计量经济学实验报告 回归分析
《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
计量经济学实验报告

计量经济学实验报告:马艺菡学号:4班级:9141070302任课教师:静文实验题目简单线性回归模型分析一实验目的与要求目的:影响财政收入的因素可能有很多,比如国生产总值,经济增长,零售物价指数,居民收入,消费等。
为研究国生产总值对财政收入是否有影响,二者有何关系。
要求:为研究国生产总值变动与财政收入关系,需要做具体分析。
二实验容根据1978-1997年中国国生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,模型检验,模型检验,得出回归结果。
三实验过程:(实践过程,实践所有参数与指标,理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。
(一)模型设定为研究中国国生产总值对财政收入是否有影响,根据1978-1997年中国国生产总值X和财政收入Y,如图11978-1997年中国国生产总值和财政收入(单位:亿元)1996 66850.5 7407.991997 73452.5 8651.14根据以上数据作财政收入Y 和国生产总值X的散点图,如图2从散点图可以看出,财政收入Y和国生产总值X大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:(二)估计参数1、双击“Eviews”,进入主页。
输入数据:点击主菜单中的File/Open/EV Workfile—Excel—GDP.xls;2、在EV主页界面点击“Quick”菜单,点击“Estimate Equation”,出现“Equation Specification”对话框,选择OLS估计,输入““y c x”,点击“OK”。
即出现回归结果图3;参数估计结果为:Y=857.8375+0.100036iX(67.12578)(0.002172)t=(12.77955)(46.04910)2r=0.991583F=2120.520S.E.=208.5553DW=0.864 0323、在“Equation”框中,点击“Resids”,出现回归结果的图形(图4):剩余值(Residual)、实际值(actual),拟合值(fitted)4、.(三)模型检验1.经济意义检验回归模型为:Y=857.8375+0.100036*X(其中Y为财政收入,iX为国生产总值;)所估计的参数=0.100036,说明国生产总值每增加1亿元,财政收入平均增加0.100036亿元。
计量经济学数据分析实验报告

《计量经济学》实验报告【试验名称】利用OLS方法对证券市场高频数据进行分析【试验目的】掌握二元线性回归模型的建模和分析方法【试验内容】建立股票荣盛石化(002493)委托差价与换手率和收盘价的二元线性回归模型,并进行短期预测分析【试验步骤】1・建立股票委托差价与换手率和收盘价的二元线性回归模型:Spread =陽 + Pi^n + P2x2i + Pi(其中,令y: = Spread, x n = P收,x2i = turnover)2.数据采样表1荣盛石化(002493)每15分钟交易情况一、点点法计算回归方程由表1中的数据计算得出工y= 0.083 y = O.OO83« 0.008工X]二11697,云二11.697工x?二0.613%,云二0.061%(1) 编制工作表■ yx 2(%)• *> y_• • x :yX1X 2 0.001 -0.077 0.017 O.lxlO"55.9xl0~32 9x10"® 一7 7x10* 1.7x10“ -1.3xl0-5 0.001 -0.057 0.009 lxlO -6 3.2 xlO -38.1X10-9 -5.7xl0T9.0 xlO -8 -5.1x10^ 0003 -0.057 0.029 9x10^3.2x10^ 84x1 (T 81.7X1CT 4-8.7x10“ -1.7xlO -5 -0.001 -0.077 0.001 1x10"5.9x10-3lxlO -107.7 xlO -5 -l.OxlO -8 -7.7xl0? 0.001 0.033-0.026 lxlO -61.1x10-36 8x10"®3.3 xlO -5 -2.6x1 O'7 -8.6x1 OY ・0.004 -0.007 -0.024 1.6 xlO" 4.9 xlO -3 5.8X10-82.8x29.6x10-7 1.7x10“ -0.005 -0.007 -0.014 2.5 xlO -5 4.9 xlO -32.0 xW 83.5x10-5 7.0x10-7 9.8x10-7 | 0.006 0.073 •0.003 3 6x10*5.3x10—3 9xlO -10 4.4x107-1.8x10—7 -2.2x10“ 0.001 0.0330.006 lxlO^51.1 X 1 0"3 3.6 xlO -93 3x10*6X10-8 2.0 xlO -6 0.006 0.1430.0083.6 xlO"50.026 4x10"86x10*4.8 xlO"7l.lxlO"5(2) Ik 算统计量(3) 计算久、Dj 、D 2(4) 得出参数估计值A = —= 3.5xl0'3 Doa-y-\ • 0i — x? • 0? = -0.405综上所得,回归方程为:X =0.035x h +4.3x 21-0.405二、模型分析 (1)经济意义检验模型估计的结果说明,在假定其他变量不变的情况下,当收盘 价每增长1s ^=Ey2= 127x10-4S R =工£ =3.68x10“Sy?=工禺 y = 114x10"% =工衬=4.58xl0"2=x^y =L54x10'3 $2 =工若禺=-1.26xl0-5D.=S H %= 1.66x10“= 7.16xl0"s= 5.8xlO"10S“■ ■% S"元,委托差价(Spread)就会增长0.035元;在假定其他变量不变的情况下,当换手率(turnover)增长1个百分点时,委托差价(Spread)就会增长4.3元。
计量经济学Eviews简单线性回归模型的建立与分析应用实验报告

实验一:简单线性回归模型的建立与分析应用【实验目的】1、熟悉计量经济学软件包EViews的界面和基本操作;2、掌握计量经济学分析实际经济问题的具体步骤;3、掌握简单线性回归模型的参数估计、统计检验、预测的基本操作方法;4、理解简单线性回归模型中参数估计值的经济意义。
【实验类型】综合型【实验软硬件要求】计量经济学软件包EViews、微型计算机【实验内容】为研究深圳市地方预算内财政收入(Y)与地区生产总值(X)的关系,建立简单线性回归模型,现根据深圳市统计局网站的相关信息,得到统计数据如下表:请按照下列步骤完成实验一,每个步骤要写出操作过程:(1)打开EViews,新建适当的工作文件夹;打开Eviews后,依次点击File-New-Workfile,新建一个时间序列数据(Dated-regular frequencied)类型的文件,频率选择年度(Annual),键入起止日期1990-2008(如图一),点击ok,新建工作文件夹完成(如图二)(图一)(图二)(2)在工作文件夹中新建变量X和Y,并输入数据;依次点击Objects-New Object,对象类型选择序列(Series),并输入序列名Y(如图三),点击OK,重复以上操作,新建系列对象X。
新建系列对象完成后如(图四)按住ctrl并同时选定X和Y,用鼠标右击选择open—as group,点击Edit +/-开始编辑,输入数据,数据输入完毕再点击Edit+/-一次。
数据输入后如(图五)。
(图三)(图四)(图五)(3)生成X和Y的自然对数序列,保存在工作文件夹中,命名为lnX和lnY;依次点击Objects-Generate Sereies,出现Generate Series by Equation 窗口,在Enter equation窗口中输入公式:lnY=log(Y)点击ok,重复以上操作,输入:lnX=log(X) 创建序列lnX。
(如图六)(图六)(4)求X和Y的描述统计量的值,写出操作过程并画出相应表格;依次点击Quick-Group Statistics—Descriptive Statistics-Common sample,打开Series List窗口,输入x y,点击ok,输出结果(如图七)(图七)(5)作出X和Y的散点图,写出操作过程并画出相应图像,并判断模型是否接近于线性形式;依次点击Quick-Graph,打开Graph Options窗口,在Specific 中选择Scatter(散点图) (如图八)点击OK,得到散点图(如图九)(图八)由散点图可以看出模型接近线性形式(图九)(6) 用OLS 法对模型i i i u X Y ++=21ββ做参数估计,将估计结果保存在工作文件夹中,命名为eq01,写出操作过程和回归分析报告,并解释斜率的经济含义;在窗口空白处输入:ls y c x ,回车,得到结果如图回归分析报告:根据输出结果可得Ŷi = 26.02096 + 0.088820Xi (14.80278) (0.004356) t= (1.757843) (20.38986) R 2 = 0.960716 F=415.7464 D.W=0.626334 n=19 斜率的经济含义:斜率为0.088820,表示地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.088820亿元(7) 用OLS 法对模型i i i u X Y ++=ln ln 21ββ做参数估计,将估计结果保存在工作文件夹中,命名为eq02,写出操作过程和回归分析报告,并解释斜率 的经济含义;在主窗口空白处输入:ls lny c lnx ,回车,结果如图回归分析报告:根据输出结果可得lny = -1.272730 + 0.873867lnx(0.238775) (0.032394) t= (-5.330249) (26.9761) R 2 = 0.977172 F=727.7097 D.W= 0.811127 n=19 斜率的经济含义:斜率为0.873867,表示地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.0873867亿元(8) 将保存工作文件夹保存在桌面,文件名为test1.wfl ;依次点击File-Save As 将文件保存在桌面,命名为test1.wfl (9) 对eq01的估计结果做经济意义检验和统计检验(05.0=α),估计的效果如何?经济意义检验:x 的系数β2的估计值为0.088820,说明地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.088820亿元,该值处于(0,1)符合预期。
【精品】《计量经济学》实验报告

【精品】《计量经济学》实验报告
一、实验目的
通过本实验,了解计量经济学的基本概念,认识计量经济学的应用,以及如何利用统计软件STATA进行计量经济学的研究。
二、实验内容
本次实验利用国外一项有关家庭经济收支的调查资料,分析收入与消费的关系,研究对收入的影响因素。
三、实验方法
(1)调查资料:国外家庭收支资料是由100个家庭的收支情况数据组成,其中包括这100个家庭的收入、消费、家庭编号、家庭购买力等。
(2)计量模型:在该实验中,建立二元线性回归模型:
(3)计量经济学的应用:利用STATA软件进行实证分析,以估计该家庭收入与消费的关系,并进一步研究影响收入的因素。
四、实验结果
(1)估计结果:家庭收入与消费的估计结果如下:
模型结果:Y=0.697+2.154X
线性拟合结果:R2=0.811,p=0.000
(2)影响收入的因素:利用STATA软件回归分析发现,家庭购买力、家庭编号等因素影响家庭收入。
五、实验结论
通过本次实验,我们可以得出以下结论:
(1)计量经济学是一种有效的用来研究家庭收入与消费关系的方法。
(2)家庭收入与消费显著正相关,即家庭收入越高,消费也越高。
(3)家庭购买力以及家庭编号等因素对家庭收入有显著影响。
计量经济学实验报告完整版范文

评语
教师
评语
成绩
辽宁工程技术大学上机实验报告
实验名称
计量经济学多元线性回归模型
院系
工商管理
专业
金融
班级
09-2
姓名
于佳琦
学号
日期
6.15
实验
目的
简述本次实验目的:熟悉多元线性回归模型中的解释变量的引入
掌握对计算机过的统计分析和经济分析
实验
பைடு நூலகம்准备
你为本次实验做了哪些准备:了解多元线性回归模型参数的OLS估计,统计检验,点预测以及区间估计,非线性回归的参数估计,受约束回归检验
实验
进度
本次共有3个练习,完成3个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:在简单线性回归的基础上引入了多元线性回归模型,操作也较之前更加复杂,最大的障碍在于多重共线性模型数据更多,输入时容易出错,而且软件非汉化版本,很多时候不了解数据的含义,操作也不是很熟练,一般思路是,先用OLS方法进行估计,建立模型,然后进行对模型的检验,理论相对简单,可是检验过程十分复杂,如果不用例题做实验,单纯找数据进行分析,总会有遗忘的影响因素,而导致结果的偏差,所以在选择分析对象的影响因素时考虑周全尤为重要。
实验
进度
本次共有1个练习,完成1个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:初步投身于计量经济学,通过利用Eviews软件将所学到的计量知识进行实践,让我加深了对理论的理解和掌握,直观而充分地体会到老师课堂讲授内容的精华之所在。在实验过程中我们提高了手动操作软件、数量化分析与解决问题的能力,还可以培养我在处理实验经济问题的严谨的科学的态度,并且避免了课堂知识与实际应用的脱节。虽然在实验过程中出现了很多错误,但这些经验却锤炼了我们发现问题的眼光,丰富了我们分析问题的思路。通过这次实验让我受益匪浅。
计量经济学ch2 双变量回归分析

Ch2 双变量回归分析: 基本概念总体:研究对象的全体,总体的基本单位称为个体。
同一对象的度量数据集合,也成为总体。
样本:总体中若干个体的集合。
2.1. 例子假定某个国家的人口总体由60户组成,所要研究的问题是,家庭消费支出与家庭可支配收入的关系。
假定将收入不等的家庭分为10组。
表2.1 用X 表示收入,Y 表示消费X80 100 120 140 160 180 200 220 240 260Y 55 65 79 80 102 110 120 135 137 150 60 70 84 93 107 115 136 137 145 152 65 74 90 95 110 120 140 140 155 175 70 80 94 103 116 130 144 152 165 178 75 85 98 108 118 135 145 157 175 180 - 88 - 113 125 140 - 160 189 185-- - 115 - - -162-191iY ∑E(Y︱X)325 65462 77445 89707 101678 113750 125685 1371043 149966 1611211137条件概率与条件期望。
p(Y=60/X=80)=1/5p(Y=65/X=80)=1/5,p(Y=70/X=80)=1/5 p(Y=75/X=80)=1/5进而根据条件概率,我们可计算条件期望(均值),即1()55(1/5)60(1/5)65(1/5)70(1/5)75(1/5)65E Y X X ==++++=图2.1 总体回归直线对应X 的不同水平,Y 的条件期望(均值)的变化,由于Y 的条件均值是对于给定X 的值而对于相应的所有Y 的值求条件均值,因此称为总体回归直线(PRL )。
2.2. PRL 函数Y 的条件均值为函数,因此将Y 的条件均值表述为i X )()(i i X f X Y E = (2.1)称(2.1)为双变量总体回归函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南科技大学《计量经济学》实验报告
实验项目名称:计量经济学实验
指导教师:
实验组成人员:
学号:
年级专业:
【实验步骤——自己操作】
一、实验数据:
为了研究深圳市地方预算内财政收入与国内生产总值的关系,得到以下数据:
资料来源:《深圳统计年鉴2002》,中国统计出版社
(1)建立深圳地方预算内财政收入对GDP的回归模型;。
(2)估计所建立模型的参数,解释斜率系数的经济意义;
(3)对回归结果进行检验;
(4)若是2005年年的国内生产总值为3600亿元,确定2005年财政收入的预测值。
二、实验步骤:
1.建立EViews3.1实验文件
在主菜单上依次点击File/New/Work file,选择annual(年度)
2.输入Y、X、T的数据
在EViews软件的命令窗口键入DATA命令,命令格式为::输入:DATA Y X
Ls y c x/ok 后,出现Forecast
3.制图x与y的变化图形:
所以根据地方预算内财政收入(Y )和GDP 的关系近似直线关系,可建立线性回归模型:
t t t u GDP y ++=21ββ
4.输入命令:genr e=resid
根据EViews 估计其参数结果为:
t t GDP Y 134582.0611151.3ˆ+-=
(4.16179) (0.003867) T = (-0.867692) (34.80013) R 2=0.99181 F=1211.049
经检验说明,GDP 对地方财政收入确有显著影响。
R 2=0.99181,说明GDP 解释了地方财政收入变动的99%,模型拟合程度较好。
所以当GDP 每增长一亿元,地方财政平均收入将增长0.134582亿元。
5.回归检验——回归参数的显著性检验: 显著性检验水平:5.00=α
查找自由度为n-k 的()79.122-12t 25.00=
有上不检验中得出
)(2
k n t -≥α
即为34.80013179.2≥
所以在其他解释变量不变的情况下,解释变量x 对应变量y 的影响是显著的
6. 若是2005年年的国内生产总值为3600亿元,确定2005年财政收入的预测值。
2005年的预测值,单位:亿元
利用软件预测2005年结果
先设2002——2004年的x=NA y=NA 然后再预测y值,产生yf
yf480.8830亿元
则
2005。