备战2021新高考命题点分析与探究 命题7 对数与对数函数(解析版)
高考数学专题《对数与对数函数》习题含答案解析

专题3.6 对数与对数函数1.(2021·安徽高三其他模拟(理))函数()ln ||f x x x =+的图象大致是()A .B .C .D .【答案】D 【解析】确定函数的奇偶性,排除两个选项,再由0x >时的单调性排除一个选项,得正确选项.【详解】易知()ln ||f x x x =+是非奇非偶函数,所以排除选项A ,C ;当x >0时,()f x 单调递増、所以排除选项B.故选:D .2.(2021·江西南昌市·高三三模(文))若函数()3log ,12,1x x x f x x ≥⎧=⎨<⎩.则()0f f ⎡⎤=⎣⎦( )A .0B .1C .2D .3【答案】A 【解析】利用函数()f x 的解析式由内到外逐层计算可得()0f f ⎡⎤⎣⎦的值.练基础()3log ,12,1x x x f x x ≥⎧=⎨<⎩,则()0021f ==,因此,()()301log 10f f f ===⎡⎤⎣⎦.故选:A.3.(2021·浙江高三其他模拟)已知a 为正实数,则“1a >”是“32212log log a a ->”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】利用充分、必要条件的定义,即可推出“1a >”与“32212log log a a ->”的充分、必要关系.【详解】因为32212log log a a ->等价于3222log log a a >,由a 为正实数且1a >,故有32a a >,所以3222log log a a >成立;由a 为正实数,3222log log a a >且函数2log y x =是增函数,有32a a >,故()210aa ->,所以1a >成立.故选:C .4.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .5.(2021·江苏南通市·高三三模)已知1331311log 5,,log 26a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a>>D .c a b>>【答案】D 【解析】由于1331log g 66lo c ==,再借助函数3log y x =的单调性与中间值1比较即可.【详解】1331log g 66lo c ==,因为函数3log y x =在()0,∞上单调递增,所以333131log 31log 5log 6log 6a c =<=<<=,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10312112b <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,所以c a b >>故选:D6.(2021·辽宁高三月考)某果农借助一平台出售水果,为了适当地给鲜杏保留空气呼吸,还会在装杏用的泡沫箱用牙签戳上几个小洞,同时还要在鲜杏中间放上冰袋,来保持泡沫箱内部的温度稳定,这样可以有效延长水果的保鲜时间.若水果失去的新鲜度h 与其采摘后时间t (小时)满足的函数关系式为t h m a =⋅.若采摘后20小时,这种杏子失去的新鲜度为10%,采摘后40小时,这种杏子失去的新鲜度为20%.在这种条件下,杏子约在多长时间后会失去一半的新鲜度( )(已知lg 20.3≈,结果取整数)A .42小时B .53小时C .56小时D .67小时【答案】D 【解析】利用指数的运算得出1202a =,再利用对数的运算即可求解.【详解】由题意可得200010m a =⋅,①400020m a =⋅,②②÷①可得202a =,解得1202a =,所以0050t m a =⋅,③ ③÷①可得205t a -=,所以202025t -=,即20lg 2lg 51lg 20.720t -==-=,解得67t ≈(小时).故选:D7.【多选题】(2021·辽宁高三月考)已知2log 3a =,34b =,22log 31c =+,则下列结论正确的是( )A .a c <B .2ab =C .1abc a =+D .22bc b =+【答案】BCD 【解析】先判断1a >,即可判断A ; 利用222log 3b a==判断B ;利用B 的结论判断C ;利用C 的结论判断D.【详解】因为2log 31a =>,所以22log 3112c a a c a =+=+<⇒<,即A 不正确;因为33222log 42log 2log 3b a====,所以2ab =,即B 正确;由2ab =可知,21abc c a ==+,C 正确;由1abc a =+可知,2ab c ab b =+,则22bc b =+,即D 正确.故选:BCD.8.【多选题】(2021·山东日照市·高三一模)已知113log 0x x +=,222log 0xx +=,则( )A .2101x x <<<B .1201x x <<<C .2112lg lg 0x x x x -<D .2112lg lg 0x x x x ->【答案】BC 【解析】根据对数函数的性质可判断AB 正误,由不等式的基本性质可判断CD 正误.【详解】由131log 0x x =->可得101x <<,同理可得201x <<,因为(0,1)x ∈时,恒有23log log x x<所以122231log log 0x x x x -=-<,即12x x <,故A 错误B 正确;因为1201x x <<<,所以12lg lg 0x x <<,即210lg lg x x <-<-,由不等式性质可得1221lg lg x x x x -<-,即2112lg lg 0x x x x -<,故C 正确D 错误.故选:BC9.(2021·浙江高三期末)已知2log 3a =,则4a =________.【答案】9【解析】把2log 3a =代入4a 可得答案.【详解】因为2log 3a =,所以222log 3log 34429a ===.故答案为:9.10.(2021·河南高三月考(理))若41log 32a =,则39a a +=___________;【答案】6【解析】首先利用换底公式表示3log 2a =,再代入39a a +求值.【详解】由条件得331log 4log 22a ==,所以3333log 2log 2log 2log 4393933246a a +=+=+=+=.故答案为:61.(2021·浙江高三专题练习)如图,直线x t =与函数()3log f x x =和()3log 1g x x =-的图象分别交于点A ,B ,若函数()y f x =的图象上存在一点C ,使得ABC V 为等边三角形,则t 的值为( )ABCD.3+【答案】C 【解析】由题意得()3,log A t t ,()3,log 1B t t -,1AB =,根据等边三角形的性质求得C点的横坐标x t =-,结合A ,B两点的纵坐标和中点坐标公式列方程t =,解方程即可求得t 的值.【详解】由題意()3,log A t t ,()3,log 1B t t -,1AB =.设()3,log C x x ,因为ABC V 是等边三角形,所以点C 到直线AB所以t x -=,x t =-根据中点坐标公式可得练提升33333log log 11log log log 22t t t t ⎛+-==-= ⎝,所以t -=,解得t =故选:C2.(2021·安徽高三其他模拟(文))已知函数()()14,12ln 1,1xx f x x x ⎧⎛⎫-≤-⎪ ⎪=⎨⎝⎭⎪+>-⎩,若()0f f x <⎡⎤⎣⎦,则x 的取值范围为( )A .()2,0-B .21,1e ⎛⎫-∞- ⎪⎝⎭C .212,1e ⎛⎫-- ⎪⎝⎭D .()212,11,0e ⎛⎫--⋃-⎪⎝⎭【答案】D 【解析】先由()0f f x <⎡⎤⎣⎦可得出()20f x -<<,然后再分1x ≤-、1x >-两种情况解不等式()20f x -<<,即可得解.【详解】若()1f x ≤-,则()()1402f x f f x ⎛⎫=-<⎡⎤ ⎪⎣⎦⎝⎭,解得()2f x >-,此时,()21f x -<≤-;若()1f x >-,则()()ln 10f f x f x =+<⎡⎤⎡⎤⎣⎦⎣⎦,可得()011f x <+<,解得()10f x -<<.综上,()20f x -<<.若1x ≤-,由()20f x -<<可得12402x ⎛⎫-<-< ⎪⎝⎭,可得1242x⎛⎫<< ⎪⎝⎭,解得21x -<<-,此时21x -<<-;若1x >-,由()20f x -<<可得()2ln 10x -<+<,可得2111x e <+<,解得2110x e -<<,此时,2110x e -<<.综上,满足()0f f x <⎡⎤⎣⎦的x 的取值范围为()212,11,0e ⎛⎫--⋃- ⎪⎝⎭.故选:D.3.(2021·全国高三三模)已知函数()xxf x e e-=+,若()()4561log ,log 6,log 45a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系正确的是( )A .b a c >>B .a b c >>C .c b a >>D .c a b>>【答案】B 【解析】先判断函数的奇偶性,再利用导数判断函数的单调性,最后根据对数函数的性质,结合基本不等式、比较法进行判断即可.【详解】因为()()xx f x ee f x --=+=,所以()f x 为偶函数,()21x xxxe x ee f e --=='-,当0x >时,()0f x '>,函数单调递增,当0x <时,()0f x '<,函数单调递减,()()()()444561log log 5log 5,log 6,log 45a f f f b f c f ⎛⎫==-=== ⎪⎝⎭,因为lg4lg6+>故2222lg4lg6lg 24lg25lg4lg6(lg5)242+⎛⎫⎛⎫⋅<=<= ⎪ ⎪⎝⎭⎝⎭245lg5lg6lg 5lg4lg6log 5log 60lg4lg5lg4lg5-⋅-=-=>⋅所以456log 5log 61log 40>>>>,则.a b c >>故选:B.4.【多选题】(2021·辽宁高三月考)若1a b >>,则( )A .log 3log 3a b <B .33a b <C .11log ()log 21ab ab a b+≥-D .11+11a b <+【答案】ACD 【解析】由已知,A 选项,借助对数换底公式及对数函数单调性可判断;B 选项,利用幂函数单调性可判断;C 选项,利用对数函数单调性可判断;D 选项,利用反比例函数单调性可判断.【详解】对于A 选项:3log y x =在(0,+∞)上单调递增,1a b >>,则333311log log 0log log a b a b>>⇒<,即log 3log 3a b <,A 正确;对于B 选项:函数y =x 3在R 上递增,则33a b >,B 错误;对于C 选项:1a b >>,则ab >1,a +b >2,11log ()log log ()1ab ab ab a ba b a b ab++==+-log 21ab >-,有11log (log 21ab ab a b+≥-成立,即C 正确;对于D 选项:1112a b a b >>⇒+>+>,而函数1y x =在(0,+∞)上递减,则有11+11a b <+,即D 正确.故选:ACD5.【多选题】(2021·全国高三专题练习(理))已知0a b >>,且4ab =,则( )A .21a b ->B .22log log 1a b ->C .228a b +>D .22log log 1a b ⋅<【答案】ACD 【解析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断.【详解】因为0a b >>,且4ab =,对A ,0a b ->,所以0221a b ->=,故A 正确;对B ,取83,32a b ==,所以2222216log log log log log 219a ab b -==<=,故B 错误;对C,22a b ≥+,当且仅当a b =取等号,又因为4a b +≥=,当且仅当a b =取等号,所以228a b ≥≥=+,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故C 正确;对D ,当10>>>a b ,22log 0,log 0a b ><,所以22log log 1a b ⋅<;当1a b >>,22log 0,log 0a b >>,所以()()2222222log log log log log 144a b ab a b +⋅≤==,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故D 正确.故选:ACD.6.【多选题】(2021·湖南高三二模)若正实数a ,b 满足a b >且ln ln 0a b ⋅>,下列不等式恒成立的是( )A .log 2log 2a b >B .ln ln a a b b ⋅>⋅C .122ab a b ++>D .log 0a b >【答案】CD 【解析】由已知不等式,求出,a b 之间的关系,结合选项一一判断即可.【详解】由ln ln 0a b ⋅>有01b a <<< 或1a b >> ,对于选项A ,当01b a <<<或1a b >>都有log 2log 2a b < ,选项A 错误;对于选项B ,比如当11,24a b == 时,有211111111ln ln 2ln ln 44424222⎛⎫==⨯= ⎪⎝⎭故ln ln a a b b ⋅>⋅不成立,选项B 错误;对于C ,因为()()1110ab a b a b +--=-->,所以1ab a b +>+ ,则122ab a b ++> ,选项C 正确;对于选项D ,因为ln ln 0a b ⋅>,所以ln log 0ln a bb a=>,选项D 正确,故选:CD .7.【多选题】(2021·山东临沂市·高三二模)若5log 2a =,1ln 22b =,1ln 55c =,则( )A .a b >B .b c>C .c a>D .2a b>【答案】AB 【解析】对四个选项一一验证:对于A :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于B :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于C :利用不等式的传递性比较大小;对于D :利用换底公式,化为同底结构,利用函数的单调性比较大小;【详解】对于A :522221111ln o 21l g 2,log 522log log a b e e ====⨯=,又25e >,且2log y x =为增函数,所以222l l g 5og o e <,所以22251l og 1l og e <,即a b >.故A 正确;对于B:1ln 22b ==,1ln 55c ==因为101052232,525,ln y x =====为增函数,所以b c >;故B 正确;对于C :因为a b >,b c >,所以a c >,故C 错误;对于D :因为1ln 22b =,所以212ln 2log b e ==,而521log 2,log 5a ==又5e <,所以22log log 5e <,所以2211log log 5e >,所以2b a >,故D 错误.故选:AB.8.(2021·浙江高三专题练习)已知函数()f x 满足()(1)f x f x =-+,当(0,1)x ∈时,函数()3x f x =,则13(log 19)f =__________.【答案】2719-【解析】由()(1)f x f x =-+得函数的周期为2,然后利用周期和()(1)f x f x =-+对13(log 19)f 化简可得13(log 19)f 33927(log 1)(log 1919f f =-+=-,从而可求得结果【详解】解:由题意,函数()f x 满足()(1)f x f x =-+,化简可得()(2)f x f x =+,所以函数()f x 是以2为周期的周期函数,又由(0,1)x ∈时,函数()3x f x =,且()(1)f x f x =-+,则133339(log 19)(log 19)(log 192)(log 19f f f f =-=-+=327log 193392727(log 1)(log 3191919f f =-+=-=-=-.故答案为:2719-.9.(2021·千阳县中学高三其他模拟(文))已知函数()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,则不等式()1f x >的解集为___________.【答案】11,3⎛⎫- ⎪⎝⎭【解析】根据分段函数的定义,分段讨论即可求解.【详解】解:()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩ ,()10131x x f x +≤⎧∴>⇔⎨>⎩或130log 1x x >⎧⎪⎨>⎪⎩,解得10-<≤x 或103x <<,即113x -<<,∴不等式()1f x >的解集为11,3⎛⎫- ⎪⎝⎭.故答案为:11,3⎛⎫- ⎪⎝⎭.10.(2021·浙江丽水市·高三期末)已知()()()1log 1log 01a a a a a ++<<<,则a 的取值范围是__________.【答案】⎫⎪⎪⎭【解析】通过作差将()()()1log 1log 01a a a a a ++<<<转化为(1)log (1)log 0++-<a a a a ,利用换底公式计算可得[][](1)lg(1)lg lg(1)lg log (1)log lg lg(1)++-+++-=+a a a a a a a a a a ,分别判断每个因式的正负,最终转化为211()124+->a 成立,结合二次函数图像,即可求得a 的取值范围.【详解】∵(1)lg(1)lg log (1)log lg lg(1)a a a aa a a a +++-=-+22lg (1)lg lg (1)a aalg a +-=+[][]lg(1)lg lg(1)lg lg lg(1)a a a a a a +-++=+而当01a <<时,lg 0a <,g(0)l 1a +>,1lg(1)lg lglg10a a a a++-=>=211lg(1)lg lg (1)lg (24a a a a a ⎡⎤++=+=+-⎢⎥⎣⎦,所以()()()1log 1log 01a a a a a ++<<<即为211lg ()024⎡⎤+->⎢⎥⎣⎦a ,由于lg u 单调递增,所以211(124+->a .211()24u a =+-的图象如图,当1u =时,0a =,1a <<时,12u <<,lg 0u >,可得()()log 1log 10a a a a a +-+<.故答案为:⎫⎪⎪⎭1.(2020·全国高考真题(文))设3log 42a =,则4a-=( )练真题A .116B .19C .18D .16【答案】B 【解析】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=,故选:B.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·天津高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a<<D .c a b<<【答案】D 【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.4.(2019年高考全国Ⅲ卷理)设是定义域为R 的偶函数,且在单调递减,则A .(log 3)>()>()B .(log 3)>()>()C .()>()>(log 3)D .()>()>(log 3)【答案】C【解析】是定义域为的偶函数,.,又在(0,+∞)上单调递减,∴,即.故选C .5.(2020·全国高考真题(理))若2233x y x y ---<-,则( )()f x ()0,+∞f 14f 322-f 232-f 14f 232-f 322-f 322-f 232-f 14f 232-f 322-f 14()f x R 331(log (log 4)4f f ∴=223303322333log 4log 31,1222,log 422---->==>>∴>> ()f x 23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<【答案】A 【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23t t f t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.6.(2019·天津高考真题(文))已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( )A.c <b <a B.a <b <c C.b <c <a D.c <a <b【答案】A 【解析】c =0.30.2<0.30=1;log 27>log 24=2;1<log 38<log 39=2.故c <b <a .故选A.。
对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )
人
A. 2
B.2 或12
教
B
版
C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,
版
∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B
版
图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.
人
性质 (4)当 a>1 时,在(0,+∞)是增函数;
教
B
当 0<a<1 时,在(0,+∞)上是减函数.
B
版
(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2
对数与对数函数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)

考向11 对数与对数函数【2022·全国·高考真题(文)】已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.【2022·全国·高考真题】设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减, 当211x -<<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<-时,()0h x <,所以当021x <<-时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、 商、幂再运算.|3.log (0b a a N b N a =⇔=>,且1)a ≠是解决有关指数、对数问题的有效方法,在运算中应注意互化.4.识别对数函数图象时,要注意底数a 以1为分界:当1a >时,是增函数;当01a <<时,是减函数.注意对数函数图象恒过定点(1,0),且以y 轴为渐近线.5.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.6.比较对数值的大小(1)若对数值同底数,利用对数函数的单调性比较 (2)若对数值同真数,利用图象法或转化为同底数进行比较 (3)若底数、真数均不同,引入中间量进行比较 7.解决对数函数的综合应用有以下三个步骤: (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,若涉及其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性1.换底公式的两个重要结论 (1)1log ;log a b b a =(2)log log n a a nmb b m=.其中0a >,且1,0a b ≠>,且1,,R b m n ≠∈. 2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大3.对数函数log (0a y x a =>,且1)a ≠的图象过定点(1,0),且过点1(,1),,1a a ⎛⎫- ⎪⎝⎭,函数图象只在第一、四象限.1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1aa =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象1a >01a <<图象 xyx =1(1,0)xa log Ox yx =1(1,0)xa log O性质定义域:(0)+∞,值域:R过定点(10),,即1x =时,0y = 在(0)+∞,上增函数 在(0)+∞,上是减函数 当01x <<时,0y <,当1x ≥时,0y ≥当01x <<时,0y >,当1x ≥时,0y ≤1.(2022·全国·模拟预测)已知23a=,21log 102b =, 1.012c =,则a ,b ,c 的大小关系为( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>【答案】C 【解析】 【分析】利用指对互化以及指对函数的性质进行比较即可. 【详解】由2log 3log 10log 162a b =<=<,122c >=,可得c b a >>. 故选:C.2.(2022·河南·模拟预测(文))已知0.30.2a -=,0.2log 0.3b =,2log 0.3c =,则( ) A .b a c >> B .a c b >>C .c a b >>D .a b c >>【答案】D 【解析】 【分析】分别判断出每个数的范围,然后比较即可. 【详解】因为0.30.21->,0.20log 0.31<<,2log 0.30<,所以a b c >>. 故选:D.3.(2022·全国·模拟预测(文))已知lg 20.301≈,302用科学记数法表示为302 1.0710m =⨯,则m 的值约为( ) A .8 B .9C .10D .11【答案】B 【解析】 【分析】根据题意得30lg 2lg1.07m =+,再分析求解即可. 【详解】因为lg 20.301≈,302 1.0710m =⨯,所以30lg 2lg1.0710m =⨯, 所以30lg 2lg1.07lg10m =+,所以30lg 2lg1.07m =+, 又lg1.07无限接近于0,所以30lg 2300.3019.039m ≈=⨯=≈. 故选:B.4.(2022·黑龙江·鸡西市第四中学三模(理))若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列三个函数:()13=x f x ,()243x f x =⨯,()385log 53log 2xf x =⋅⋅,则( )A .()1f x ,()2f x ,()3f x 为“同形”函数B .()1f x ,()2f x 为“同形”函数,且它们与()3f x 不为“同形”函数C .()1f x ,()3f x 为“同形”函数,且它们与()2f x 不为“同形”函数D .()2f x ,()3f x 为“同形”函数,且它们与()1f x 不为“同形”函数 【答案】A 【解析】 【分析】根据题中“同形”函数的定义和2()f x 、3()f x 均可化简成以3为底的指数形式,可得答案. 【详解】解:()33log 4log 4243333x x xf x +=⨯=⨯=,()518385813log 5g lo l log 23lo 233g 53og 23x x x x x f x -=⋅⋅=⋅⋅==⋅⋅=,故2()f x ,3()f x 的图象可分别由1()3x f x =的图象向左平移3log 4个单位、向右平移1个单位得到, 故()1f x ,()2f x ,()3f x 为“同形”函数. 故选:A .5.(2022·山东·德州市教育科学研究院三模)已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点(16,)B t ,0.1log a t =,0.2t b =,0.1c t =,则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<【答案】C 【解析】【分析】根据对数函数可以解得2a =,4t =,再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈,0.141c =>∴a b c << 故选:C .6.(2022·河南·平顶山市第一高级中学模拟预测(文))已知函数22()ln(1)2f x x x x =++,若()9f a =,则()f a -=( ) A .5- B .9- C .13- D .15-【答案】A 【解析】 【分析】构建()()2g x f x =-,根据奇偶性定义可证()g x 是定义在R 上的奇函数,利用奇函数理解运算. 【详解】令22()()21)g x f x x x x =-=+, 222222()()ln(()1)ln(ln(1)()1g x x x x x x x x g x x x-=--+==-+=-++,()g x ∴是R 上的奇函数,()()0g a g a ∴-+=,即()2()20f a f a --+-=, 又()9f a =,所以()5f a -=-. 故选:A .7.(2022·青海·海东市第一中学模拟预测(理))已知函数()24log 1f x a x ⎛⎫=- ⎪+⎝⎭,若()1f x +是奇函数,则实数a =______. 【答案】1 【解析】 【分析】利用奇函数的性质(1)(1)f x f x -+=-+列方程求参数. 【详解】由题意,(1)(1)f x f x -+=-+,即2244log log 22a a x x ⎛⎫⎛⎫-=-- ⎪ ⎪-+⎝⎭⎝⎭, 所以242224a ax x x a ax --+=--+,化简得()22211a a ⎧-=⎪⎨=⎪⎩,解得1a =. 故答案为:18.(2022·福建·三明一中模拟预测)写出一个满足对定义域内的任意x ,y ,都有()()()f xy f x f y =+的函数()f x :___________.【答案】()ln f x x =(答案不唯一) 【解析】 【分析】利用对数的运算性质可知函数()ln f x x =符合题意. 【详解】若函数()ln f x x =,则()()ln ln ln ()()f xy xy x y f x f y ==+=+满足题意, 故答案为:()ln f x x =(答案不唯一)1.(2022·河南安阳·模拟预测(理))已知0.3211log 0.3,,25a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .b c a <<C .c b a <<D .a c b <<【答案】D 【解析】 【分析】根据给定条件,利用指数函数、对数函数单调性,借助“媒介”数比较作答. 【详解】函数2log y x =在(0,)+∞上单调递增,00.31<<,则22log 0.3log 10a =<=,函数1()2x y =在R 上单调递减,0.31<,0.311()22b =>,而5 2.51052c <=<=,所以a c b <<.故选:D2.(2022·青海·模拟预测(理))设log 2020a =2020ln 2021b =,120212020c =,则a 、b 、c 的大小关系为( ) A .c a b >> B .a c b >> C .a b c >> D .c b a >>【答案】A 【解析】 【分析】利用指数函数、对数函数的性质,再借助“媒介”数比较大小作答. 【详解】函数2021log ,ln y x y x ==在(0,)+∞上都是增函数,120202021,即01a <<,2020012021,则0b <,函数2020x y =在R 上单调递增,而102021>,则1202102012c =>, 所以c a b >>. 故选:A3.(2022·江苏无锡·模拟预测)已知1333,e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c << B .a c b <<C .c a b <<D .b c a <<【答案】C 【解析】 【分析】根据给定条件,构造函数ln ()(e)xf x x x=≥,利用函数的单调性比较大小作答. 【详解】 令函数ln ()(e)x f x x x=≥,当e x >时,求导得:()21ln 0xf x x '-=<, 则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===, 显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C 【点睛】思路点睛:某些数或式大小比较问题,探讨给定数或式的内在联系,构造函数,分析并运用函数的单调性求解.4.(2022·全国·模拟预测)“熵”是用来形容系统混乱程度的统计量,其计算公式为1ln i B ni i p p S k ==-∑,其中i表示所有可能的微观态,i p 表示微观态i 出现的概率,B k 为大于0的常数.则在以下四个系统中,混乱程度最高的是( ) A .1212p p ==B .113p =,223p =C .12331p p p ===D .116p =,213p =,312p =【答案】C 【解析】 【分析】对选项逐一验证,分别计算系统的混乱程度,借助对数函数比较大小,计算得解. 【详解】对选项逐一验证(不考虑负号和玻尔兹曼常数). A 选项:系统的混乱程度11111ln ln ln 2ln 22222A S +=-=;B 选项:系统的混乱程度311222ln ln ln 2ln 3333334B S +=-=C 选项:系统的混乱程度1111111ln ln ln ln 3ln 3333333c S ++=-=;D 选项:系统的混乱程度3331111111ln ln ln ln 2ln 3433466332232234DS ++=--=--,所以A C S S >,B C S S >,C D S S >,所以C S 最小,从而C 选项对应的系统混乱程度最高. 故选:C.5.(2022·辽宁实验中学模拟预测)已知实数a ,b 满足()2log 1,01a a b a +=<<,则21log 4b a a -的最小值为( ) A .0 B .1- C .1 D .不存在【答案】A 【解析】 【分析】由题设条件可得2log 1a b a =-,从而利用换底公式的推论可得21log 1b a a =-,代入要求最小值的代数式中,消元,利用均值不等式求最值 【详解】2log 1a a b +=2log 1a b a ⇒=-21log 1b a a ⇒=- 又01a <<,则2011a <-<()()22211log 11441b a a a a -=+---()()22111041a a ≥⨯-=- 当且仅当()221141a a =--即2a = 故选:A6.(2022·全国·模拟预测(理))已知10a b a>>>,则下列结论正确的是( ) A .1a bb a -⎛⎫> ⎪⎝⎭B .log log a a bba b <C .log log a b baa b <D .11b a a b-<- 【答案】D 【解析】 【分析】根据不等式的性质,结合指数函数、对数函数的单调性、作差法比较大小等知识,逐一分析各个选项,即可得答案. 【详解】 因为10a b a>>>,所以1a >, 对于A :01b a <<,0a b ->,所以01a bb b a a -<⎛⎫⎛⎫⎪⎪⎝⎝⎭=⎭,故A 错误; 对于B :1ab>,所以log a b y x =在(0,)+∞上为增函数,又a b >,所以log log a a bba b>,故B 错误;对于C :log log log log log a b a a a babbbb a b a ab-=+=,因为1ab>,1ab >,所以log log 10a a b b ab =>,所以log log a b baa b>,故C 错误;对于D :11111()ab b a b a a b a b b a ab -⎛⎫⎛⎫---=-+-=- ⎪ ⎪⎝⎭⎝⎭, 因为0a b ->,1ab >, 所以111()0ab b a a b a b ab -⎛⎫⎛⎫---=-< ⎪ ⎪⎝⎭⎝⎭,即11b a a b -<-,故D 正确. 故选:D7.(2022·北京·北大附中三模)已知函数()2log 1f x x x =-+,则不等式()0f x <的解集是( ) A .()1,2 B .()(),12,-∞+∞C .()0,2D .()()0,12,⋃+∞【答案】D 【解析】 【分析】由()0f x <可得2log 1x x <-,在同一坐标系中作出两函数的图象,即可得答案. 【详解】解:依题意,()0f x <等价于2log 1x x <-,在同一坐标系中作出2log y x =,1y x =-的图象,如图所示:如图可得2log 1x x <-的解集为:()()0,12,⋃+∞. 故选:D.8.(2022·湖北省仙桃中学模拟预测)已知(),()y f x x R =∈是奇函数,当0x <时,312()8log ()f x x x =+-,则2(|log |)0f x <的解集为( )A .2[(1,2] B .2(2) C .2((1,2) D .2(2,)+∞ 【答案】C 【解析】 【分析】先求出函数的解析式,令2log t x =,把原不等式转化为()0f t t <⎧⎨≥⎩,利用单调性法解不等式即可得到答案.【详解】因为(),()y f x x R =∈是奇函数,当0x <时,312()8log ()f x x x =+-;所以当0x =时,()0f x =;当0x >时,则0x -<,所以()312()8log f x x x -=-+.因为()y f x =是奇函数,所以()()312()8log f x f x x x -=-=-+,所以()3128log f x x x =-.即当0x >时,()3128log f x x x =-.综上所述:()()3123128log ,00,08log ,0x x x f x x x x x ⎧+-<⎪⎪==⎨⎪->⎪⎩. 令2log t x =,则2log 0t x =≥,所以不等式2(|log |)0f x <可化为:()00f t t <⎧⎨≥⎩. 当0=t 时,()0f t =不合题意舍去.当0t >时,对于()3128log f x x x =-.因为3y x =在()0,+∞上递增,12log y x=-在()0,+∞上递增,所以()3128log f x x x =-在()0,+∞上递增.又3121118log 0222f ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,所以由()00f t t <⎧⎨≥⎩可解得:102t <<,即210log 2x <<,解得:2((1,2)x ∈.故选:C9.(2022·全国·哈师大附中模拟预测(理))函数()ln f x x =,其中()()2f x f y +=,记()()()11*ln ln ln ln nn n nn S x xy xyy n N --=++++∈,则202211i iS==∑( )A .20222023B .20232022C .20234044 D .40442023【答案】A 【解析】 【分析】由条件结合对数运算性质可求xy ,再结合倒序相加法求n S ,利用裂项相消法求202211i iS =∑. 【详解】()()ln ln ln()2f x f y x y xy +=+==,∴2e xy =()()11ln ln ln ln n n n n n S x x y xy y --=++++,()()11ln ln ln ln n n n n n S y xy x y x --=++++()2(1)ln (1)ln()2(1)n n n S n x y n n xy n n =+=+=+,∴(1)n S n n =+2022202220221111111120221(1)120232023i i i iS i i i i ===⎛⎫==-=-= ⎪++⎝⎭∑∑∑, 故选:A .10.(2022·吉林·东北师大附中模拟预测(理))已知函数()ln f x x =,若0a b <<,且()()f a f b =,则2+a b 的取值范围是______. 【答案】()3,+∞ 【解析】 【分析】由()()f a f b =,0a b <<可得01,1a b <<>,ln ln a b -=,得1b a =,所以22a b a a+=+,然后构造函数2()(01)g x x x x=+<<,利用可求出其单调区间,从而可求出其范围【详解】()ln f x x =的图象如图,因为()()f a f b =, 所以ln ln a b =, 因为0a b <<, 所以ln 0a <,ln 0b >, 所以01,1a b <<>, 所以ln ln ,ln ln a a b b =-=,所以ln ln a b -=,所以ln ln ln()0a b ab +==, 所以1ab =,则1b a=, 所以22a b a a+=+, 令2()(01)g x x x x =+<<,则22()1x g x x x '-=-=,当01x <<时,()0g x '<, 所以()g x 在(0,1)上递减, 所以()(1)123g x g >=+=, 所以23+>a b ,所以2+a b 的取值范围为()3,+∞, 故答案为:()3,+∞11.(2022·青海·大通回族土族自治县教学研究室三模(文))若0a >,0b >,()lg lg lg 2a b a b +=+,则22a b b+的最小值为___________. 【答案】222+ 【解析】 【分析】由()lg lg lg 2a b a b +=+可得2ab a b =+,变为211ba+=,则可利用22222122a b a a a bb b b b b b a b a+⎛⎫=+=++=++ ⎪⎝⎭,结合基本不等式,即可求得答案. 【详解】∵()lg lg lg 2a b a b +=+,∴2ab a b =+,0a >,0b >,∴211ba+=,∴22222122222222a b a a a ba b b b b b b b a b ab a +⎛⎫=+=++=++≥⋅=+ ⎪⎝⎭ 2a b =,即21a =,22b = ∴22a b b+的最小值为222+故答案为:222+12.(2022·云南师大附中模拟预测(理))给出下列命题:①3eln 242<1515<;③ln eππ<ln 332<,其中真命题的序号是______.【答案】①②④ 【解析】 【分析】 构造函数ln ()(0)xf x x x=>,借助函数的单调性分别比较大小即可. 【详解】 构造函数ln ()(0)x f x x x =>,所以21ln ()xf x x -'=,得,当0e x <<时,()0f x '>;当e x >时,()0f x '<,于是()f x 在(0e),上单调递增,在(e )+∞,上单调递减. 对于①,112ln e 22ln e3eln 2423e e e e 42424222<<⇒<<⇒<,即(22)(e)f f <,又e 22<据()f x 的单调性知(22)(e)f f <成立,故①正确;对于②,152ln 15ln 2ln 15215152ln15ln 2ln 22151515<<⇒<⇒<ln 22ln 2ln 42224==⨯,所以ln 4ln 15415<(4)(15)f f <,又415e >,据()f x 的单调性知(4)(15)f f <成立,故②正确; 对于③,π2ln πln πe πe πe<<<⇒ ln πln πln eπ2e πe ,即(π)(e)f f <e πe ,据()f x 的单调性知(π(e)f f >成立,故③错误;对于④,2ln 3ln 332ln 2ln 233<< ln 3ln 223<,即(3)(2)f f <32e <<,据()f x 的单调性可知(3)(2)f f <成立,故④正确. 故答案为:①②④.13.(2022·浙江绍兴·模拟预测)已知函数()()2()log 9,()log x a a f x a g x x ax =-=-,若对任意1[1,2]x ∈,存在2[3,4]x ∈使得()()12f x g x ≥恒成立,则实数a 的取值范围为____________. 【答案】()()0,11,3【解析】 【分析】恒成立存在性共存的不等式问题,需要根据题意确定最值比大小解不等式即可. 【详解】根据题意可得只需()()12min min f x g x ≥即可,由题可知a 为对数底数且29001a a ->⇒<<或13a <<.当01a <<时,此时(),()f x g x 在各自定义域内都有意义,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递减,所以()21min (2)log (9)a f x f a ==-,()2min (4)log (164)a g x g a ==-,所以22log (9)log (164)9164a a a a a a -≥-⇒-≤-,即2470a a -+≥,可得01a <<;当13a <<时,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递增,所以()21min (2)log (9)a f x f a ==-,()2min (3)log (93)a g x g a ==-,所以22log (9)log (93)993a a a a a a -≥-⇒-≥-,即230a a -≤,可得13a <<.综上:()()0,11,3a ∈⋃.故答案为:()()0,11,3.14.(2022·四川·内江市教育科学研究所三模(文))已知函数()21log 22x xf x ⎛⎫=+ ⎪⎝⎭,数列{}n a 是公差为2的等差数列,若()()()()112233440a f a a f a a f a a f a +++=,则数列{}n a 的前n 项和n S =___________. 【答案】24n n - 【解析】 【分析】利用定义判断()f x 的奇偶性,并确定值域范围,根据已知条件易得14230a a a a +=+=,进而求出首项,根据等差数列前n 项和公式求n S . 【详解】由2211()log (2)log (2)()22xxx xf x f x ---=+=+=且定义域为R , 所以()f x 为偶函数,而1122222x x x x +≥⋅=,当0x =时等号成立,所以在R 上()1f x ≥恒成立,故要使()()()()112233440a f a a f a a f a a f a +++=,又{}n a 是公差为2的等差数列,所以14230a a a a +=+=,则13a =-,故23(1)4n n n n n S n =-+-=-.故答案为:24n n -. 【点睛】关键点点睛:判断函数的奇偶性,根据其对称性确定1234,,,a a a a 的数量关系. 15.(2022·山西运城·模拟预测(文))若221ee,ln 12x x y y-=-=,则xy =__________. 【答案】e2##1e 2【解析】 【分析】 将221e2x x -=变形为2ln22x x +=,e ln 1y y -=换元整理为ln 2t t +=,构造函数()ln f x x x =+,由()f x 单增得到2x t =即可求解. 【详解】由221e2x x -=,两边取以e 为底的对数,得122ln ln 2x x -+=,即2ln22x x +=. 由e ln 1y y -=,令e t y =,则ey t =,所以e ln 1t t-=,即ln 2t t +=.设()ln f x x x =+,则()110f x x=+>',所以()ln f x x x =+在()0,∞+上单调递增. 由2ln22x x +=以及ln 2t t +=,则2x t =,又e t y =,所以e 2xy =. 故答案为:e2.1.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.2.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减, 211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.3.(2022·浙江·高考真题)已知825,log 3ab ==,则34a b -=( )A .25B .5C .259 D .53【答案】C 【解析】 【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 【详解】因为25a =,821log 3log 33b ==,即323b =,所以()()22323232452544392a a a b b b -====. 故选:C.4.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<【答案】D 【解析】 【分析】根据指数函数和对数函数的性质求出,,a b c 的范围即可求解. 【详解】22log 0.3log 10<=,0a ∴<, 122225log 0.4log 0.4log log 212=-=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<,a cb ∴<<.故选:D.5.(2020·全国·高考真题(理))若2233x y x y ---<-,则( ) A .ln(1)0y x -+> B .ln(1)0y x -+< C .ln ||0x y -> D .ln ||0x y -<【答案】A 【解析】 【分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果. 【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A. 【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.6.(2020·全国·高考真题(文))设3log 42a =,则4a -=( ) A .116B .19C .18D .16【答案】B 【解析】 【分析】根据已知等式,利用指数对数运算性质即可得解 【详解】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=, 故选:B. 【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.7.(2019·天津·高考真题(理))已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】利用10,,12等中间值区分各个数值的大小.【详解】551log 2log 52a =<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A . 【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.8.(2019·全国·高考真题(文))已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.9.(2019·全国·高考真题(理))若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C . 【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.10.(2016·全国·高考真题(理))已知432a =,254b =,1325c =,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】 【详解】因为4133216a ==,2155416b ==,1325c =, 因为幂函数13y x =在R 上单调递增,所以a c <, 因为指数函数16x y =在R 上单调递增,所以b a <, 即b <a <c . 故选:A.11.(2018·天津·高考真题(文))已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 12.(2016·全国·高考真题(文))已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小. 13.(2016·全国·高考真题(文))若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b【答案】B 【解析】 【详解】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a ba b c c==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用x y c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.14.(2016·浙江·高考真题(理))已知a >b >1.若log a b+log b a=52,a b =b a ,则a=___,b=____.【答案】 4 2 【解析】 【详解】试题分析:设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=, 因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒== 指数运算,对数运算. 在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误15.(2015·北京·高考真题(文))32-,123,2log 5三个数中最大数的是 . 【答案】2log 5 【解析】 【详解】 31218-=<,12331=>,22log 5log 423>>>2log 5最大.。
对数与对数函数——2021年高考文科数学一轮复习热点题型(附解析)

题型一 对数式的化简与求值.............................................................................................................................. 1 题型二 对数函数的图象及应用.......................................................................................................................... 2 题型三 对数函数的性质及应用.......................................................................................................................... 4
2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

(2)由题意,易知 a>1.
在同一坐标系内作出 y=(x-1)2,x∈(1,2)及 y=logax 的图象.
若 y=logax 过点(2,1),得 loga2=1,所以 a=2. 根据题意,函数 y=logax,x∈(1,2)的图象恒在 y=(x-1)2,x∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高 点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 考点三 对数函数的性质及应用 【例 3-1】 已知函数 f(x)=ln x+ln(2-x),则( )
调性时,一定要明确底数 a 的取值对函数增减性的影响,及真数必须为正的限制条件.
[方法技巧]
1.对数值取正、负值的规律
当 a>1 且 b>1 或 0<a<1 且 0<b<1 时,logab>0;
当 a>1 且 0<b<1 或 0<a<1 且 b>1 时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
1,-1
3.对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1),a
,函数图象只在
第一、四象限.
三、 经典例题
考点一 对数的运算
【例 1-1】
(1)计算:
lg1-lg 25 4
÷100-1=________.
对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析1.已知函数f(x)=x-1-(e-1)lnx,其中e为自然对数的底,则满足f(e x)<0的x的取值范围为.【答案】(0,1)【解析】因为由得:,又,所以由f(e x)<0得:【考点】利用导数解不等式2.函数f(x)=log2(2x-1)的定义域为________________.【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.函数y=(-x2+6x)的值域()A.(0,6)B.(-∞,-2]C.[-2,0)D.[-2,+∞)【答案】D【解析】∵-x2+6x=-(x-3)2+9,∴0<-x2+6x≤9,∴y≥9=-2,故选D.4.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a 【答案】A【解析】∵a=log3π>log33=1,b=log2<log22=1,∴a>b,又==(log23)2>1,∴b>c,故a>b>c.5.将函数的图象向左平移1个单位长度,那么所得图象的函数解析式为()A.B.C.D.【答案】C【解析】因为,所以将其图象向左平移1个单位长度所得函数解析式为.故C正确.【考点】1对数函数的运算;2函数图像的平移.6.设a=log36,b=log510,c=log714,则a,b,c的大小关系为________.【答案】a>b>c【解析】a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图像,由三个图像的相对位置关系,可知a>b>c.7. [2014·湛江模拟]已知函数y=loga(2-ax)在区间[0,1]上是关于x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)【答案】B【解析】由题意可知,a>0,故内函数y=2-ax必是减函数,又复合函数是减函数,所以a>1,同时在[0,1]上2-ax>0,故2-a>0,即a<2,综上可知,a∈(1,2).8.已知上的增函数,那么的取值范围是A.B.C.D.【答案】C【解析】由题设,故选C.【考点】1、分段函数;2、对数函数的性质;3、不等式组的解法.9. 2log510+log50.25=()A.0B.1C.2D.4【答案】C【解析】∵2log510+log50.25=log5100+log50.25=log525=2故选C.10.下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是()A.(﹣∞,1]B.C.D.(1,2)【答案】D【解析】∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D11.方程的解是.【答案】1【解析】原方程可变为,即,∴,解得或,又,∴.【考点】解对数方程.12.(1)设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差是,则a=________;(2)若a=log0.40.3,b=log54,c=log20.8,用小于号“<”将a、b、c连结起来________;(3)设f(x)=lg是奇函数,则使f(x)<0的x的取值范围是________;(4)已知函数f(x)=|log2x|,正实数m、n满足m<n且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m、n的值分别为________.【答案】(1)4(2)c<b<a(3)-1<x<0(4),2【解析】解析:(1)∵a>1,∴函数f(x)=loga x在区间[a,2a]上是增函数,∴loga2a-logaa=,∴a=4.(2)由于a>1,0<b<1,c<0,所以c<b<a.(3)由f(-x)+f(x)=0,得a=-1,则由lg<0,得解得-1<x<0.(4)结合函数f(x)=|log2x|的图象,易知0<m<1,n>1,且mn=1,所以f(m2)=|log2m2|=2,解得m=,所以n=2.13.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.【答案】(1)k=-.(2){-3}∪(1,+∞).【解析】(1)由函数f(x)是偶函数,可知f(x)=f(-x),∴log4(4x+1)+kx=log4(4-x+1)-kx.log4=-2kx,即x=-2kx对一切x∈R恒成立,∴k=-.(2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log4(4x+1)-x=log4有且只有一个实根,化简得方程2x+=a·2x-a有且只有一个实根.令t=2x>0,则方程(a-1)t2-at-1=0有且只有一个正根.①a=1t=-,不合题意;②a≠1时,Δ=0a=或-3.若a=t=-2,不合题意,若a =-3t=;③a≠1时,Δ>0,一个正根与一个负根,即<0a>1.综上,实数a的取值范围是{-3}∪(1,+∞).14.已知实数a、b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中所有不可能成立的关系式为________.(填序号)【答案】③④【解析】条件中的等式Û2a=3bÛa lg2=b lg3.若a≠0,则∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.15. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a+log a+…+log a=log a m +log a n ,求m 、n 的值.【答案】【解析】左边=log a m +log a+log a+…+log a=log a=log a (m +n),∴已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1. ∵m 、n 为正整数,∴解得16. 若|log a |=log a ,|log b a|=-log b a,则a,b 满足的条件是( ) A .a>1,b>1 B .0<a<1,b>1 C .a>1,0<b<1 D .0<a<1,0<b<1【答案】B【解析】先利用|m|=m,则m≥0,|m|=-m,则m≤0,将条件进行化简,然后利用对数函数的单调性即可求出a 和b 的范围. ∵|log a |=log a ,∴log a ≥0=log a 1,根据对数函数的单调性可知0<a<1. ∵|log b a|=-log b a,∴log b a≤0=log b 1,但b≠1,所以根据对数函数的单调性可知b>1.17. 已知a>0,且a≠1,log a 3<1,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(3,+∞) C .(3,+∞) D .(1,2)∪(3,+∞)【答案】B【解析】由已知得log a 3<log a a.当a>1时,3<a ,所以a>3;当0<a<1时,3>a ,因此0<a<1.综合选B.18. 已知A={x|,x ∈R },B={x||x-i|<,i 为虚数单位,x>0},则A B=( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C 【解析】,即。
第2章 第8课时 对数与对数函数-备战2025年高考数学一轮复习(解析版)

第8课时对数与对数函数[考试要求]1.理解对数的概念及运算性质,能用换底公式将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念,会画对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x =log a N,其中a叫做对数的底数,N叫做真数.以10为底的对数叫做常用对数,log10N记为lg_N.以e为底的对数叫做自然对数,log e N记为ln_N.2.对数的性质与运算性质(1)对数的性质:log a1=0,log a a=1(a>0,且a≠1).(2)对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a=log a M-log a N;③log a M n=n log a M(n∈R).(3)对数恒等式:a log a N=N(a>0,且a≠1,N>0).(4)换底公式:log a b=log log>0,且≠1;>0;>0,且≠1.3.对数函数(1)一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).(2)对数函数的图象与性质项目a>10<a<1图象定义域(0,+∞)值域R性质过定点(1,0),即x =1时,y =0当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.[常用结论]1.换底公式的三个重要结论(1)log a b =1log;(2)log am b n =log a b ;(3)log a b ·log b c ·log c d =log a d .(a >0,且a ≠1;b >0,且b ≠1;c >0,且c ≠1;d >0)2.对数函数的图象与底数大小的关系如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c <d <1<a <b .由此我们可得到规律:在第一象限内从左到右底数逐渐增大.一、易错易混辨析(正确的打“√”,错误的打“×”)(1)log 2x 2=2log 2x .()(2)函数y =log 2(x +1)是对数函数.()(3)函数y =ln1+1−与y =ln (1+x )-ln(1-x )的定义域相同.()(4)函数y =log 2x 与y =log 121的图象重合.()[答案](1)×(2)×(3)√(4)√二、教材经典衍生1.(人教A 版必修第一册P 140习题4.4T 1改编)函数y ________.[由log 23(2x -1)≥0,得0<2x -1≤1,12<x ≤1.所以函数y 1.]2.(人教A 版必修第一册P 135练习T 2改编)比较下列两个值的大小:(1)log 0.56________log 0.54;(2)log 213________log 123.[答案](1)<(2)=3.(人教A 版必修第一册P 126练习T 3(2)改编)(log 43+log 83)·log 32=________.[(log 43+log 83)×log 32+×lg 2lg 3=56.]4.(人教A 版必修第一册P 141习题4.4T 12改编)若log a 23<1,则实数a 的取值范围是________.(1,+∞)[当a >1时,满足条件;当0<a <1时,由0<<1,23<log ,得0<a <23.综上,a ∈0(1,+∞).]考点一对数的运算[典例1](1)(2023·山东济宁嘉祥一中三模)若2m =3n =k 且1+1=2,则k =()A.5B.6C.5D.6(2)化简:(log62)2+log62×log63+2log63-6log62=________.(1)B(2)-log62[(1)因为2m=3n=k且1+1=2,所以m≠0且n≠0,所以k>0且k≠1,且有m=log2k,n=log3k,所以1=log k2,1=log k3,1+1=log k2+log k3=log k6=2,则k2=6.又因为k>0且k≠1,解得k=6.故选B.(2)(log62)2+log62×log63+2log63-6log62=log62×(log62+log63)+2log63-2=log62+2log63-2=2(log62+log63)-log62-2=2-log62-2=-log62.]解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简.(2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.[跟进训练]1.(1)(2023·山东威海二模)已知2a=9,log83=b=() A.23B.2C.6D.9(2)计算:lg25+lg50+lg2×lg500+(lg2)2=________.(1)C(2)4[(1)因为2a=9,所以a=log29=log232=2log23,又b=log83=log233=13log23,所以=2log2313log23=6.故选C.(2)原式=2lg5+lg(5×10)+lg2×lg(5×102)+(lg2)2=2lg5+lg5+1+lg2×(lg5+2)+(lg2)2=3lg5+1+lg2×lg5+2lg2+(lg2)2=3lg5+2lg2+1+lg2(lg5+lg2)=3lg5+2lg2+1+lg2=3(lg5+lg2)+1=4.]考点二对数函数的图象及应用[典例2](1)已知函数f(x)=log a(2x+b-1)(a>0,且a≠1)的图象如图所示,则a,b满足的关系是()A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1(2)当0<x≤1时,4x<log a x,则a的取值范围是()A.02B21C.(1,2)D.(2,2)(1)A(2)B[(1)由函数图象可知,f(x)为增函数,故a>1.函数图象与y轴的交点坐标为(0,log a b),由函数图象可知-1<log a b<0,解得1<b<1.综上,0<a-1<b<1.(2)构造函数f(x)=4x和g(x)=log a x,当a>1时,不满足条件;当0<a<1时,画出两个函数大致的图象,如图所示,由题意可知f2<log a12,则a a1.]的图象和函数y=log<a≤22.]对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.[跟进训练]2.(1)(多选)若函数f(x)=a x-2,g(x)=log a|x|,其中a>0,且a≠1,则函数f(x),g(x)在同一平面直角坐标系中的大致图象可能是()A BC D(2)已知函数f(x)=|ln x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是________.(1)AD(2)(3,+∞)[(1)易知g(x)=log a|x|为偶函数.当0<a<1时,f(x)=a x-2单调递减,g(x)=log a|x|在(0,+∞)上单调递减,此时A选项符合题意.当a>1时,f(x)=a x-2单调递增,g(x)=log a|x|在(0,+∞)上单调递增,此时D选项符合题意.故选AD.(2)f(x)=|ln x|的图象如图,因为f(a)=f(b),所以|ln a|=|ln b|,因为0<a<b,所以ln a<0,ln b>0,所以0<a<1,b>1,所以-ln a=ln b,所以ln a+ln b=ln(ab)=0,所以ab=1,则b1,所以a+2b=a+2,令g(x)=x+2(0<x<1),则g(x)在(0,1)上单调递减,所以g(x)>g(1)=1+2=3,所以a+2b>3,所以a+2b的取值范围为(3,+∞).]考点三对数函数的性质及应用比较大小[典例3](1)已知a=log2e,b=ln2,c=log1213,则a,b,c的大小关系为()A.a>b>c B.b>a>cC.c>b>a D.c>a>b(2)若实数a,b,c满足log a2<log b2<log c2<0,则下列关系中正确的是() A.a<b<c B.b<a<cC.c<b<a D.a<c<b(1)D(2)C[(1)法一(中间量法):因为a=log2e>1,b=ln2∈(0,1),c=log1213=log23>log2e>1,所以c>a>b.法二(图象法):log1213=log23,在同一平面直角坐标系中作出函数y=log2x,y=lnx的图象,如图,由图可知c>a>b.(2)根据不等式的性质和对数的换底公式可得1log 2<1log2<1log2<0,即log2c<log2b<log2a<0,可得c<b<a<1.故选C.]解与对数有关的不等式[典例4](1)已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增.若正实数a满足f(log2a)+f(log12a)≤2f(1),则a的取值范围是()A.[1,2]B.012C122D.(0,2](2)设函数f(x)=log2,>0,log12(−p,<0.若f(a)>f(-a),则实数a的取值范围是() A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)(1)C(2)C[(1)因为log12a=-log2a,所以f(log2a)+f(log12a)=f(log2a)+f(-log2a)=2f(log2a),原不等式变为2f(log2a)≤2f(1),即f(log2a)≤f(1).又因为f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,所以|log2a|≤1,即-1≤log2a≤1,解得12≤a≤2,故选C.(2)由题意可得>0,log2>−log2或<0,log12(−p>log2(−p,解得a>1或-1<a<0.故选C.]对数函数性质的综合应用[典例5](1)若f(x)=lg(x2-2ax+1+a)在(-∞,1]上单调递减,则a的取值范围为()A.[1,2)B.[1,2]C.[1,+∞)D.[2,+∞)(2)(多选)已知函数f(x)=ln2r12K1,下列说法正确的是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+∞上单调递减D.f(x)的值域为(-∞,0)∪(0,+∞)(3)已知函数f(x)=ln e B+1-x是偶函数,则实数a的值为________.(1)A(2)ACD(3)2[(1)令函数g(x)=x2-2ax+1+a=(x-a)2+1+a-a2,则图象的对称轴为x=a,要使函数f(x)在(-∞,1]上单调递减,则有1>0,≥1,即2−>0,≥1,解得1≤a<2,即a∈[1,2).(2)令2r12K1>0,解得x>12或x<-1,∴f(x)的定义域为−∞,−∪+∞,又f(-x)=ln−2r1−2K1=ln2K12r1=ln=-ln2r12K1=-f(x),∴f(x)为奇函数,故A正确,B错误.又f(x)=ln2r12K1=ln1+令t=1+22K1,t>0且t≠1,则y=ln t,又t=1+2在+∞上单调递减,且y=ln t为增函数,∴f(x)+∞上单调递减,故C正确;由C分析可得f(x)的值域是(-∞,0)∪(0,+∞),故D正确.(3)由题意知f(x)的定义域为R,函数f(x)=ln e B+1-x是偶函数,则f(-x)=ln e−B+1+x=f(x)=ln e B+1-x,即ln e B+1e−B=2x,化简得ln e ax=2x,解得a=2.]题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.[跟进训练]3.(1)(多选)(2024·忻州模拟)已知x>0,y>0,且x-y>ln,则() A.x>y B.x+1>y+1C.ln(x-y)<0D.12<2-y(2)(多选)(2024·浙江杭州模拟)已知函数f(x)=ln(x2+x+m)(m∈R),则() A.当m>14时,f(x)的定义域为RB.f(x)一定存在最小值C.f(x)的图象关于直线x12对称D.当m≥1时,f(x)的值域为R(3)已知函数f(x)=ln(1+2-x)+2,则f(lg3)+f________.(4)已知f(x)=1+log3x(1≤x≤9),设函数g(x)=[f(x)]2+f(x2),则g(x)max-g(x)min =________.(1)ABD(2)AC(3)4(4)5[(1)因为x-y>ln,所以x-y>ln y-ln x,所以ln x+x>ln y+y.对于A,设f(x)=ln x+x,则f(x)在(0,+∞)上单调递增,因为ln x+x>ln y+y,所以f(x)>f(y),所以x>y,故A正确;对于B,因为x>0,y>0,且x>y,1<1,所以x+1>y+1,故B正确;对于C,当x-y=e时,ln(x-y)=1,故C错误;对于D,因为x>y,所以-x<-y,所以2-x<2-y,即12<2-y,故D正确.故选ABD.(2)对于A,若m>14,则Δ=1-4m<0,则x2+x+m>0恒成立,所以f(x)的定义域为R,故A正确;对于B,若m=0,则f(x)=ln(x2+x)的定义域为(-∞,-1)∪(0,+∞),值域为R,没有最小值,故B错误;对于C,由于函数y=ln2+−y轴对称,将该函数的图象向左平移12个单位长度即可得到函数f(x)=ln++−14=ln(x2+x+m)的图象,此时f(x)的图象对称轴为直线x=-12,故C正确;对于D,若m≥1,则y=x2+x+m=++m-14≥34,故f(x)的值域不是R,故D错误.故选AC.(3)设g(x)=ln(1+2-x),则f(x)=g(x)+2,显然有g(-x)=-g(x),即g(x)为奇函数,则g(-x)+g(x)=0,所以f(lg3)+f lg f(lg3)+f(-lg3)=g(lg3)+2+g(-lg3)+2=4.(4)由题意得1≤≤9,1≤2≤9,∴1≤x≤3,∴g(x)的定义域为[1,3],g(x)=[f(x)]2+f(x2)=(1+log3x)2+1+log3x2=(log3x)2+4log3x+2,设t=log3x,则0≤t≤1,则y=t2+4t+2=(t+2)2-2在[0,1]上单调递增,∴当t=0,即x=1时,g(x)min=g(1)=2,当t=1,即x=3时,g(x)max=g(3)=7,∴g(x)max-g(x)min=5.]点拨:易忽视g(x)的定义域.课时分层作业(十三)对数与对数函数一、单项选择题1.若x log34=1,则4x+4-x的值为()A.103B.3C.4D.13A[∵x log34=1,∴log34x=1,∴4x=3,∴4x+4-x=3+3-1=103.故选A.]2.已知lg a+lg b=0(a>0且a≠1,b>0且b≠1),则函数f(x)=a x与g(x)=lo g1x 的图象可能是()A BC DB[∵lg a+lg b=0(a>0且a≠1,b>0且b≠1),∴ab=1,∴a1,∴g(x)=lo g1x=log a x,函数f(x)=a x与函数g(x)=lo g1互为反函数,∴函数f(x)=a x与g(x)=lo g1x的图象关于直线y=x对称,且具有相同的单调性.故选B.]3.若非零实数a,b,c满足2a=3b=6c=k,则()A.1+1=1B.2+2=1C.1+1=2D.2+1=2A[由已知2a=3b=6c=k,得a=log2k,b=log3k,c=log6k,1=log k2,1=log k3,1=log k6,1+1=1.]4.(2024·陕西师大附中模拟)已知a=log23,b=log34,c=32,则()A.c<b<a B.b<c<aC.c<a<b D.a<c<bB[因为32>23,则3>232,故log23>log2232=32,所以a>c;因为42<33,则4<332,故log34<log3332=32,所以b<c.则有b<c<a.故选B.]5.(2024·福建龙岩期中)推动小流域综合治理提质增效,推进生态清洁小流域建设是助力乡村振兴和建设美丽中国的重要途径之一.某乡村落实该举措后因地制宜,发展旅游业,预计2023年平均每户将增加4000元收入,以后每年度平均每户较上一年增长的收入是在前一年每户增长收入的基础上以10%的增速增长的,则该乡村每年度平均每户较上一年增加的收入开始超过12000元的年份大约是()(参考数据:ln3≈1.10,ln10≈2.30,ln11≈2.40)A.2033年B.2034年C.2035年D.2036年C[设经过n年之后,每年度平均每户收入增加y元,由题得y=4000·(1+10%)n>12000,即1.1n>3,则n ln1.1>ln3,n>ln3ln1.1=ln3ln11−ln10≈11,又n∈N*,则n=12.所以所求年份大约是2035年.故选C.]6.(2024·安徽安庆模拟)已知f(x)=log1(x2-ax+a)的值域为R,且f(x)在(-3,2-1)上单调递增,则实数a的取值范围是() A.[-2,0]B.−12,0∪[4,+∞)C.[-2,0]∪[4,+∞)D.[0,4]B[因为函数f(x)=log12x2-ax+a)的值域为R,所以x2-ax+a取得一切正数,即方程x2-ax+a=0有实数解,得Δ=a2-4a≥0,解得a≤0或a≥4.又函数f(x)=log12(x2-ax+a)在(-3,-1)上单调递增,所以函数y=x2-ax+a在(-3,-1)上单调递减,且x2-ax+a>0在(-3,-1)上恒成立,−1,++≥0,解得a≥-12,综上,实数a12≤a≤0或a≥4.故选B.]二、多项选择题7.(2023·河北邯郸一模)已知函数f(x)=log2(x+6)+log2(4-x),则()A.f(x)的定义域是(-6,4)B.f(x)有最大值C.不等式f(x)<4的解集是(-∞,-4)∪(2,+∞)D.f(x)在[0,4]上单调递增AB[由题意可得+6>0,4−>0,解得-6<x<4,即f(x)的定义域是(-6,4),则A 正确;f(x)=log2(-x2-2x+24),因为y=-x2-2x+24在(-6,-1)上单调递增,在(-1,4)上单调递减,y=log2x在(0,+∞)上单调递增,所以f(x)在(-6,-1)上单调递增,在(-1,4)上单调递减,所以f(x)max=f(-1)=2log25,则B正确;因为f(x)在(-6,-1)上单调递增,在(-1,4)上单调递减,且f(-4)=f(2)=4,所以不等式f(x)<4的解集是(-6,-4)∪(2,4),则C错误;因为f(x)在(-1,4)上单调递减,所以D错误.故选AB.]8.已知函数f(x)=|log a(x+1)|(a>1),下列说法正确的是()A.函数f(x)的图象恒过定点(0,0)B.函数f(x)在区间(0,+∞)上单调递减C.函数f(x)在区间−12,1上的最小值为0D.若对任意x∈[1,2],f(x)≥1恒成立,则实数a的取值范围是(1,2]ACD[当x+1=1,即x=0时,f(x)=0,即图象恒过定点(0,0),故A正确;当x∈(0,+∞)时,x+1∈(1,+∞),又a>1,所以f(x)=|log a(x+1)|=log a(x+1),由复合函数单调性可知,当x∈(0,+∞)时,f(x)=|log a(x+1)|=log a(x+1)单调递增,故B错误;当x∈−12,1时,x+12,所以f(x)=|log a(x+1)|≥log a1=0,故C正确;当x∈[1,2]时,f(x)=|log a(x+1)|=log a(x+1)≥1恒成立,所以由函数f(x)在[1,2]上单调递增知log a2≥1,解得1<a≤2,故D正确.]三、填空题9.若函数y=f(x)与y=5x互为反函数,则y=f(x2-2x)的单调递减区间是________.(-∞,0)[因为y=f(x)与y=5x互为反函数,所以f(x)=log5x,则f(x2-2x)=log5(x2-2x).设μ=x2-2x,则f(μ)=log5μ,由x2-2x>0,解得x<0或x>2,因为f(μ)=log5μ在其定义域上单调递增,又μ=x2-2x在(-∞,0)上单调递减,在(2,+∞)上单调递增,所以y=f(x2-2x)的单调递减区间是(-∞,0).]10.函数f(x)=log2·lo g2(2x)的最小值为________.[依题意得f(x)=12log2x·(2+2log2x)=(log2x)2+log2x=log2+-14≥-14,当且仅当log2x=-12,即x f(x)的最小值为-14.]四、解答题11.设f(x)=log2(a x-b x),且f(1)=1,f(2)=log212.(1)求a,b的值;(2)当x∈[1,2]时,求f(x)的最大值.[解](1)因为f (x )=log 2(a x -b x ),且f (1)=1,f (2)=log 212,所以log 2−=1,log 22−2=log 212,即−=2,2−2=12,解得a =4,b =2.(2)由(1)得f (x )=log 2(4x -2x ),令t =4x -2x ,则t =4x-2x=2−-14,因为1≤x ≤2,所以2≤2x ≤4,94≤2−≤494,即2≤t ≤12,因为y =log 2t 在[2,12]上单调递增,所以y max =log 212=2+log 23,即函数f (x )的最大值为2+log 23.12.已知函数f (x )=log +.(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.[解](1)若函数f (x )是R 上的奇函数,则f (0)=0,所以log 2(1+a )=0,所以a=0.经检验,当a =0时,f (x )=-x 是R 上的奇函数.所以a =0.(2)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log +.由题意得log 2(1+a )-log +≥2,则log 2(1+a )≥log 2(4a +2).所以1+≥4+2,4+2>0,解得-12<a ≤-13.故实数a 的取值范围是−12,−13.(2024·湖北宜昌协作体期中)已知函数f(x)=log2(2x+1)+ax是偶函数.(1)求a的值;(2)设g(x)=f(x)+x,h(x)=x2-2x+m,若对任意的x1∈[0,4],存在x2∈[0,5],使得g(x1)≥h(x2),求m的取值范围.[解](1)因为f(x)=log2(2x+1)+ax是偶函数,所以f(-x)=f(x),即log2(2-x+1)-ax=log2(2x+1)+ax,log2(2x+1)-log2(2-x+1)+2ax=0,log2(2x+1)-log1+2ax=0,log2(2x+1)-log2ax=0,log22+11+22+2ax=0,log22x+2ax=0,x+2ax=0,(1+2a)x=0,所以1+2a=0,即a12.(2)g(x)=log2(2x+1)+12,因为对任意的x1∈0,4,存在x2∈0,5,使得g(x1)≥h(x2),所以g(x)在0,4上的最小值不小于h(x)在0,5上的最小值,因为g(x)=log2(2x+1)+12在0,4上单调递增,所以g(x)min=g(0)=1,因为h(x)=x2-2x+m=(x-1)2+m-1,所以h(x)在0,1上单调递减,在1,5上单调递增,所以h(x)min=h(1)=m-1,所以1≥m-1,解得m≤2,所以m的取值范围为(-∞,2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战2021新高考数学命题分析与探究命题7 对数与对数函数第一部分 命题点展示与分析1. (2019北京,5分)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg10.1D .10-10.1答案:A解析:设太阳的亮度为E 1,天狼星的亮度为E 2,根据题意,-1.45-(-26.7)=52lg E 1E 2,故lg E 1E 2=25.25×25=10.1,所以E 1E 2=1010.1.故选A.2.(2021汇编,35分)完成下列问题:①lg 27+lg8-lg 1000lg1.2=____;②lg5(lg8+lg1000)+(3lg2)2+lg 16+lg0.06=____;③log 23·log 34·log 45·log 52=____;④已知lg x +lg y =2lg(2x -3y ),则log 32⎝⎛⎭⎫x y =____;⑤已知4a =8,2m =9n =6,且1m +12n=b ,则a +b =____;⑥已知log 147=a ,14b=5,则log 352=____(用a ,b 表示); ⑦(1-log 63)2+log 62·log 618log 64=____.答案:①32 ②1 ③1 ④2 ⑤52 ⑥1-a a +b⑦1解析:①原式=lg 8271000lg 65=12lg 64×271000lg 65=12lg 43×33103lg 65=12lg ⎝⎛⎭⎫4×3103lg 65=32lg65lg 65=32.②原式=lg5×(3lg2+3)+3×(lg2)2+lg(16×0.06)=3lg5×lg2+3lg5+3×(lg2)2-2=3lg2+3lg5-2=1.③原式=lg3lg2×lg4lg3×lg5lg4×lg2lg5=1.④∵lg x +lg y =2lg(2x -3y ),∴⎩⎪⎨⎪⎧x >0,y >0,2x -3y >0,xy =(2x -3y )2,解得x y =94,∴log32x y =log 3294=2.⑤∵4a =8,2m =9n =6,∴a =log 48=32log 22=32,m =log 26,n =log 96,∴1m =log 62,1n=log 69, ∴b =1m +12n =log 62+12log 69=log 62+log 63=1,∴a +b =52.⑥∵14b=5,∴b =log 145.∵a =log 147,∴a +b =log 1435,1-a =log 1414-log 147=log 142,∴log 352=log 142log 1435=1-aa +b.⑦原式=(log 66-log 63)2+log 62·log 618log 622=(log 62)2+log 62·log 6182log 62=log 62(log 62+log 618)2log 62 =log 62·log 6(2×18)2log 62=log 62·log 6362log 62=2log 622log 62=1.命题点2命题方向命题难度对数函数的图像及性质对数函数图像过定点问题 容易 对数函数图像的辨析容易 利用对数函数图像求值或取值范围 一般 利用对数函数的图像与性质比较大小一般 对数型复合函数的定义域、单调性、奇偶性和值域问题 一般 解与对数型函数有关的不等式或方程一般命题方向二对数函数图像过定点问题3. (2019黑龙江龙凤区校级期末,5分)函数f (x )=log a (4x -3)+3(a >0,且a ≠1)的图像所过定点的坐标是____. 答案:(1,3)解析:对于函数f (x )=log a (4x -3)+3(a >0,且a ≠1),令4x -3=1,解得x =1.当x =1时,f (1)=3,所以函数f (x )的图像过定点(1,3).故答案为(1,3).命题方向三对数函数图像的辨析4.(2019浙江,4分)在同一直角坐标系中,函数y =1ax ,y =log a ⎝⎛⎭⎫x +12(a >0,且a ≠1)的图像可能是( )答案:D解析:对于函数y =1ax ,y =log a ⎝⎛⎭⎫x +12, 当a >1时,可得y =1ax 是减函数,图像恒过(0,1)点,函数y =log a ⎝⎛⎭⎫x +12是增函数,图像恒过⎝⎛⎭⎫12,0点; 当0<a <1时,可得y =1ax 是增函数,图像恒过(0,1)点,函数y =log a ⎝⎛⎭⎫x +12是减函数,图像恒过⎝⎛⎭⎫12,0点,∴D 选项中的图像满足要求.故选D.5.当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( )A .(0,1)B .(1,2)C .(1,2] D.⎝⎛⎭⎫0,12 答案:C解析:设f (x )=(x -1)2,g (x )=log a x ,要使不等式(x -1)2<log a x 恒成立,只需当x ∈(1,2)时,f (x )=(x -1)2的图像恒在g (x )=log a x 的图像的下方即可.当0<a <1时,g (x )=log a x 在(1,2)上的函数值小于0,f (x )=(x -1)2在(1,2)上的函数值大于0,显然不成立.当a >1时,在同一坐标系内画出f (x ),g (x )的图像,如图所示.当x ∈(1,2)时,要使f (x )=(x -1)2a f (2)≤g (2),即(2-1)2≤log a 2,∴log a a ≤log a 2.∵a >1,y =log a x 是增函数,∴a ≤2,∴1<a ≤2,即a 的取值范围是(1,2].故选C.6.(2019湖南岳阳一中一模,5分)已知函数f (x )=⎩⎪⎨⎪⎧-sinπx (-1≤x ≤0),|log 2019x |(x >0),若a <b <c <d ,且f (a )=f (b )=f (c )=f (d ),则a +b cd的值为( )A .-1B .0C .1D .2 答案:A解析:画出函数f (x )=⎩⎪⎨⎪⎧-sinπx (-1≤x ≤0),|log 2019x |(x >0的图像.因为a <b <c <d ,且f (a )=f (b )=f (c )=f (d ),所以通过图像可得a 与b 关于x =-12对称,所以a +b =-1;由f (c )=f (d ),可得log 2019c -1=log 2019d ,则1c =d ,即cd =1,则a +b cd=-1.故选A.7. (2021汇编,20分)(Ⅰ)已知a =log 2e ,b =ln2,c =log 1213,则a ,b ,c 的大小关系为( )(2018天津)A .a >b >cB .b >a >cC .c >b >aD .c >a >b(Ⅱ)已知a =log 36,b =log 510,c =log 714,则实数a ,b ,c 的大小关系是 ( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b(Ⅲ)若2a =log 12a ,⎝⎛⎭⎫12b=log 2b ,⎝⎛⎭⎫12c =log 12c ,则实数a ,b ,c 的大小关系为( ) A .a >c >b B .b >c >a C .c >b >a D .c >a >b(Ⅳ)已知a =2log 2π,b =3log 3π,c =5log 5π,则实数a ,b ,c 的大小关系是 ( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b 答案:(Ⅰ)D (Ⅱ)A (Ⅲ)B (Ⅳ)D解析:(Ⅰ)因为a =log 2e>1,b =ln2<lne =1,c =log 1213=-1-1·log 23=log 23>log 2e =a ,所以c >a >b .故选D.(Ⅱ)a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,∵y =log 2x 是增函数,∴log 27>log 25>log 23>0.∵log 27=1log 72,log 25=1log 52,log 23=1log 32,∴log 32>log 52>log 72, ∴a >b >c .故选A.(Ⅲ)直接通过图像的交点位置比较大小,在同一坐标系中作出y =⎝⎛⎭⎫12x ,y =2x ,y =log 2x ,y =log 12x 的图像,如图所示.由图像可知b >c >a .故选B.(Ⅳ)∵a =2lgπlg2>0,b =3lgπlg3>0,c =5lgπlg5>0,∴a b =2lg33lg2=lg9lg8>1,可得a >b ,c a =5lg22lg5=lg25lg52>1,可得c >a .综上可得c >a >b .故选D.8. (2019广东东莞期末节选)若函数f (x )=log 2⎝⎛⎭⎫12x +a 在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.答案:⎝⎛⎦⎤-12,-13 解:因为函数y =log 2x 是增函数,y =12x +a 为减函数,所以函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2(12+a ).(2分)因为函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,所以log 2(1+a )-log 2⎝⎛⎭⎫12+a =log 21+a 12+a ≥2=log 24,所以⎩⎪⎨⎪⎧a +12>0,1+a 12+a ≥4,解得-12<a ≤-13,所以实数a 的取值范围为⎝⎛⎦⎤-12,-13.(6分)9. (2019河南安阳模拟)函数f (x )=log a (6-ax )(a >0且a ≠1)在[0,2]上为减函数,则实数a 的取值范围是( )A .(0,1)B .(1,3)C .(1,3]D .[3,+∞) 答案:B解析:设u (x )=6-ax ,由a >0知u (x )为减函数,而f (x )为减函数,故a >1.又u (x )>0在[0,2]上恒成立,所以⎩⎪⎨⎪⎧a >1,6-2a >0,解得1<a <3.故选B.10.(2021汇编,10分)设函数f (x )=log 12(x 2+1),则(Ⅰ)不等式f (log 2x )+f (log 12x )≥-2的解集为____.(Ⅱ)满足不等式f (2x -1)<-1的x 的取值范围为____.答案:(Ⅰ)⎩⎨⎧⎭⎬⎫x |12≤x ≤2 (Ⅱ)(-∞,0)∪(1,+∞)解析:(Ⅰ)∵f (-x )=log 12(x 2+1)=f (x ),且f (x )的定义域为R ,关于原点对称,∴f (x )为R 上的偶函数.设z=x 2+1,则g (z )=log 12z .易知z =x 2+1在区间[0,+∞)上单调递增,g (z )=log 12z 在区间(0,+∞)上单调递减,∴f (x )在区间[0,+∞)上单调递减.令t =log 2x ,则 log 12x =-t ,∴不等式f (log 2x )+f (log 12x )≥-2可化为f (t )+f (-t )≥-2.又∵f (x )为R 上的偶函数,∴f (-t )=f (t ),∴2f (t )≥-2,∴f (t )≥-1.又∵f (1)=log 122=-1,∴f (t )≥f (1).∵f (x )在[0,+∞)上单调递减,且f (x )在R 上为偶函数,∴|t |≤1,即-1≤t ≤1,即-1≤log 2x ≤1,∴12≤x ≤2,∴不等式f (log 2x )+f (log 12x )≥-2的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤2.(Ⅱ)∵y =log 12x 在(0,+∞)上单调递减,y =1+x 2在(0,+∞)上单调递增,∴f (x ) 在(0,+∞)上单调递减.又由(Ⅰ)知函数f (x )=log 12(1+x 2)为R 上的偶函数,且f (1)=-1,∴不等式f (2x -1)<-1,即f (|2x -1|)<f (1),等价于|2x -1|>1,即2x -1>1或2x -1<-1,解得x >1或x <0,∴x 的取值范围为(-∞,0)∪(1,+∞).第二部分 命题点素材与精选1.(2020·甘肃城关�兰州一中高三二模(文))若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a < D .b a >【答案】C【解析】令23a b t ==,则0t >,1t ≠,2lg log lg 2t a t ∴==,3lg log lg 3tb t ==, ()lg lg lg lg 3lg 20lg 2lg 3lg 2lg 3t t t a b -∴-=-=>⋅,因此,a b >. 故选:C.2.(2020·全国高一课时练习)如果2(0,1)a b b b =>≠,则有( )A .2log a b =B .2log b a =C .log 2b a =D .log 2b a =【答案】C【解析】利用指数化对数得可log 2b a =,故选:C .3.(2020·江西高三其他(理))已知log 45m =,log 98n =,0.8log 0.5p =,则m ,n ,p 的大小关系为( ) A .p m n >> B .m np >>C .m p n >>D .p n m >>【答案】A【解析】依题意,54m =,故125542m ==;而89n =,故118493n ==,所以122112020855202011520442222561324333m n ⨯⨯⎛⎫⎛⎫⎛⎫ ⎪====> ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭, 所以m n >,因为0.80.8log 0.5log 0.642p =>=,2522m =<,所以p m n >> 故选:A4.(2020·宁夏兴庆�银川一中高二期末(文))已知lg ,010()13,105x x f x x x ⎧<≤⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ⋅⋅的取值范围为( )A .(1,15)B .(10,15)C .(15,20)D .(10,12)【答案】B【解析】不妨设a b c <<,画出()f x 的图像如下图所示,由于()()f a f b =,故1ab =,所以()10,15a b c c ⋅⋅=∈.故选B.5.(2020·武威第六中学高三其他(文))设函数()()2log 1,0,0x x f x x x ⎧+≥⎪=⎨-<⎪⎩,则满足()12f x +<的x 的取值范围为( ). A .()4,3- B .()5,2-C .()3,4-D .()()34-∞-+∞,,【答案】B【解析】由题意,()()2log 1,0,0x x f x x x ⎧+≥⎪=⎨-<⎪⎩,所以()()()2lo 1g 2,11,1x x x x f x ⎧+≥-+⎨-+=<-⎪⎩,①当1x ≥-时,()12f x +<,即()2log 22x +<,解得2x <,所以12x -≤<; ②当1x <-时,()12f x +<,即()12x -+<,解得5x >-,所以51x -<<-; 综上是,()12f x +<时x 的取值范围为()5,2-. 故选:B6.(2020·全国高一课时练习)若函数f (x )=2log a (2-x )+3(a >0,且a ≠1)过定点P ,则点P 的坐标是__________. 【答案】(1,3)【解析】令21,1x x -==,则(1)2log 133a f =+=,所以函数()f x 过定点(1,3)P . 故答案为:(1,3).7.(2019·河北辛集中学高三月考(理))已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________. 【答案】(]1,2 【解析】如下图所示:由上图所示,当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则函数log ay x =为增函数,且有log 21a ≥,所以1log 21a a >⎧⎨≥⎩,解得12a <≤,因此,实数a 的取值范围是(]1,2,故答案为(]1,2.8.(2020·陕西西安高三二模(理))函数()25log 23y x x =+-的单调增区间是______. 【答案】()1,+∞【解析】由题意,函数()25log 23y x x =+-满足2230x x +->,解得3x <-或1x >, 即函数()25log 23y x x =+-的定义域为-∞-+∞(,3)(1,),令()223g x x x =+-,则函数()g x 在(,3)-∞-单调递减,在区间(1,)+∞单调递增, 再根据复合函数的单调性,可得函数()25log 23y x x =+-的单调递增区间为(1,)+∞. 故答案为:(1,)+∞.9.(2020·开鲁县第一中学高三期末(文))设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)2a =,定义域为()1,3-;(2)2【解析】(1)()1log 2log l 242og a a a f =+==,解得2a =. 故()()22log 1)g 3(lo f x x x =++-,则1030x x +>⎧⎨->⎩,解得13x ,故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦,由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减.故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==.10.(2020·辉县市第二高级中学高三月考(文))已知函数()f x 满足2()3()488(0)f x f x ax ax a +-=-+≠.(1)求()f x 的解析式; (2)设函数12()log ()g x f x =,若()g x 在[3,3]-上的最大值为2,求a 的值.【答案】(1)()242f x ax ax =++;(2)716或112-. 【解析】(1)因为2()3()488(0)f x f x ax ax a +-=-+≠, 用x -代替上式中的x ,故可得()()23488f x f x ax ax +-=++,故可得()242f x ax ax =++.(2)由(1)中所求,故可得12()log ()g x f x =()212log 42ax ax =++ ()f x 的对称轴2x =-,当0a >时,要满足题意,只需:()f x 在区间[]3,3-上恒大于零,又此时()g x 在区间()3,2--单调递增,在区间()2,3-单调递减,则还需()22g -=. 故()20f ->且()22g -=即可.则()12log 4822a a -+=,且12a <,解得716a =. 当0a <时,要满足题意,只需()f x 在区间[]3,3-上恒大于零,又此时()g x 在区间()3,2--单调递减,在区间()2,3-单调递增, 则还需()(){}max 3,32g g -=.故()30f >且()(){}max 3,32g g -=. 又()32120f a =+>,故可得221a >-; ()()()()11223log 32,3log 212g a g a -=-+=+,显然当0a <时,21232a a +<-+,故()()33g g >-,故还需()32g =,解得121221a =->-满足题意. 综上所述,满足题意的716a =或112-.。