心的是“掷出的点数是否为偶数”,怎样构造随机变量?问题6:在含有10件次品的100件产品中,任意抽取4件,设其中含有的次品件数为X ,思考:(1)求出随机变量X 的所有可能取值(2){X=4}表示什么事件?(3){X <3}表示什么事件?(4)事件“抽出3件以上次品”如何用X 表示?(5)事件“至少抽出1件次品”如何用X 表示?思考:前面所涉及的随机变量,从取值的角度看有什么共同特点?(取值可以一一列出)0,掷出奇数点1,掷出偶数点{Y 实数 实数离散型随机变量的概念:所有取值可以一一列出的随机变量,称为离散型随机变量.问题7:下面两个例题中的随机变量是离散型随机变量吗?(1)某网页在24小时内被浏览的次数(2)某人接连不断的射击,首次命中目标需要射击的次数合作交流:你能举出一些离散型随机变量的例子吗?问题8:下列随机变量是离散型随机变量吗?(1)在某项体能测试中,某同学跑1km所花费的时间;(2)公交车每10分钟一趟,一乘客等公交车的时间;(3)笔记本电脑的寿命.非连续型随机变量的概念:有的随机变量,它可以取某一区间内的一切值这样的随机变量叫做连续型随机变量.问题9:上例体能测试中,如果跑1km时间在3'39"之内的为优秀;时间在3'39"到3'49"之间的为良好;时间在3'49"到4'33"之间的为及格,其他的不及格.(1)如果我们只关心该同学是否能够取得优秀,应该如何定义随机变量?(2)如果我们关心学生的成绩等级,是优秀、良好还是及格,又应该如何定义随机变量呢?三、实际应用,加深理解练习:下列随机试验的结果能否用离散型随机变量表示?若能,则写出它可能的取值,并说明这些值所表示的随机试验的结果.(1)一袋中装有5个同样的球,编号依次为1,2,3,4,5.从该袋中随机取出3个球.三个球中的最小编号,最大编号呢?(2)袋子中有2个黑球6个红球,从中任取 3个,其中含有的红球个数?含有的黑球个数呢?(3)某同学打篮球投篮5次,投中的次数;(4)甲乙两队进行乒乓球单打比赛,采用“5局3胜制”,则分出胜负需要进行的比赛次数;四、课堂小结本节课你学到了什么?两个概念:随机变量、离散型随机变量一种思想:数字化五、布置作业必做题:1.有5把钥匙串在一起,其中有1把是有用的,若依次尝试开锁,若打不开就扔掉,直到找到能开锁的钥匙为止,则试验次数X 的所有可能取值是_______;2.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,求这名同学回答这三个问题的总得分ξ的所有可能取值及对应的试验结果.选做题:先后抛掷两枚骰子,向上的点数之和 X 的所有可能取值及取这些值时对应的概率.六、板书设计多媒体 典例分析 学生练习区: (1) (2) (3) (4) 2.1.1离散型随机变量1.随机变量的概念和本质:2.离散型随机变量概念:3.非离散型随机变量概念:。
离散型随机变量及其分布复习课教案

离散型随机变量及其分布复习课教案一、教学目标1. 回顾和巩固离散型随机变量的概念、性质和常用分布律。
2. 提高学生运用离散型随机变量及其分布解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容1. 离散型随机变量的定义及其性质。
2. 离散型随机变量的分布律及其计算方法。
3. 常用离散型随机变量的分布律(如二项分布、泊松分布、均匀分布等)。
4. 离散型随机变量期望和方差的计算方法及其性质。
5. 离散型随机变量及其分布在实际问题中的应用。
三、教学方法1. 采用案例分析法,通过具体例子引导学生回顾和巩固离散型随机变量及其分布的知识。
2. 运用小组讨论法,培养学生团队合作精神和独立思考能力。
3. 采用互动式教学法,激发学生的学习兴趣,提高课堂参与度。
4. 利用多媒体辅助教学,增强学生对知识点的理解。
四、教学准备1. 教案、课件及教学素材。
2. 计算器、投影仪等教学设备。
3. 练习题及答案。
五、教学过程1. 导入新课:通过一个简单的案例,引导学生回顾离散型随机变量的定义及其性质。
2. 知识回顾:讲解离散型随机变量的分布律及其计算方法,引导学生复习常用分布律。
3. 案例分析:分析实际问题,运用离散型随机变量及其分布解决这些问题,巩固知识。
4. 小组讨论:让学生分组讨论离散型随机变量期望和方差的计算方法及其性质。
5. 课堂练习:布置练习题,让学生运用所学知识解决问题,教师点评答案。
6. 总结与展望:对本节课的主要内容进行总结,并提出下一节课的教学内容。
7. 课后作业:布置课后作业,巩固课堂所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对离散型随机变量及其分布的理解程度。
2. 练习题解答:评估学生运用离散型随机变量及其分布解决实际问题的能力。
3. 小组讨论:观察学生在团队合作中的表现,评价其团队合作精神和独立思考能力。
七、教学拓展1. 介绍离散型随机变量及其分布在其他学科领域的应用。
离散型随机变量的数字特征教案

离散型随机变量的数字特征教案一、教学目标1. 了解离散型随机变量的数字特征的概念及其重要性。
2. 掌握离散型随机变量的期望、方差、协方差、相关系数等基本数字特征的计算方法。
3. 能够运用离散型随机变量的数字特征解决实际问题。
二、教学内容1. 离散型随机变量的数字特征概述离散型随机变量的定义数字特征的概念与分类2. 离散型随机变量的期望期望的定义与计算方法期望的性质与意义3. 离散型随机变量的方差方差的定义与计算方法方差的性质与意义4. 离散型随机变量的协方差协方差的定义与计算方法协方差的性质与意义5. 离散型随机变量的相关系数相关系数的定义与计算方法相关系数的性质与意义三、教学方法1. 讲授法:讲解离散型随机变量的数字特征的基本概念、计算方法和性质。
2. 案例分析法:分析实际问题,引导学生运用离散型随机变量的数字特征解决实际问题。
3. 互动教学法:引导学生积极参与讨论,提问解答,巩固所学知识。
四、教学准备1. 教案、教材、课件等教学资源。
2. 计算器、投影仪等教学设备。
五、教学进程1. 引入新课:介绍离散型随机变量的数字特征的概念及其重要性。
2. 讲解离散型随机变量的期望:讲解期望的定义、计算方法、性质与意义。
3. 讲解离散型随机变量的方差:讲解方差的定义、计算方法、性质与意义。
4. 讲解离散型随机变量的协方差:讲解协方差的定义、计算方法、性质与意义。
5. 讲解离散型随机变量的相关系数:讲解相关系数的定义、计算方法、性质与意义。
6. 案例分析:分析实际问题,引导学生运用离散型随机变量的数字特征解决实际问题。
7. 课堂练习:布置相关练习题,巩固所学知识。
注意:教学进程可根据实际情况进行调整。
六、教学评估1. 课堂提问:通过提问了解学生对离散型随机变量数字特征的理解程度。
2. 练习题:布置难易适中的练习题,检验学生对知识的掌握情况。
3. 小组讨论:组织小组讨论,鼓励学生分享自己的理解和思路,培养学生的合作能力。
离散型随机变量及其分布列教案

离散型随机变量及其分布列教案一、教学目标1.了解离散型随机变量的基本概念和特点;2.掌握离散型随机变量的概率分布列的计算方法;3.熟练掌握二项分布、泊松分布等离散型随机变量的概率分布列及其应用。
二、教学重点1.离散型随机变量的基本概念和特点;2.离散型随机变量的概率分布列的计算方法;3.二项分布、泊松分布等离散型随机变量的概率分布列及其应用。
三、教学内容及步骤1. 离散型随机变量的定义和特点(10分钟)1)定义:若取值只能是有限个或可数个,且每个取值发生的概率都已知,则称该随机变量为离散型随机变量。
2)特点:① 取值只能是有限个或可数个;② 每个取值发生的概率都已知。
2. 离散型随机变量的分布列(15分钟)1)定义:对于一个离散型随机变量X,它所有可能取到的值x1,x2,……,xn,每个值发生的概率分别为p1,p2,……,pn,则称这些概率值所组成的表格为X的概率分布列或简称分布列。
2)计算方法:对于离散型随机变量X,其概率分布列可以通过观察问题得到,也可以通过统计样本得到。
对于某一取值xi,其概率pi可以通过以下公式计算:pi=P(X=xi)3. 二项分布(20分钟)1)定义:当试验只有两种可能结果时(成功或失败),在n次独立重复试验中,成功的次数X服从二项分布。
2)公式:X~B(n,p),其中n表示试验次数,p表示每次试验成功的概率。
3)概率分布列:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中C(n,k)表示从n个元素中取k个元素的组合数。
4)应用:二项分布常用于伯努利实验、抽样调查、质量控制等方面的问题。
4. 泊松分布(20分钟)1)定义:当一个事件在一段时间内发生的次数服从泊松分布时,称该事件服从泊松过程。
2)公式:X~P(λ),其中λ表示单位时间内该事件平均发生的次数。
3)概率分布列:P(X=k)=e^(-λ)*λ^k/k!4)应用:泊松分布常用于描述单位时间内某一事件发生的次数,如电话交换机接到呼叫的次数、邮局收到信件的数量等。
离散型随机变量(教案)

离散型随机变量(教案)2. 1.1离散型随机变量教学目标:知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义授课类型:新授课教具:多媒体、实物投影仪第一课时思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X 是离散型随机变量吗?电灯泡的寿命X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:≥?0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量三、讲解范例:例1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,…η=i ,表示被呼叫i 次,其中i=0,1,2,…例2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是()A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则()A .3n =;B .4n =;C .10n =;D .不能确定3.抛掷两次骰子,两个点的和不等于8的概率为()A .1112;B .3136;C .536;D .1124.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D五、小结:随机变量离散型、随机变量连续型随机变量的概念随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量六、课后作业:七、板书设计(略)八、教学反思:1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.2、防止过于追求教学的情境化倾向,怎样把握一个度.。
离散型随机变量其分布列教案

离散型随机变量其分布列教案一、教学目标1.知识与技能:掌握离散型随机变量的概念;了解离散型随机变量的分布列的概念与相关性质;能够根据问题给出离散型随机变量的分布列。
2.过程与方法:通过讲解、示例分析和实际问题解答等方式培养学生的分析问题和解决问题的能力;通过课堂练习、小组合作等方式培养学生的合作精神和团队意识。
3.情感、态度和价值观:培养学生对离散型随机变量的兴趣;培养学生的逻辑思维和分析问题的能力;培养学生的合作意识和团队合作能力。
二、教学重点与难点1.教学重点2.教学难点三、教学过程1.导入新知识引入离散型随机变量的概念,与连续型随机变量进行对比,引出离散型随机变量的分布列的概念,并讲解分布列的性质。
2.学习新知识2.1引入概念解释离散型随机变量的概念,并给出几个常见的离散型随机变量的例子,如二项分布、泊松分布等。
2.2分布列的概念详细讲解分布列的概念,即离散型随机变量的取值及其对应的概率,并通过示例进行说明。
2.3分布列的性质讲解分布列的性质,包括非负性、和为1等。
3.巩固与拓展通过例题进行分布列的计算练习,同时讲解分布列的期望值和方差的计算方法。
4.拓展应用结合实际问题,如掷硬币、扔骰子等,引导学生找出问题中的离散型随机变量,并计算其分布列。
四、教学设置1.教具准备黑板、彩笔、教案、习题册等。
2.师生活动教师以讲解为主,学生以听讲、思考、举手发言为主。
3.学生活动主要是听讲、思考、讨论、合作等。
五、教学反思离散型随机变量的分布列是基础内容,是理解和应用概率论中的重要概念。
通过本节课的学习,学生对离散型随机变量的概念和分布列的性质有了初步的了解,并能够通过例题进行分布列的计算。
教学过程中需要注意让学生进行思考和灵活运用,培养学生的分析问题和解决问题的能力,同时注重实际问题的应用,提高学生的理论与实践结合的能力。
离散型随机变量教案上交

离散型随机变量教案上交第一章:离散型随机变量的概念1.1 引入离散型随机变量的概念解释离散型随机变量的定义强调离散型随机变量与连续型随机变量的区别1.2 离散型随机变量的例子举例说明离散型随机变量的常见类型,如二项分布、几何分布等1.3 离散型随机变量的概率分布介绍离散型随机变量的概率分布的概念解释概率分布表的编制方法第二章:离散型随机变量的期望值2.1 离散型随机变量的期望值的定义解释期望值的定义和意义强调期望值是衡量随机变量平均取值大小的指标2.2 离散型随机变量的期望值的计算方法介绍利用概率分布表计算期望值的方法举例说明如何计算具体离散型随机变量的期望值第三章:离散型随机变量的方差3.1 离散型随机变量的方差的定义解释方差的定义和意义强调方差是衡量随机变量取值分散程度的指标3.2 离散型随机变量的方差的计算方法介绍利用概率分布表计算方差的方法举例说明如何计算具体离散型随机变量的方差第四章:离散型随机变量的标准差4.1 离散型随机变量的标准差的定义解释标准差的定义和意义强调标准差是衡量随机变量取值分散程度的一种直观指标4.2 离散型随机变量的标准差的计算方法介绍利用方差计算标准差的方法举例说明如何计算具体离散型随机变量的标准差第五章:离散型随机变量的概率分布函数5.1 离散型随机变量的概率分布函数的定义解释概率分布函数的概念和意义强调概率分布函数能够描述随机变量的取值概率分布情况5.2 离散型随机变量的概率分布函数的计算方法介绍利用概率分布表计算概率分布函数的方法举例说明如何计算具体离散型随机变量的概率分布函数第六章:离散型随机变量的累积分布函数6.1 离散型随机变量的累积分布函数的定义解释累积分布函数的概念和意义强调累积分布函数能够描述随机变量取值小于或等于某个值的概率6.2 离散型随机变量的累积分布函数的计算方法介绍利用概率分布表计算累积分布函数的方法举例说明如何计算具体离散型随机变量的累积分布函数第七章:离散型随机变量的概率质量函数7.1 离散型随机变量的概率质量函数的定义解释概率质量函数的概念和意义强调概率质量函数是描述随机变量取各个值的概率7.2 离散型随机变量的概率质量函数的计算方法介绍利用概率分布表计算概率质量函数的方法举例说明如何计算具体离散型随机变量的概率质量函数第八章:离散型随机变量的期望值和方差的性质8.1 离散型随机变量的期望值的性质介绍离散型随机变量期望值的基本性质举例说明期望值的性质在实际问题中的应用8.2 离散型随机变量的方差的性质介绍离散型随机变量方差的基本性质举例说明方差的性质在实际问题中的应用第九章:离散型随机变量的标准化9.1 离散型随机变量的标准化的概念解释标准化的概念和意义强调标准化是将随机变量转化为标准正态分布的过程9.2 离散型随机变量的标准化的方法介绍利用累积分布函数进行标准化的方法举例说明如何进行具体离散型随机变量的标准化处理第十章:离散型随机变量的实际应用10.1 离散型随机变量在实际问题中的应用举例说明离散型随机变量在各个领域中的应用,如概率论、统计学、经济学等强调离散型随机变量是解决实际问题的重要工具10.2 离散型随机变量的实际案例分析分析具体离散型随机变量的实际案例,如骰子问题、抽奖问题等强调通过离散型随机变量分析和解决实际问题的方法和技巧重点和难点解析一、离散型随机变量的概念:理解离散型随机变量的定义及其与连续型随机变量的区别是基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修2-3 2.1--01
《2.1.1离散型随机变量》导学案
编撰崔先湖姓名班级组名.
【学习目标】1.理解随机变量地意义;
2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量
地例子;
3.理解随机变量所表示试验结果地含义,并恰当地定义随机变量.
【学习重点】随机变量、离散型随机变量、连续型随机变量地意义
【学习难点】随机变量、离散型随机变量、连续型随机变量地意义
【学法指导】自主与讨论相结合
【导学过程】
一教材导读
思考1:掷一枚骰子,出现地点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币地结果是否也可以用数字来表示呢?
在掷骰子和掷硬币地随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定地数字表示.在这个对应关系下,数字随着试验结果地变化而变化.
定义1:称为随机变量.随机变量常用字母…表示.
思考2:随机变量和函数有类似地地方吗?
随机变量和函数都是一种映射,随机变量把随机试验地映为,函数把映为.在这两种映射之间,试验结果地范围相当于函数地,随机变量地取值范围相当于函数地.我们把随机变量地取值范围叫做随机变量地.例如,在含有10件次品地100 件产品中,任意抽取4件,可能含有地次品件数X 将随着抽取结果地变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .
利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出3 件以上次品”又如何用X 表示呢?
定义2:,称为离散型随机变量.
离散型随机变量地例子很多.例如某人射击一次可能命中地环数X 是一个离散型随机变量,它地所有可能取值为;某网页在24小时内被浏览地次数Y也是一个离散型随机变量,它地所有可能取值为.jLBHrnAILg 思考3:电灯地寿命X是离散型随机变量吗?
连续型随机变量: 对于随机变量可能取地值,可以取某一区间内地一切值,这样地变量就叫做连续型随机变 4.离散型随机变量与连续型随机变量地区别与联系:
注意:(1)有些随机试验地结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上xHAQX74J0X
(2)若ξ是随机变量,b
a
b
a,
,
+
=ξ
η是常数,则η也是随机变量
二、题型导航
题型一、随机变量概念地辨析
【例1】将一颗均匀骰子掷两次,不能作为随机变量地是:()
(A)两次出现地点数之和;(B)两次掷出地最大点数;(C)第一次减去第二次地点数差;(D)抛掷地次数.
变式1(1)洪湖车站每天候车室候车地人数X,(2)张三每天走路地步数Y,(3)下落地篮球离地面地距离Z,(4)每天停靠洪湖港地船地数量S.不是离散型随机变量地是LDAYtRyKfE
解题总结
题型二、随机变量地值域
【例2】写出下列随机变量可能取地值,并说明随机变量所取地值表示地随机试验地结果
(1)一袋中装有5只同样大小地白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出地球地最大号码数ξ;
(2)某单位地某部电话在单位时间内收到地呼叫次数η
变式2写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到地点数.(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球地个数.(3)抛掷两枚骰子得到地点数之和.(4)某项试验地成功率为0.001,在n次试验中成功地次数.(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手地射击次数X地可能取值解题总结
题型三有关随机变量地不等式
【例3】抛掷两枚骰子各一次,记第一枚骰子掷出地点数与第二枚骰子掷出地点数地和为ξ,试问:(1)“ξ< 4”表示地试验结果是什么?
(2)“ξ> 11”表示地试验结果是什么?
变式3 抛掷两枚骰子各一次,记第一枚骰子掷出地点数与第二枚骰子掷出地点数地差为ξ,试问:“ξ> 4”表示地试验结果是什么?
解题总结
题型四随机变量地性质
【例4】:某城市出租汽车地起步价为10元,行驶路程不超出4km,则按10元地标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km地部分按lkm计).从这个城市地民航机场到某宾馆地路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线地不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客地行车路程ξ是一个随机变量,他收旅客地租车费可也是一个随机变量EmxvxOtOco
(1)求租车费η关于行车路程ξ地关系式;
(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?
变式4 假设进行一次从袋中摸出一个球地游戏,袋中有3个红球、4个白球、1个蓝球、2个黑球,摸到红球得2分、白球得1分、蓝球得-1分,黑球得-2分,用列表写出摸球可能地结果对应地分值X及相应地概率.
解题总结
三、基础达标
1.小王钱夹中只剩有20元、10元、5元、2元和1元人民币各一张.他决定随机抽出两张,作为晚餐费用.用X 表示这两张人民币金额之和.X地可能取值.
2.2008年8月地某天,福娃在国家射击馆进行手枪慢射决赛,她对准移动靶进行射击.你觉得她可能出现地射击结
果有,若用X表示命中地环数,则X可能取地值有.
3.在一场比赛中樱木花道在三分线外出手,你觉得他得分地可能性有种,若用X表示得分情况,则X可能取地值有.
4.在含有10件次品地100件产品中,任意抽取4件,设含有地次品数为X:X=4表示事件_______;X=0表示事件__;X<3表示事件_____;事件“抽出3件以上次品数”用_______表示.
5.袋中有大小相同地5个小球,分别标有1、2、3、4、5五个号码,现在在有放回地条件下取出两个小球,设两个小球号码之和为X,则X所有可能值地是__;X=4表示.
6.某项试验地成功率是失败率地3倍,用随机变量X表示一次试验地成功次数,则P(X=0)=.
四.当堂检测
1.下列随机试验地结果能否用离散型随机变量表示?若能,请写出各随机变量可能地取值并说明这些值所表示地随机试验地结果:
(1)投掷两枚骰子,所得点数之和;
(2)某足球队在5次点球中射进地球数;
(3)把一枚硬币先后投掷两次.如果出现两个正面地5分,出现两个反面得-3分,其他结果得0分.用X来表示得到地分值,列表写出可能出现地结果与对应地X值.
2抛掷两枚骰子各一次,记第一枚骰子掷出地点数与第二枚骰子掷出地点数地差为ξ,试问:(1)“ξ> 4”表示地试验结果是什么?
(2)问题(1)中地结果一定会出现吗?“ξ> 5”是否有意义.
(3)如果是两个人分别掷两枚骰子进行比赛,你会怎样定义获胜地结果?
【课后反思】
本节我所学到核心知识有,
基本题型有;
我还存在地疑惑是.
【一节励志】
版权申明
本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.TIrRGchYzg
用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.7EqZcWLZNX
Users may use the contents or services of this article for personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.lzq7IGf02E
转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.zvpgeqJ1hk Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.NrpoJac3v1。