1.2.2_基本初等函数的导数公式及导数的运算法则(2)ppt课件
数学:1.2.2《基本初等函数的导数公式及导数的运算法则》课件(新人教A版选修2—2)

'
2x 3
'
3
'
3x 2.
所以,函数 y x 2x 3的导数是 y 3x 2.
' 2
2
例3
日常生活中的饮用水 经过 净化的 . 随着水 , 所需净化费 .已知将 1吨水净 x % 时所需费
通常是
纯净度的提高 用不断增加 化到纯净度为 用 单位 : 元 为 cx 5284 100 x
可以看作函数
和u
0 . 05 x 1 的复合函数
y y u
' x
.由复合函数求导法则有
'
e
0 . 05 x 1
u '
0 .0 5 x 1
0 . 05 e
u
0 . 05 e
.
3 函数
y sin π x φ 可以看作函数 .
'
f x f 3. g x
'
'
x g x f x g x g x 2 g x
0 .
例2
根据基本初等函 的导数公式 数
3
和导数运算法则求函数 y x 2x , 3 的导数.
解 x
因为y x 2x 3
一般地 , 对于两个函数 变量 u , y 可以表示成
y f u 和 u g x , 如果通过 x 的函数 , 那么称这个函数为函 fun
数 y f u 和 u g x 的 复合函数 ( composite ction ), 记作 y f g x .
122基本初等函数的导数公式及导数的运算法则292542共23页文档

从而切线 y1方 3(程 x1)为 即 , 3xy40.
设直线m的方程为3x+y+b=0,由平行线间的距离公 式得:
|b ( 4 )|1 0 |b 4 | 1, 0 b 6 或 b 1;4 3 2 1
解:f(x)(x2sinx) (x2)(sinx)2xcosx
(2)求函 g(x)数 x33x26x2的导 . 2
解:g(x)(x3 3x2 6x) 2
(x3)(3x2)(6x) 3x2 3x6 2
例 2: (1)求 函 数 h(x)xsinx的 导 数 . (2)求 函 数 f(x)2xlnx的 导 数 .
故在t=0,t=4和t=8秒时物体运动的速度为零.
例5:已知曲线 行且距离等于
y
10
,x求13 在直点线Pm(1的,1方)处程的. 切线与直线m平
例5:已知曲线 行且距离等于
y
10
,x求13 在直点线Pm(1的,1方)处程的. 切线与直线m平
解 : yx 13,y(x 13)(x3)3x4;
解 :(1)h(x)(xsinx) xsinxx(sinx)sinxxcosx
(2)f (x) (2xlnx) (2x)lnx(2x)(lnx) 2lnx2
3.用 两 种 y方 ( 22 法 x3 )求 (23)x
的导数
解:法一:y ( 2 x 2 3 ) ( 3 x 2 ) ( 2 x 2 3 )3 x ( 2 )
公 式 7 .若 f
(x)
log a
x,则 f
'( x )
1 x ln a
(a
基本初等函数的导数公式及导数的运算法则优秀课件2

导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
x gx () f () x gx () f()
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
fx () g () x f ()() x g x fx () g () x
公 式 1 .若 f ( x ) c , 则 f '( x ) 0; 公 式 2 .若 f ( x ) x n , 则 f '( x ) n x n 1 ; 公 式 3 .若 f ( x ) s in x , 则 f '( x ) c o s x ; 公 式 4 .若 f ( x ) c o s x , 则 f '( x ) s in x ; 公 式 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 ); 公 式 6 .若 f ( x ) e x , 则 f '( x ) e x ; 1 公 式 7 .若 f ( x ) lo g a x , 则 f '( x ) ( a 0 , 且 a 1); x ln a 1 公 式 8 .若 f ( x ) ln x , 则 f '( x ) ; x
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f f( x ) ( xgx ) () f( xgx ) () ( gx ( ) 0 ) 2 gx () gx ()
例2.求函数y=x3-2x+3的导数.
1.2.2_基本初等函数的导数公式及导数的运算法则ppt

• y′=2(3x-2)·(3x-2)′=6(3x-2)=18x-12.
PPT
• (6)y′ = 2cosx·(cosx)′ = - 2cosx·sinx = - sin2x
• [点评] 法则可简单叙述成:复合函数对 自变量的导数,等于已知函数对中间变量 的导数,乘以中间变量对自变量的导数.
PPT
求下列函数的导数:
(1)y=lnsinx2x;
(2)y=
x 1-x.
PPT
PPT
• [例3] 某日中午12时整,甲船自A处以 16km/h的速度向正东行驶,乙船自A的正 北18km处以24km/h的速度向正南行驶,则 当日12时30分时两船之间的距离对时间的 瞬时变化率是________km/h.
=24sin2x(sinx)′=24sin2xcosx,
∴曲线在点 P6π,1处的切线的斜率
k=
=24sin26π·cos6π=3 3.
∴适合题意的曲线的切线方程为
y-1=3
3x-π6,即
6 3x-2y-
PPT
3π+2=0.
练习
一、选择题
1.y=12(ex+e-x)的导数是
A.12(ex-e-x)
[答案] -6 [解析] ∵f′(x)=2cos3x+4π·3x+4π′ =6cos3x+π4, ∴f′π4=6cos34π+π4=-6.
PPT
5.曲线 y=3 3x2+1在点(1,3 4)处的切线方程为 ________________.
[答案] x-3 2y+1=0
PPT
PPT
三、解答题 6.求下列函数的导数: (1)y=(1-3x)3; (2)y=ln1x; (3)y=sin2x1-2cos24x.
基本初等函数的导数公式及导数的运算法则-第二课时课件

新课讲解
例 1 求y 1 4的 导.数 13x
新课讲解
例 2 求函y数 (2x23) 1x2 的导. 数
新课讲解
例 3 求函 yl数 n2x (23x1)的导 . 数
新课讲解
例 4 求函y数 lg1x2的导. 数
练 习
复合函数的求导
1 (1) y (1 3x)4
(2)y3ax2bxc;
(3)y eax2bx
(4)y 1ln2 x
课堂小结
复合函数的导数:f 'x ((x))=f '(u) '(x).
3.积的导数
4、商的(导 u v)' 数 v'uu : 2u'v
(uv)=uv+uv.
复习x
的导数.
答案:y′= cosx2xsinx 2x x
2、求函数 y 1 的导数. 1 3x
复合函数
新课讲解
如 y=(3x-2)2 由二次函数 y=u2 和一次函 数 u=3x-2“复合”而成的.y=u2 =(3x-2)2 . 像 y=(3x-2)2 这样由几个函数复合而成的函数, 就是复合函数.
基本初等函数的导数公式及导数的运算法则-第二课时课件
复习引入
1. 几种常见函数的导数公式 ( c )' (0 c为常数) ( x n )' nx n 1 ( n Q * ); (sin x )' cos x ; (cos x )' sin x .
2.和(或差)的导数
(u±v)=u±v.
1.2 第2课时 导数的运算法则 课件(人教A版选修2-2)

(x2sin x)′cos x-x2sin x(cos x)′ = cos2x (2xsin x+x2cos x)cos x+x2sin2x = cos2x xsin 2x+x2 = . cos2x
(3)解法一
y′=[(x+1)(x+2)(x+3)]′
(5)若f(x)=ax,则f′(x)= (6)若f(x)=ex,则f′(x)=
axln a ;
ex ; 1 (7)若f(x)=logax,则f′(x)= x ln a ; 1 x (8)若f(x)=ln x,则f′(x)= .
观察下图你能作出判断吗?
h( x)
=
f( x) + g(x)
f x
复合函数 记作y=f(g(x)). f(u)和u=g(x)的___________,
2.复合函数的求导法则
复合函数 y = f(g(x)) 的导数和函数 y = f(u),u
= g(x) 的导数间的关系为 yx′= yu′·ux′, 即y对x的导数等于
y对u的导数 与_____________ u对x的导数 的乘积. ____________
[解析] (1)看成函数y=u2与u=3x-2的复合 函数,根据复合函数求导法则有:y′x=y′u·u′x =2u·3=6u=6(3x-2)=18x-12.
开始学习复合函数求导时,要紧扣上述步骤 进行,待熟练后可简化步骤如下: y′=2(3x-2)·(3x-2)′=6(3x-2)=18x-12.
1.2.2 导数的运算法则 (2课时)
基本初等函数的导数公式 (1)若f(x)=c(c为常数),则f′(x)=
0
a x a- 1 ;
;
1.2.2基本初等函数的导数公式及导数的运算法则(共3课时)
运用基本初等函数的导数公式和求导的运算法则 时,要认真分析函数式的结构特点,较复杂的要先化简, 再求导,尽量避免使用积或商的求导法则.
思考 如何求函数 y ln x 2的导数呢?
若设u x 2x 2, 则y ln u.从而y lnx 2可以 看成是由y ln u 和u x 2x 2经过"复合" 得到
的,即y可以通过中间变量 u表示为自变量 x的函数.
如果把 y 与u 的关系记作y f u , u 和 x的关系记作 u g x , 那么这个"复合" 过程可表示为 y f u f g x lnx 2.
从而切线方程为 y 1 3( x 1),即3 x y 4 0.
设直线m的方程为3x+y+b=0,由平行线间的距离公 式得:
| b (4) | 32 1 10 | b 4 | 10, b 6或b 14;
故所求的直线m的方程为3x+y+6=0或3x+y-14=0.
x x
(2) (e ) e .
x x
公式1
1 公式7 (1oga ) x ln a 1 ' 公式8 (1nx ) x
x '
公式2 公式3 公式4 公式5 公式6
x x (为常数) ' (sin x) cos x. 记 ' (cos x ) sin x. x ' x 一 (a ) a ln a x ' x (e ) e
122 基本初等函数的导数公式及导数的运算法则(二)PPT课件
第一章 导数及其应用
做一做
1.已知f(x)=xln x,则f′(x)=________.
解析:f′(x)=x′ln x+x(ln x)′=ln x+1.
答案:ln x+1
2.设y=-2exsin x,则y′=( )
A.-2excos x
B.-2ex(sin x+cos x)
C.2exsin x
典题例证技法归纳
题型探究
题型一 利用导数的运算法则求导数
例1 求下列函数的导数: (1)y=3x2+xcos x; (2)y=lg x-x12; (3)y=(x2+3)(ex+ln x); (4)y=x2+tan x;
(5)y=s in4x+ cos 4x.
4
4
栏目 导引
第一章 导数及其应用
【解】 (1)y′=6x+cos x+x(cos x)′
D.-2exsin x
解析:选B.y′=-2[(ex)′sin x+ex(sin x)′]
=-2(exsin x+excos x)
=-2ex(sin x+cos x).
栏目 导引
第一章 导数及其应用
2.复合函数的求导法则 一般地,对于两个函数 y=f(u)和 u=g(x),如果通过 变量 u,y 可以表示成 x 的函数,那么称这个函数为 函数 y=f(u)和 u=g(x)的___复__合__函__数____,记作 y= f(g(x)). 复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的 导数间的关系为 yx′=yu′·ux′,即 y 对 x 的导数等 于__y_对__u_的__导__数____与__u_对__x_的__∴
y′=
(x2)′+
s (
in
基本初等函数的导数公式及导数的运算法则(二)课件新人教A版选修
新人教A版选修
•自主学习 新知突 破
1.能利用导数的四则运算法则求解导函数. 2.能利用复合函数的求导法则进行复合函数的求导.
[问题2] 试求F(x)=f(x)+g(x)的导数.
[问题3] F(x)的导数与f(x),g(x)的导数有何关系? [提示3] F(x)的导数等于f(x),g(x)导数和.
求曲线的切线方程
已知函数f(x)=x3+x-16. (1)求曲线y=f(x)在点(2,-6)处的切线方程; (2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方 程及切点坐标.
[思路点拨]
利用导数的几何意义解决切线问 题的关键是判断已知点是否是切点.若已知点是切点,则该点 处的切线斜率就是该点处的导数;如果已知点不是切点,则应 • 先设出切点,再借助两点连线的斜率公式进行求解.
解析: (1)y′=(x2)′·ex+x2·(ex)′ =2x·ex+x2·ex =(2x+x2)·ex. (2)令u=2x,y=cos u, 则yx′=yu′·ux′=(cos u)′·(2x)′ =-2sin 2x.
复合函数的导数
写出下列各函数的中间变量,并 利用复合函数的求导法则,求出函数的导数.
1.已知函数f(x)=cos x+ln x,则f′(1)的值为( )
A.1- 1
B.1+sin 1
C.sin 1-1
D.-sin 1
答案: A
2.函数y=sin x·cos x的导数是( )
A.y′=cos2x+sin2x
B.y′=cos2x-sin2x
C.y′=2cos x·sin x
D.y′=cos x·sin x
复合函数的导数
第一章1.2.2 基本初等函数的导数公式及导数的运算法则(二)
1.2.2 基本初等函数的导数公式及导数的运算法则(二)[学习目标] 1.理解函数的和、差、积、商的求导法则.2.掌握求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.知识点一 导数运算法则思考 (1)函数g (x )=c ·f (x )(c 为常数)的导数是什么?(2)若两个函数可导,则它们的和、差、积、商(商的情况下分母不为0)可导吗?反之如何?(3)导数的和(差)运算法则对三个或三个以上的函数求导成立吗?答案 (1)g ′(x )=cf ′(x ).(2)若两个函数可导,则它们的和、差、积、商(商的情况下分母不为0)必可导.若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x)+g (x )=sin x +cos x 在x =0处可导.(3)导数的和(差)运算法则对三个或三个以上的函数求导仍然成立.两个函数和(差)的导数运算法则可以推广到有限个函数的情况,即[f 1(x )±f 2(x )±f 3(x )±…±f n (x )]′=f ′1(x )±f ′2(x )±f ′3(x )±…±f ′n (x ).知识点二 复合函数的导数思考 设函数y =f (u ),u =g (v ),v =φ(x ),如何求函数y =f (g (φ(x )))的导数? 答案 y ′x =y ′u ·u ′v ·v ′x .题型一 导数运算法则的应用例1 求下列函数的导数:(1)y =15x 5+23x 3;(2)y =lg x -e x ;(3)y =1x·cos x ;(4)y =x -sin x 2·cos x 2. 解 (1)y ′=⎝⎛⎭⎫15x 5+23x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫23x 3′ =x 4+2x 2.(2)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (3)方法一 y ′=⎝⎛⎭⎫1x ·cos x ′=⎝⎛⎭⎫1x ′cos x +1x (cos x )′ =12()x -'cos x -1x sin x =-1232x -cos x -1xsin x =-cos x 2x 3-1x sin x =-cos x 2x x -1xsin x =-cos x +2x sin x 2x x. 方法二 y ′=⎝⎛⎭⎫1x ·cos x ′=⎝⎛⎭⎫cos x x ′=(cos x )′x -cos x (x )′(x )2=121sin cos 2x x x x--⋅=-x sin x +cos x2x x =-cos x +2x sin x 2x x . (4)∵y =x -sin x 2·cos x 2=x -12sin x , ∴y ′=⎝⎛⎭⎫x -12sin x ′=1-12cos x . 反思与感悟 在对较复杂函数求导时,应利用代数或三角恒等变形对已知函数解析式进行化简变形,如:把乘积的形式展开,分式形式变为和或差的形式,根式化为分数指数幂等,化简后再求导,这样可以减少计算量.跟踪训练1 求下列函数的导数:(1)y =x 4-3x 2-5x +6;(2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1. 解 (1)y ′=(x 4-3x 2-5x +6)′=(x 4)′-(3x 2)′-(5x )′+6′=4x 3-6x -5.(2)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin xcos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2 x=(sin x +x cos x )cos x +x sin 2 xcos 2 x=sin x cos x +xcos 2 x .(3)方法一 y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+x 2+3x +2=3x 2+12x +11.方法二 ∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11.(4)方法一 y ′=⎝ ⎛⎭⎪⎫x -1x +1′ =(x -1)′(x +1)-(x -1)(x +1)′(x +1)2=x +1-(x -1)(x +1)2=2(x +1)2. 方法二 ∵y =x -1x +1=x +1-2x +1=1-2x +1, ∴y ′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′ =-2′(x +1)-2(x +1)′(x +1)2=2(x +1)2. 题型二 复合函数求导法则的应用例2 求下列函数的导数:(1)y =(1+cos 2x )3;(2)y =sin 2 1x; (3)y =11-2x2;(4)y =(2x 2-3)1+x 2. 解 (1)y =(1+cos 2x )3=(2cos 2x )3=8cos 6xy ′=48cos 5x ·(cos x )′=48cos 5x ·(-sin x ),=-48sin x cos 5x .(2)令y =u 2,u =sin 1x ,再令u =sin v ,v =1x, ∴y ′x =y ′u ·u ′v ·v ′x =(u 2)′·(sin v )′·⎝⎛⎭⎫1x ′ =2u ·cos v ·0-1x 2=2sin 1x ·cos 1x ·-1x 2=-1x 2·sin 2x. (3)设y =12u -,u =1-2x 2,则y ′=12()u -' (1-2x 2)′=321()2u --·(-4x )=3221(12)2x --- (-4x ) =3222(12)x x --.(4)令y =u v ,u =2x 2-3,v =1+x 2, 令v =w ,w =1+x 2.v ′x =v ′w ·w ′x =(w )′(1+x 2)′=12122x -⋅w=2x21+x 2=x 1+x 2,∴y ′=(u v )′=u ′v +u v ′=(2x 2-3)′·1+x 2+(2x 2-3)·x 1+x 2 =4x 1+x 2+2x 3-3x1+x 2=6x 3+x 1+x 2.反思与感悟 求复合函数的导数的步骤跟踪训练2 求下列函数的导数:(1)y =(2x +1)5;(2)y =1(1-3x )4; (3)y =31-3x ;(4)y =x ·2x -1;(5)y =lg(2x 2+3x +1);(6)y =sin 2⎝⎛⎭⎫2x +π3. 解 (1)设u =2x +1,则y =u 5,∴y ′x =y ′u ·u ′x =(u 5)′·(2x +1)′=5u 4·2=10u 4=10(2x +1)4.(2)设u =1-3x ,则y =u -4,∴y ′x =y ′u ·u ′x =(u -4)′·(1-3x )′=-4u -5·(-3)=12u -5=12(1-3x )-5=12(1-3x )5. (3)设u =1-3x ,则y =13u ,∴y ′x =y ′u ·u ′x =13·23u -·(1-3x )′=13·13(1-3x )2·(-3)=-13(1-3x )2. (4)y ′=x ′·2x -1+x ·(2x -1)′.设t =2x -1,u =2x -1,则t =12u ,t ′x =t ′u ·u ′x =12·12u -·(2x -1)′ =12×12x -1×2=12x -1. ∴y ′=2x -1+x 2x -1=3x -12x -1.(5)设u =2x 2+3x +1,则y =lg u ,∴y ′x =y ′u ·u ′x =1u ln 10×(2x 2+3x +1)′ =4x +3(2x 2+3x +1)ln 10. (6)设u =sin ⎝⎛⎭⎫2x +π3,v =2x +π3, 则y =u 2,u =sin v ,∴y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·⎝⎛⎭⎫2x +π3′ =2sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3·2 =4sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. 题型三 导数几何意义的应用例3 (1)曲线y =x (3ln x +1)在点(1,1)处的切线方程是 .(2)已知函数f (x )=k +ln x e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 .答案 (1)4x -y -3=0 (2)1解析 (1)利用求导法则与求导公式可得y ′=(3ln x +1)+x ×3x=3ln x +4. ∴k 切=y ′|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0.(2)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞). 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.反思与感悟 涉及导数几何意义的问题,可根据导数公式和运算法则,快速求得函数的导数,代入曲线切点处横坐标即可求得曲线在该点处的切线斜率,这样比利用导数定义要快捷得多. 跟踪训练3 (1)若曲线y =x 3+ax 在(0,0)处的切线方程为2x -y =0,则实数a 的值为 .(2)若函数f (x )=e x x在x =a 处的导数值与函数值互为相反数,则a 的值为 . 答案 (1)2 (2)12解析 (1)曲线y =x 3+ax 的切线斜率k =y ′=3x 2+a ,又曲线在坐标原点处的切线方程为2x -y =0,∴3×02+a =2,故a =2.(2)∵f (x )=e x x ,∴f (a )=e a a. 又∵f ′(x )=⎝⎛⎭⎫e x x ′=e x ·x -e x x 2,∴f ′(a )=e a ·a -e a a 2.由题意知f (a )+f ′(a )=0,∴e a a +e a ·a -e a a 2=0,∴2a -1=0,∴a =12.因对复合函数的层次划分不清导致求导时出现错误例4 求函数y =sin n x cos nx 的导数.错解 y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x ·cos nx +sin n x ·(-sin nx )=n sin n -1x ·cos nx -sin n x sin nx .错因分析 在第二步中,忽略了对中间变量sin x 和nx 进行求导.正解 y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x ·(sin x )′·cos nx +sin n x ·(-sin nx )·(nx )′=n sin n -1x ·cos x ·cos nx -sin n x ·(sin nx )·n=n sin n -1x (cos x cos nx -sin x sin nx )=n sin n -1 x cos [(n +1)x ].防范措施 在求解复合函数的导数时,不能机械地套用公式,应理清层次,逐层正确使用求导法则求解.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( )A.193B.103C.133D.163答案 B解析 因f ′(x )=3ax 2+6x ,且f ′(-1)=3a -6=4,解得a =103,故选B. 2.函数y =12(e x +e -x )的导数是( ) A.12(e x -e -x ) B.12(e x +e -x ) C.e x -e -x D.e x +e -x 答案 A解析 y ′=⎣⎡⎦⎤12(e x +e -x )′=12(e x -e -x ),故选A. 3.f ⎝⎛⎭⎫1x =x 1+x ,则f ′(x )等于( )A.11+xB.-11+xC.1(1+x )2D.-1(1+x )2答案 D解析 由f ⎝⎛⎭⎫1x =x 1+x =11x+1,得f (x )=1x +1, 从而f ′(x )=-1(1+x )2,故选D. 4.已知函数f (x )=a sin x +bx 3+4(a ∈R ,b ∈R ),f ′(x )为f (x )的导函数,则f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)的值为 .答案 8解析 f ′(x )=a cos x +3bx 2,∴f ′(-x )=a cos (-x )+3b (-x )2=f ′(x ).∴f ′(x )为偶函数.∴f ′(2 015)-f ′(-2 015)=0.f (2 014)+f (-2 014)=a sin 2 014+b ·2 0143+4+a sin(-2 014)+b ·(-2 014)3+4=8. ∴f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)=8.5.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a = . 答案 8解析 因y =x +ln x ,故y ′=1+1x,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵直线y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时,曲线变为直线y =2x +1,与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y 得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式,对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、选择题1.曲线y =x e x-1在点(1,1)处切线的斜率等于( ) A.2e B.eC.2D.1答案 C 解析 y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为y ′|x =1=2.2.当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0等于( ) A.aB.±aC.-aD.a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A.2B.12C.-12D.-2 答案 D解析 ∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知函数f (x )的导函数f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A.2B.-2C.94D.-94答案 D解析 ∵f (x )=x 2+3xf ′(2)+ln x ,∴f ′(x )=2x +3f ′(2)+1x. 令x =2,得f ′(2)=4+3f ′(2)+12,即2f ′(2)=-92,∴f ′(2)=-94,故选D. 5.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.[0,π4) B.[π4,π2) C.(π2,3π4] D.[3π4,π) 答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x ∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t+2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π). 6.设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R 且为常数),曲线y =f (x )与直线y =32x 在点(0,0)相切,则a +b 的值为( )A.-1B.1C.0D.2答案 A解析 由y =f (x )过点(0,0)得b =-1,∴f (x )=ln(x +1)+x +1+ax -1, ∴f ′(x )=1x +1+12x +1+a , 又∵曲线y =f (x )与直线y =32x 在点(0,0)相切,即曲线y =f (x )在点(0,0)处切线的斜率为32, ∴f ′(0)=32,即1+12+a =32, ∴a =0,故a +b =-1,选A.二、填空题7.下列各函数的导数:①(x )′=12x -12;②(a x )′=a x ln x ;③(sin 2x )′=cos 2x ;④(x x +1)′=1(x +1)2.其中正确的有 . 答案 ①④解析 (x )′=12()x '=1212x -,①正确;(a x )′=a x ln a ,②错误;(sin 2x )′=cos 2x ·(2x )′=2cos 2x ,③错误;(xx +1)′=x ′·(x +1)-x ·(x +1)′(x +1)2=x +1-x (x +1)2=1(x +1)2,④正确. 8.若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是 . 答案 (-ln 2,2)解析 设P (x 0,y 0),∵y =e -x ,∴y ′=-e -x ,∴点P 处的切线斜率为k =-e -x 0=-2,∴-x 0=ln 2,∴x 0=-ln 2,∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2).9.曲线y =e -5x +2在点(0,3)处的切线方程为 .答案 5x +y -3=0解析 因为y ′=e -5x (-5x )′=-5e -5x ,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0),即5x +y -3=0.10.已知f (x )=13x 3+3xf ′(0),则f ′(1)= . 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0,∴f ′(1)=12+3f ′(0)=1.三、解答题11.求下列函数的导数:(1)y =(2x -1)4;(2)y =11-2x; (3)y =sin(-2x +π3);(4)y =102x +3. 解 (1)原函数可看作y =u 4,u =2x -1的复合函数,则y x ′=y u ′·u x ′=(u 4)′·(2x -1)′=4u 3·2=8(2x -1)3.(2)y =11-2x =12(12)x --可看作y =12u-,u =1-2x 的复合函数, 则y x ′=y u ′·u x ′=(-12)32u -·(-2)=32(12)x --=1(1-2x )1-2x. (3)原函数可看作y =sin u ,u =-2x +π3的复合函数, 则y x ′=y u ′·u x ′=cos u ·(-2)=-2cos(-2x +π3) =-2cos(2x -π3). (4)原函数可看作y =10u ,u =2x +3的复合函数,则y x ′=y u ′·u x ′=102x +3·ln 10·2=(ln 100)102x +3.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程.解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3,∴切线方程为y =(3x 20-3)x +16,又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16,即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0.13.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12,① 又f ′(x )=a +b x2,∴f ′(2)=74,② 由①②得⎩⎨⎧ 2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3. 故f (x )=x -3x . (2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0||2x 0=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设 y=8sin3x,求曲线在点 Pπ6,1处的切线方程. [解析] y′=(8sin3x)′=8(sin3x)′
=24sin2x(sinx)′=24sin2xcosx,
∴曲线在点 P6π,1处的切线的斜率
k=
=24sin26π·cos6π=3 3.
∴适合题意的曲线的切线方程为
y-1=3 3x-π6,即 6 3x-2y- 3π+2=0.
A.0
B.1
C.2
D.3
• [答案] A
17
18
二、填空题 4.设 f(x)=2sin3x+π4,则 f′π4=________.
[答案] -6 [解析] ∵f′(x)=2cos3x+4π·3x+4π′ =6cos3x+π4, ∴f′π4=6cos34π+π4=-6.
19
5.曲线 y=3 3x2+1在点(1,3 4)处的切线方程为 ________________.
[答案] x-3 2y+1=0
20
21
三、解答题 6.求下列函数的导数: (1)y=(1-3x)3; (2)y=ln1x; (3)y=sin2x1-2cos24x.
22
[解析] (1)y′=3(1-3x)2(1-3x)′=-9(1-3x)2. (2)y′=11·1x′=x·-x12=-1x.
x (3)y=-sin2x·cos2x=-12sinx. ∴y′=-12sinx′=-12cosx.
8
• [解析] (1)看成函数y=u2与u=3x-2的复 合函数,根据复合函数求导法则有:y′x= y′u·u′x=2u·3=6u=6(3x-2)=18x-12.
• 开始学习复合函数求导时,要紧扣上述步 骤进行,待熟练后可简化步骤如下:
• y′=2(3x-2)·(3x-2)′=6(3x-2)=18x-12.
. y对u的导数与u对x的导数的乘积
4
[例 1] 指出下列函数是由哪些基本初等函数复合成 的.
①y=a3x+2 ③y=log2(x2-2x+3)
②y=ln3 ex+2 ④y=sin(x2+1) ⑥y=4 3-lnx
5
[解析] ①y=au,u=3x+2
③y=log2u,u=x2-2x+3 ④y=sinu,u=x2+1 ⑤y=eu,u=x2-2
6
[例 2] 求下列函数的导数 (1)y=(3x-2)2 (2)y=ln(6x+4) (3)y=e2x+1 (4)y= 2x-1 (5)y=sin3x-4π (6)y=cos2x
7
• [分析] 抓住构成复合函数的基本初等函数 是求复合函数导数的关键,解题时可先把 复合函数分拆成基本初等函数,再运用复 合函数求导法则.
f(x)=sin
1 ,则 x
f′(x)=
1 A.2x xcos x
-1 B.2x xcos x
C.-2x1
xcos
1 x
11 D.2x xcos x
• [答案] CBiblioteka ()1516
3.下列函数求导数,正确的个数是
()
①(e2x)′=e2x ②[(x2+3)8]′=8(x2+3)·2x
③(ln2x)′=2x ④(a2x)′=2a2x
1.2.2 基本初等函数的导数公式 及导数的运算法则(二)
(复合函数的求导法则)
1
学习目标:
• 1.了解复合函数的定义,并能写出简单 函数的复合过程;
• 2.掌握复合函数的求导方法,并运用求 导方法求简单的复合函数的导数.
2
• 本节重点: • ①导数公式和导数运算法则的应用. • ②复合函数的导数. • 本节难点:复合函数的求导方法.
23
3
复合函数及其求导法则
复合函 数的概
念
一般地,对于两个函数y=f(u)和u =g(x),如果通过变量u,y可以表 示成 x的函数 ,那么称这个函数
为y=f(u)和u=g(x)的复合函数,记 作 y=f(g(x)) .
复合函数y=f(g(x))的导数和函数y 复合函 =f(u),u=g(x)的导数间的关系为 数的求 yx′= yu′·ux′ .即y对x的导数等 导法则 于
9
• (6)y′ = 2cosx·(cosx)′ = - 2cosx·sinx = - sin2x
• [点评] 法则可简单叙述成:复合函数对 自变量的导数,等于已知函数对中间变量 的导数,乘以中间变量对自变量的导数.
10
求下列函数的导数:
(1)y=lnsinx2x;
(2)y=
x 1-x.
11
12
13
练习
一、选择题
1.y=12(ex+e-x)的导数是
A.12(ex-e-x)
B.12(ex+e-x)
C.ex-e-x
• [答案] A
D.ex+e-x
[解析] y′=12(ex)′+12(e-x)′
=12ex+12e-x(-x)′
=12ex-12e-x=12(ex-e-x),故应选 A.
()
14
2.已知