利用Matlab实现矩形波导电磁场分布图的绘制
利用Matlab实现矩形波导电磁场分布图的绘制

;0001/ob=b ;0001/oa=a 图构结场的刻时 t t% 度精样采 d% 长波导波为取里这 向方输传 c% 寸尺导波 b a% 长波止截模 01ET cl% 长波导波 gl% 长波/率频作工 0l f% 米毫为入输 米为位单算计有所 构结场导波形矩画% )t,f,0H,d,ob,oa(1tcrtsevawtcer noitcnuf niam% ;)30.0,9^01*48.9,1,6,61.01,68.22(1tcrtsevawtcer 单清序程附.C 2图
;))1y(ezis(sorez=yh ;)B*.1z-t*w(soc*.)1x*.a/.ip(soc*.0H=zh ;ip/.)1z*.B-t*w(nis*.)1x*.a/.ip(nis*.0H*.a*.B-=xh ;)1z,1y,1x(hsem% ;)z,y,x(dirghsem=]1z,1y,1x[ ;c:d/c:0=z ;b:d/b:0=y ;a:d/a:0=x ;)8^01*3(/B=w ;gl/ip*2=B ;gl=c ;)5.0^)2^)cl/0l(-1((/0l=gl ;flc esle ;nruter )cl>0l(fi ;)7-(^01*ip*4=u ;f/8^01*3=0l 率频止截 01ET% ;a*2=cl
�� �
�1-1�
�下如量参各中式上
�下如示表导推可量分场磁电其。a*2 为长波止截的模 01ET�b*a 为寸尺导波属金设。模 01ET 为模主的输传中导波形矩 .A 。定给部外由均刻时及率频作工、寸尺 导波。图布分场磁电的模 01ET 模主的导波形矩属金刻时意任出磁电导波形矩现实 baltaM 用利
图果效布分线力磁力电的维三 .C
。加叠像图许允不。布分场电制绘�数函 3reviuq 用 .4 。加叠像图许允。布分场磁制绘�数函 3reviuq 用 .3 。量分的场磁、场电到得 算计�1-1�式公照按。点标坐的场磁和场电定确别分�度精图绘的定给部外由 .2 。量参到得算计式�2-1�照参率频作工、寸尺导波的定给部外由 .1 �骤步的线力磁电画 baltaM 用 .B �2-1�
matlab矩形波

matlab矩形波Matlab矩形波是一种经典的信号模型,通常用于数字信号处理和模拟电路设计中。
本文将从简单到复杂,逐步讲解如何在Matlab中生成矩形波,并探讨其一些简单的应用。
这里先定义矩形波的数学表达式:$rect(x)= \begin{cases} 1, &|x| < \frac{1}{2} \\ 0, &\text{其他} \end{cases}$,其中$x$为自变量。
可以看到,矩形波在以$\frac{1}{2}$为半长的区间内取值为1,其他地方取值为0。
在Matlab中,我们可以使用以下代码生成矩形波:```matlabt = -5:0.01:5; %定义自变量t的取值范围y = rect(t); %用自定义的rect函数生成对应的矩形波yplot(t,y); %用plot函数将t和y作图xlabel('t'); ylabel('y');title('矩形波'); %添加横轴和纵轴标签,以及图像标题```这段代码中用到了自定义的rect函数,它的具体实现如下:```matlabfunction y = rect(x)y = zeros(size(x));y(abs(x) < 0.5) = 1;end```该函数接受一个实参$x$,返回与之对应的矩形波$y$。
在函数中,首先用zeros函数创建一个与$x$相同大小的全零数组$y$。
然后根据矩形波的数学表达式,将$|x|$小于0.5的元素赋值为1。
最后返回数组$y$。
通过上述代码,在Matlab中就可以生成矩形波,并将其可视化。
下面我们将扩展其一些简单应用。
首先是频率分析。
在信号处理中,我们通常需要分析信号的频域特性。
对于矩形波来说,它的频域分布非常特殊,其频谱呈现出周期性衰减的形式。
在Matlab中,可以使用以下代码绘制矩形波的频谱图:```matlabFs = 100; %定义采样频率为100HzT = 1/Fs; %定义采样周期L = 1000; %定义采样点数t = (0:L-1)*T; %定义采样时间序列y = rect(t); %用自定义的rect函数生成矩形波yY = fft(y); %对y进行傅里叶变换,得到YP2 = abs(Y/L); %计算单侧频谱的幅度P1 = P2(1:L/2+1); %仅保留正半轴部分P1(2:end-1) = 2*P1(2:end-1); %将幅值乘2,除去直流分量和Nyquist频率f = Fs*(0:(L/2))/L; %定义频率向量plot(f,P1); %用plot函数将f和P1作图xlabel('f (Hz)'); ylabel('|P1(f)|');title('单侧幅度谱'); %添加横轴和纵轴标签,以及图像标题```这段代码首先定义了采样频率、采样周期、采样点数和时间序列$t$。
利用Matlab模拟矩形恒定电流线圈的磁场分布

利用Matlab模拟矩形恒定电流线圈的磁场分布作者:孙海倍来源:《科技风》2019年第01期摘要:随着计算机科学的发展,计算机仿真模拟无论在科学研究还是工业设计中已经成为一种不可或缺的实验手段。
本文利用Matlab软件数值模拟了一个通有恒定电流的矩形电流线圈在空间中产生的磁感应强度分布,并讨论了磁场的均匀性质。
关键词:计算机仿真;Matlab;矩形线圈;磁场一、计算机仿真的发展与应用近几年来,随着计算机技术的快速发展,计算机仿真模拟已经渗透到了包括城市规划、工业设计、科学研究以及金融交易中的每一环节。
[1]交通拥堵一个一直以来困扰着人们,它极大地影响了人们的生活和出行效率。
而现在许多城市已经建立了智能的城市交通控制系统,它利用道路上的各个检测采集系统收集道路、交叉口上的车流量和拥堵信息,利用计算机程序实时地计算、分析,通过调节各个路口处的交通信号灯时间长度,获得最佳的控制方案、最大限度地保证城市交通的流畅和通行效率。
计算机仿真可以在工业制造中,[2]工程师已经可以利用计算机程序结合系统地计算方法(如有限元、有限体积等)来建立工业制品的三维结构图,再过赋予其材质参数,从而分析部件的形状、尺寸、结构等各种物理特性,同时可以模拟部件在不同环境条件下的受力载荷和工作状态,不仅可以有效地分析、评估执产品的可靠性和实用性,同时也降低了应为频繁进行实验带来的巨大成本开销。
在控制调度领域中[3](如公交系统、生产线、应急救灾系统等),我们可以利用程序算法可以实现资源系统的实时调度、预测维护、以及监控控制等过程,进一步提高我们对复杂系统的控制响应速度和调度效率。
而在电器控制领域[4],我们可以利用计算机程序和算法实现有效的电机实时控制,以提高能源的利用效率。
可以看到,當前计算机仿真已经融入到了科学研究和工业制造设计中的每一个领域,它正在渐成为当代科学研究中不可或缺的方法。
MATLAB是美国Mathworks开发的一款商业的高性能数值计算软件。
7.2.1矩形波导中的场分布

n z x sin y e b
由纵向场法,可得: m m n z Ex k 2 a Em cos a x sin b y e c E n E sin m x cos n y e z y m kc2 b a b m n z H x j n Em sin x cos y e 2 kc b a b m m n z H y j 2 Em cos x sin ye kc a a b
再加上边界条件
Ez |x 0 0 Ez |x a 0 E z | y 0 0 E z | y b 0
可以解得:
m k x a f ( x) A sin m x a
故
n k y b g ( y ) C sin n y b
两个常微分方程的通解为:f ( x)
A sin k x x B cos k x x,
g ( y ) C sin k y y D cos k y y
4
f ( x) A sin k x x B cos k x x, g ( y ) C sin k y y D cos k y y
③ 由于对相同的 m 和 n , TMmn 模和 TEmn 模的截止波数 kcmn 相同,
这种情况称为模式的简并; ④ 对于 TEmn 模,其 m 和 n 可以为 0 ,但不能同时为 0 ;而对于 TMmn 模, 其m 和n不能为0,即不存在TM0n 模和TMm0模。
7
振幅Em=AC,其大小由激励源强度决定。
利用Matlab实现矩形波导电磁场分布图的绘制

利用Matlab实现矩形波导电磁场分布图的绘制(附源程序)通过Matlab计算并绘出任意时刻金属矩形波导的主模TE10模的电磁场分布图。
波导尺寸、工作频率及时刻均由外部给定。
A.矩形波导中传输的主模为TE10模。
设金属波导尺寸为a*b,TE10模的截止波长为2*a。
其电磁场分量可推导表示如下:上式中各参量如下,(1-1)B.用Matlab画电磁力线的步骤:1.由外部给定的波导尺寸、工作频率参照(1-2)式计算得到参量。
2.由外部给定的绘图精度,分别确定电场和磁场的坐标点。
按照公式(1-1)计算得到电场、磁场的分量。
3.用quiver3函数,绘制磁场分布。
允许图像叠加。
4.用quiver3函数,绘制电场分布。
不允许图像叠加。
C.三维的电力磁力线分布效果图cH(1-2)图1图2C.附程序清单rectwavestrct1(22.86,10.16,6,1,9.84*10^9,0.03);%mainfunction rectwavestrct1(ao,bo,d,H0,f,t)%画矩形波导场结构所有计算单位为米输入为毫米%f l0工作频率/波长%lg波导波长%lcTE10模截止波长%a b波导尺寸%c传输方向这里取为波导波长%d采样精度%tt时刻的场结构图a=ao/1000;b=bo/1000;lc=2*a;%TE10截止频率l0=3*10^8/f;u=4*pi*10^(-7);if(l0>lc)return;elseclf;lg=l0/((1-(l0/lc)^2)^0.5);c=lg;B=2*pi/lg;w=B/(3*10^8);x=0:a/d:a;y=0:b/d:b;z=0:c/d:c;[x1,y1,z1]=meshgrid(x,y,z);%mesh(x1,y1,z1);hx=-B.*a.*H0.*sin(pi./a.*x1).*sin(w*t-B.*z1)./pi; hz=H0.*cos(pi./a.*x1).*cos(w*t-z1.*B);hy=zeros(size(y1));quiver3(z1,x1,y1,hz,hx,hy,'b');hold on;x2=x1-0.001;y2=y1-0.001;z2=z1-0.001;ex=zeros(size(x2));ey=w.*u.*a.*H0.*sin(pi./a.*x2).*sin(w*t-B.*z2)./pi;ez=zeros(size(z2));quiver3(z2,x2,y2,ez,ex,ey,'r');xlabel('传输方向');ylabel('波导宽边a');zlabel('波导窄边b');hold off;end%------------------------------------------------------------------End Code----------------------------------。
利用Matlab模拟矩形恒定电流线圈的磁场分布

利用Matlab模拟矩形恒定电流线圈的磁场分布龙源期刊网/doc/303506916.html, 利用Matlab模拟矩形恒定电流线圈的磁场分布作者:孙海倍来源:《科技风》2019年第01期摘要:随着计算机科学的发展,计算机仿真模拟无论在科学研究还是工业设计中已经成为一种不可或缺的实验手段。
本文利用Matlab 软件数值模拟了一个通有恒定电流的矩形电流线圈在空间中产生的磁感应强度分布,并讨论了磁场的均匀性质。
关键词:计算机仿真;Matlab;矩形线圈;磁场一、计算机仿真的发展与应用近几年来,随着计算机技术的快速发展,计算机仿真模拟已经渗透到了包括城市规划、工业设计、科学研究以及金融交易中的每一环节。
[1]交通拥堵一个一直以来困扰着人们,它极大地影响了人们的生活和出行效率。
而现在许多城市已经建立了智能的城市交通控制系统,它利用道路上的各个检测采集系统收集道路、交叉口上的车流量和拥堵信息,利用计算机程序实时地计算、分析,通过调节各个路口处的交通信号灯时间长度,获得最佳的控制方案、最大限度地保证城市交通的流畅和通行效率。
计算机仿真可以在工业制造中,[2]工程师已经可以利用计算机程序结合系统地计算方法(如有限元、有限体积等)来建立工业制品的三维结构图,再过赋予其材质参数,从而分析部件的形状、尺寸、结构等各种物理特性,同时可以模拟部件在不同环境条件下的受力载荷和工作状态,不仅可以有效地分析、评估执产品的可靠性和实用性,同时也降低了应为频繁进行实验带来的巨大成本开销。
在控制调度领域中[3](如公交系统、生产线、应急救灾系统等),我们可以利用程序算法可以实现资源系统的实时调度、预测维护、以及监控控制等过程,进一步提高我们对复杂系统的控制响应速度和调度效率。
而在电器控制领域[4],我们可以利用计算机程序和算法实现有效的电机实时控制,以提高能源的利用效率。
可以看到,當前计算机仿真已经融入到了科学研究和工业制造设计中的每一个领域,它正在渐成为当代科学研究中不可或缺的方法。
电磁场的Matlab仿真.

电磁场的Matlab仿真.Matlab 与电磁场模拟⼀单电荷的场分布:单电荷的外部电位计算公式:qφ=4πε0r等位线就是连接距离电荷等距离的点,在图上表⽰就是⼀圈⼀圈的圆,⽽电⼒线就是由点向外辐射的线。
MATLAB 程序:theta=[0:.01:2*pi]'; r=0:10;x=sin(theta*r; y=cos(theta*r; plot(x,y,'b' x=linspace(-5,5,100; for theta=[-pi/4 0 pi/4] y=x*tan(theta; hold on ; plot(x,y; end grid on 单电荷的等位线和电⼒线分布图:⼆多个点电荷的电场情况:模拟⼀对同号点电荷的静电场设有两个同号点电荷, 其带电量分别为 +Q1和+Q2(Q1、Q2>0 距离为 2a 则两电荷在点P(x, y处产⽣的电势为:由电场强度可得E = -?U, 在xOy 平⾯上, 电场强度的公式为:为了简单起见, 对电势U 做如下变换:。
Matlab 程序:q=1; xm=2.5; ym=2;x=linspace(-xm,xm; y=linspace(-ym,ym; [X,Y]=meshgrid(x,y;R1=sqrt((X+1.^2+Y.^2; R2=sqrt((X-1.^2+Y.^2; U=1./R1+q./R2; u=1:0.5:4; figure contour(X,Y,U,u grid onlegend(num2str(u' hold onplot([-xm;xm],[0;0] plot([0;0],[-ym;ym]plot(-1,0,'o' , 'MarkerSize' ,12 plot(1,0,'o' , 'MarkerSize' ,12 [DX,DY] = gradient(U; quiver(X,Y,-DX,-DY; surf(X,Y,U;同号电荷的静电场图像为:50403020100-22同理,将程序稍作修改,便可以得到异号电荷的静电场图像:403020100-10-20-30-4022.5三、线电荷产⽣的电位:设电荷均匀分布在从z=-L到z=L,通过原点的线段上,其密度为q(单位C/m,求在xy 平⾯上的电位分布。
基于matlab的电磁场分析

1.基于matlab-PDE Toolbox的泊松(拉普拉斯)方程求解在二维电磁场的有限元法计算中,用矩阵方程编制的计算程序长、大,而又复杂,且输入数据要化费很大的劳动。
而MATLAB是一种以矩阵运算为基础的交互式语言,它是采用有限元法来求解偏微分方程的。
因此在计算中,我们选用MATLAB提供的一个用户图形界面(GUI)的偏微分方程工具箱(PDE Toolbox)进行数值求解,采用的是三角形网格自动剖分。
下面举例说明。
【例1-1】 横截面为矩形的无限长槽由3块接地导体板构成,如图3-3所示,槽的盖板接直流电压100V,求矩形槽的电位分布。
解:这是二维平面场问题。
由于电位函数和电场强度之间关系为利用麦克斯韦方程和关系式,得到泊松方程式中,为介电常数,为体电荷密度。
由于所求区域内体电荷密度,得到拉普拉斯方程:其边界满足狄里赫利(Didchlet)条件:,,本题运用MATLAB的偏微分方程工具箱(PDE Toolbox)进行数值求解。
在命令窗口中输入命令pdetool,打开PDE图形用户界面,计算步骤为:(1)网格设置:选择菜单Options下的Grid和Grid Spacing…,将X-axis linear Spacings设置为[-1.5:0.2:1.5],Y-axis linear Spacings取Auto。
(2)区域设置:选择菜单Draw下的Rectangle/Square或按,画矩形。
(3)应用模式设置:在工具条中单击Generic Scalar下拉列表框,选Electrostatics(静电学)应用模式。
(4)输入边界条件:进入Boundary Mode或按,输入:1、左边界:狄里赫利(Diriehlet)条件:h=1,r=0。
2、右边界:狄里赫利(Dirichlet)条件:h=1,r=0。
3、上边界:狄里赫利(Dirichlet)条件:h=1,r=100。
4、下边界:狄里赫利(Dirichlet)条件:h=1,r=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用Matlab实现矩形波导电磁场分布图的绘制(附源程序)
通过Matlab计算并绘出任意时刻金属矩形波导的主模TE10模的电磁场分布图。
波导
尺寸、工作频率及时刻均由外部给定。
A. 矩形波导中传输的主模为
TE10模。
设金属波导尺寸为a*b,TE10模的截止波长为2*a。
其电磁场分量可推导表示如下:
(1-1)上式中各参量如下,
(1-2)
B. 用Matlab画电磁力线的步骤:
1. 由外部给定的波导尺寸、工作频率参照(1-2)式计算得到参量。
2. 由外部给定的绘图精度,分别确定电场和磁场的坐标点。
按照公式(1-1)计算
得到电场、磁场的分量。
3. 用quiver3函数,绘制磁场分布。
允许图像叠加。
4. 用quiver3函数,绘制电场分布。
不允许图像叠加。
C. 三维的电力磁力线分布效果图
C •附程序清单
rectwavestrct1(22.86,10.16,6,1,9.84*10A9,0.03); %main
function rectwavestrct1(ao,bo,d,H0,f,t)
%画矩形波导场结构所有计算单位为米输入为毫米 %f 10 工作频率/波长
%lg 波导波长 %lc TE10模截止波长 %a b
波导尺寸 %c 传输方向这里取为波导波长 %d
采样精度
%t
t 时刻的场结构图
a=ao/1000; b=bo/1000;
0 04.5
0 04
5
2 o o O.
三三一 • 二二三
• 二匚三?匚二
:
w a - 三
一
^^^一
二
三
一hi
0.015
l a y
Is
o o 01
o.
6
111
-
遁导宽边3
005
001
三二专二言曰 氤
二二三
二
TTHT^;:
二三?二二‘
05
O
06
O
ff g
i
蛀
o.
二1|
一一
o
q ia
M r 换
0 02^
□ 01 -
、
-0 01-3, -Q Q1 ”
Ic=2*a; %TE10截止频率
l0=3*10A8/f;
u=4*pi*i°A(_7);
if(l0>lc)
return;
eIse
cIf;
Ig=I0/((1-(I0/Ic)A2)A0.5);
c=Ig;
B=2*pi/Ig;
w=B/(3*10A8);
x=0:a/d:a;
y=0:b/d:b;
z=0:c/d:c;
[x1,y1,z1]=meshgrid(x,y,z);
%mesh(x1,y1,z1);
hx=-B.*a.*H0.*sin(pi./a.*x1).*sin(w*t-B.*z1)./pi;
hz=H0.*cos(pi./a.*x1).*cos(w*t-z1.*B);
hy=zeros(size(y1));
quiver3(z1,x1,y1,hz,hx,hy,'b');
hoId on;
x2=x1-0.001;
y2=y1-0.001;
z2=z1-0.001;
ex=zeros(size(x2));
ey=w.*u.*a.*H0.*sin(pi./a.*x2).*sin(w*t-B.*z2)./pi;
ez=zeros(size(z2)); quiver3(z2,x2,y2,ez,ex,ey,'r');
xlabel('传输方向');
ylabel('波导宽边a');
zlabel('波导窄边b');
hold off;
end
%-- End Code。