滞后变量
滞后变量模型与自回归模型

2、分布滞后模型的修正估计方法
人们提出了一系列的修正估计方法,但并不很 完善。 各种方法的基本思想大致相同:都是通过对各 滞后变量加权,组成线性合成变量而有目的地减 少滞后变量的数目,以缓解多重共线性,保证自 由度。 (1)经验加权法
根据实际问题的特点、实际经验给各滞后变量 指定权数,滞后变量按权数线性组合,构成新的 变量。权数据的类型有:
由于无法预见知电力行业基本建设投资对发电 量影响的时滞期,需取不同的滞后期试算。 经过试算发现,在2阶阿尔蒙多项式变换下,滞 后期数取到第6期,估计结果的经济意义比较合理。 2阶阿尔蒙多项式估计结果如下:
ˆ 3319 Y .5 3.061 W0t 0.101 W1t 0.271 W2t t
2、滞后变量模型
以滞后变量作为解释变量,就得到滞后变量模 型。它的一般形式为:
Yt 0 1Yt 1 2Yt 2 qYt q 0 X t 1 X t 1 s X t s t
q,s:滞后时间间隔 自回归分布滞后模型 ( autoregressive distributed lag model, ADL):既含有Y对自身滞后变量的回归, 还包括着X分布在不同时期的滞后变量
k 1 2
(*)
s
将(*)代入分布滞后模型
s 2 i 0 k 1
Yt i X t i t
i 0
得
Yt ( k (i 1) k ) X t i t
1 (i 1) X t i 2 (i 1) 2 X t 2 t
Yt 0 i X t i t
2、自回归模型(autoregressive model) 自回归模型:模型中的解释变量仅包含X的当 期值与被解释变量Y的一个或多个滞后值
11 滞后变量模型

Yt 0 1 (X t (1 ) X t*1 ) ut 0 1 X t 1 (1 ) X t*1 ut
Yt 0 1 X t (1 )Yt 1 vt vt ut (1 )ut 1
问题:变量与残差项相关、残差项自相关 (2) 将(1)滞后一期后乘 (1 ) 并与(2)相减得:
3、自回归模型的估计及估计量的性质
考伊克模型 、自适应预期模型与局部调整模型,在 模型结构上最终都可表示为一阶自回归形式
* * Yt = α* + β0 X t + β1 Yt -1 +ut*
但是,上述一阶自回归模型的解释变量中含有滞后被解 释变量Yt-1 ,是随机变量,它可能与随机扰动项相关;而且 随机扰动项还可能自相关。模型可能违背古典假定,从而给 模型的估计带来一定困难。 考伊克模型: ut* = ut - λut -1 ut* = ut - (1- γ)ut -1 适应预期模型: 局部调整模型: ut* = δut 假定原模型中随机扰动项满足古典假定,即
(2)考伊克(koyck)变换
对于无限分布滞后模型
设
Yt 0
X
i i 0
t i
ut
i 0
i
i =0,1,2,…
λ(0<λ<1)称为分布滞后的衰减率,1-λ称为调节速率 相减
Yt 0 0 X t 0 X t 1 0 2 X t 2 ... ut
(2)阿尔蒙变换
◆目的:消除多重共线性的影响。
◆基本原理:在有限分布滞后模型滞后长度 已知的情况下, 滞后项系数有一取值结构,把它看成是相应滞后期i 的函数。
i 0 1i ... l i l ;
《滞后变量模型 》课件

滞后变量模型考虑了时间序列数据的 自相关性和时间依赖性,能够更好地 解释和预测时间序列数据的变化趋势 。
滞后变量模型的应用场景
经济预测
用于预测股票价格、消费、投资等经济指标的 变化趋势。
金融分析
用于分析股票、债券、期货等金融产品的价格 波动和趋势。
自然灾害研究
用于预测地震、洪水等自然灾害的发生和影响。
要点三
案例分析
例如,在分析气温变化时,可以引入 前一期的气温作为滞后变量。通过建 立滞后变量模型,可以对未来气候变 化趋势进行预测,为应对气候变化提 供科学依据。
06
总结与展望
滞后变量模型的优势与不足
01
优势
02
考虑了时间滞后效应,能够更好地描述经济现象的 动态变化。
03
在数据不足的情况下,可以利用已知信息进行预测 ,提高预测精度。
找最优解。
参数估计的步骤
模型设定
根据研究目的和数据特征,设 定合适的滞后变量模型。
模型检验
对估计的参数进行检验,确保 模型的拟合效果和预测能力。
数据收集
收集与滞后变量模型相关的数 据,确保数据的准确性和完整 性。
估计参数
根据设定的模型选择合适的参 数估计方法,对模型中的未知 参数进行估计。
结果解释
滞后变量模型与其他模型的比较
与线性回归模型相比
滞后变量模型考虑了自相关性,能够 更好地处理时间序列数据。
与ARIMA模型相比
滞后变季节性 和趋势的影响。
02
滞后变量模型的原理
滞后变量的产生原因
经济现象的惯性
经济现象的变化往往具有惯性, 一个变量的变化往往会影响其未 来的变化趋势,因此需要引入滞
滞后变量讲义

滞后解释变量X
t
,最大限度地节省了自由度,
i
解决了滞后期长度k难以确定的问题;
二是由于滞后一期的被解释变量Yt
1与X
的线性
t
相关程度小于X的各期滞后值之间的相关程度,
从而缓解了多重共线性。
柯伊克变换的缺点:
一是模型存在随机误差项vt的一阶自相关性;
二是随机解释变量Yt1与随机项vt相关,即 Cov(Yt1,vt ) 0.
四、分布滞后模型的估计
1.经验权数法 所谓经验权数法,是根据实际经济问题的特点 及经验判断,对滞后变量赋予一定的权数,利用这 些权数构成各期滞后变量的线性组合,以形成新的 变量,再应用最小二乘法进行估计。
根据滞后结构的特点,经常使用的权数类型有:
(1)递减型:即各期权值是递减的,此时假定随着 时间的推移,解释变量的影响将逐期降低。例如, 消费函数模型
是相同的。
3.柯依克(Koyck)方法
柯依克方法是将无限分布滞后模型转换为自 回归模型,然后进行估计。
对于无限分布滞后模型
Yt 0 X t 1X t1 ut (1)
柯依克假定βi具有相同的符号,并且按几何级数 递减:
i 0i , i=0,1,2,
(2)
其中λ是一个介于0和1之间的常数,λ值的大小
三、滞后变量模型估计时存在的问题
(1)多重共线性问题; (2)自由度问题; (3)滞后长度难以确定。
处理方法:
对于有限分布滞后模型,其基本思想是设法有目 的地减少需要直接估计的模型参数个数,以缓解 多重共线性,保证自由度。
对于无限分布滞后模型,主要是通过适当的模型 变换,使其转化为只需估计有限个参数的自回归 模型。
(2)用OLS估计模型
cox滞后变量

cox滞后变量摘要:1.引言:介绍Cox 滞后变量2.Cox 滞后变量的定义和原理3.Cox 滞后变量的应用4.Cox 滞后变量的优缺点5.结论:总结Cox 滞后变量的重要性正文:【引言】Cox 滞后变量是一种在机器学习和数据挖掘领域中广泛应用的变量处理方法。
它可以有效地解决特征选择和特征提取的问题,从而提高模型的预测精度和鲁棒性。
本文将对Cox 滞后变量的定义、原理、应用和优缺点进行详细介绍。
【Cox 滞后变量的定义和原理】Cox 滞后变量是由英国统计学家David Cox 于1958 年提出的一种变量处理方法。
它的基本思想是:对于一个多元线性回归模型,通过引入一个新的变量,使得模型中的其他变量对该新变量的影响呈现出线性关系。
具体来说,对于模型中的每一个自变量x_i,都可以通过Cox 变换构造一个新的变量x_i^2,使得该变量与x_i 具有线性关系。
这样,原来的多元线性回归模型可以转化为一个新的多元线性回归模型,其中包含了所有的Cox 滞后变量。
【Cox 滞后变量的应用】Cox 滞后变量在机器学习和数据挖掘领域中有广泛的应用,主要包括以下几个方面:1.特征选择:Cox 滞后变量可以用于特征选择,即将原始特征通过Cox 变换转化为新的特征,从而筛选出对目标变量影响较大的特征。
2.特征提取:Cox 滞后变量可以用于特征提取,即将原始特征通过Cox 变换转化为新的特征,从而提取出原始数据中隐藏的信息。
3.模型优化:Cox 滞后变量可以用于模型优化,即将原始模型通过引入Cox 滞后变量转化为新的模型,从而提高模型的预测精度和鲁棒性。
【Cox 滞后变量的优缺点】Cox 滞后变量具有以下优缺点:优点:1.可以有效地解决特征选择和特征提取的问题,提高模型的预测精度和鲁棒性。
2.计算简单,易于实现。
缺点:1.对于高维数据,Cox 滞后变量可能会导致计算量过大,从而影响算法的运行效率。
2.Cox 滞后变量只是一种线性变换,可能无法充分挖掘原始数据中的非线性关系。
5.2滞后变量

5.2滞后变量模型在经济运行过程中,广泛存在时间滞后效应。
某些经济变量不仅受到同期各种因素的影响,而且也受到过去某些时期的各种因素甚至自身的过去值的影响。
通常把这种过去时期的、具有滞后作用的变量叫做滞后变量(Lagged Variable ),含有滞后变量的模型称为滞后变量模型。
滞后变量模型考虑了时间因素的作用,使静态分析的问题有可能转化成动态分析。
含有滞后解释变量的模型,又称动态模型(Dynamic Models )。
一、滞后变量模型1、滞后效应与产生滞后效应的原因一般税来,被解释变量与解释变量的因果关系不一定就在瞬时发生,可能存在时间的滞后,或者说解释变量的变化可能需要经过一段时间才能完全对被解释变量产生影响。
同样地,被解释变量当前的变化也可能受其自身过去取值水平的影响,这种被解释变量受到自身或另一解释变量的前几期值影响的现象称为滞后效应,表示前几期值的变量称为滞后变量。
如在研究消费函数时,通常认为,本期的消费除了受本期的收入水平影响之处,还受前1期收入以及前一期消费水平的影响:t t t t t C Y Y C μββββ++++=--131210 这就是含有滞后变量的模型,1-t Y ,1-t C 为滞后变量。
现实经济生活中,产生滞后效应的原因众多,主要有以下几个方面:(1)心理原因。
由于人们固有的心理定势和行为习惯,其行为方式往往滞后于经济形势的变化,如中彩票的人不可能很快改变其生活方式。
因此,以往的行为延续产生了滞后效应。
(2)技术原因。
在现实经济运行中,从生产到流通再到使用,每一个环节都需要一段时间,从而形成时滞。
如工业生产中,当年的产出在某种程度上依赖于过去若干期内投资形成的固定资产。
又如当年农产品产量主要取决于过去一年价格的高低,如此等等。
(3)制度原因。
契约、管理制度等因素也会造成经济行为的滞后,如定期存款到期才能提取,造成了它对社会购买力的影响具有滞后性。
过去的订购合同影响着当前产品的产量等。
Eviews:滞后变量模型

滞后效应及其成因
被解释变量受到自身或另一解释 变量的前几期值影响的现象称为 滞后效应。
产生滞后效应的原因众多,成因 主要有: 1、心理原因 2、技术原因 3、制度原因
滞后变量模型
以滞后变量作为解释变量,就得到滞 后变量模型,它一般形式为:
Ytα=1βX0t+-1β+‥1Yt+-1α+s‥X+t-Sβ+qμYtt-q+α0Xt+
滞后变量模型
滞后变量模型定义
在经济活动中,某些经济变量不但受 到同期各种因素影响,而且受到过去 时期的因素影响。通常把这种具有滞 后作用的变量叫做滞后变量(lagged variable),含有滞后变量的模型称为滞 后变量模型。由于其考虑是时间因素 的作用,因此又称为动态模型 (dynamic model)
模型包含着解释变量X分布在不同 时期的滞后变量,因此一般又称为自 回归分布滞后模型(autoregressive lag model, ADL).
ห้องสมุดไป่ตู้
分布滞后模型&自回归模型
分布滞后模型(distributed-lag model):如果滞后变量模型中没 有滞后被解释变量,仅有解释变 量X的当期值及其若干期的滞后 值。
Step 2
对变换后的模型进行OLS估计。
在eviews下,合成两步的命令为
ls y c pdl(x,6,2)
PDLs设置原则
其中设定的PDLs项应该遵循以下 原则:
PDL(序列名,滞后长度,多项 式阶数,【,数字码】
其中数字码规则为:1代表施加 近端约束,2代表施加远端约束, 3代表施加两端约束,如果不限 制,可以省略。
计量经济学名词解释

三、名词解释(每小题2分,共14分)1.滞后变量:用来作为解释变量的内生变量的前期值称为滞后内生变量,简称为滞后变量。
2.工具变量:在模型估计过程中被作为工具使用,以替代模型中与误差项相关的随机解释变量的变量,称为工具变量。
3.超参数:系统变参数模型的辅助关系式中的参数称为超参数。
4.自回归模型:包含有被解释变量滞后值的模型,称为自回归模型。
5.系统估计法:对整个模型系统中的所有方程同时进行估计,从而同时决定所有结构参数的估计量。
6.需求导向:从经济学角度看,需求导向表现为社会需求决定社会供给这样一种供需矛盾关系;从模型结构看,需求导向表现为总产出或国民收入由消费需求,投资需求和净出口需求所决定这样一种单向决定机制。
7.平稳时间序列:均值和方差固定不变,自协方差只与所考察的两期间隔长度有关,而与时间的变化无关的时间序列。
26.时序数据27.一阶自相关28.异方差29.简化式模型30.完全多重共线性31.经济计量分析工作:是指依据经济理论分析,运用计量经济模型,研究现实经济系统的机构、水平、提供经济预测情报和评价经济政策等的经济研究和分析工作32.宏观经济计量模型的总体设计:是指对模块以及各模块之间的衔接关系的设计,可以用模板框图或流程图来描述,强调的是通过模块来反映模型的结构,并通过模块之间的关系反映模型的机制。
33.区间预测:根据给定的解释变量值,预测相应的被解释变量Y取值的一个可能范围,即提供Y的一个置信区间34.平稳时间序列:是指均值和方差固定不变,自协方差只与所考察的两期间隔长度有关,而与时间的变化无关的时间序列。
35.恩格尔定律:指的是食品恩格尔曲线的特征,即随着消费者收入的增加,花费在食品上的支出比例将减少。
1. 判定系数(r2)2. 方差非齐性3. 设定误差(广义)4. 间接最小二乘法5. 索洛(Solow)增长速度方程6. 混合导向7. 协整36. 内生变量37. 设定误差38. 分布滞后模型39. 扩展线性支出系统40. 混合导向41. 希尔(Theil)不等系数42. 非均衡31.内生变量32.分段线性回归33.供给与需求的混合导向模型34.确定模型参数估计值的统计准则35.K阶单整31.经济计量学32.总体回归模型33.判定系数34.恰好识别35.价格弹性1. 联立方程偏倚2. 经济参数3. 最佳估计量4. 二阶段最小二乘法5. 生产函数6. 需求导向7. K阶单整I(K)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将原模型转换为
Yt 0 Z0t 1Z1t 2 Z2t ut
(2)用OLS估计模型
对变换后的模型进行OLS估计,将得到的参数估计 ˆ0 , ˆ1 , ˆ 2 代入i 0 1i 2 i 2,即可得出原模型 值 中各参数的估计值。
在实际估计中,阿尔蒙多项式的次数r一般取2或3,
经验权数法的特点是简单易行,但权数设置的主 观随意性较大。通常是多选几组权数分别估计模 型,再通过各种检验从中选择出一个较为合适的 模型。
2.阿尔蒙(Almon)多项式法(有限分布滞后模型)
基本原理:
设有限分布滞后模型为:
Yt 0 X t 1 X t 1 k X t k ut
第二节 滞后变量
一、滞后变量及滞后变量模型概念
现实经济生活中,许多经济变量不仅受某变 量同期因素的影响,而且还与它的前期值有关。 例如,人们的消费支出不仅取决于当前收入,还 在一定程度上与过去各期收入有关。 通常把变量的前期值,即带有滞后作用的变量称 为滞后变量(Lagged Variable);含有滞后变量 的模型称为滞后变量模型。
但柯伊克变换同时也产生了两个问题:
一是模型存在随机误差项vt的一阶自相关性;
二是随机解释变量Yt 1与随机项vt 相关,即Cov(Yt 1,vt ) 0.
五、自回归模型的估计
1.自回归模型估计时遇到的问题
(1)随机解释变量很可能与随机误差项相关;
(2)随机误差项有可能存在自相关。 2.估计方法:工具变量法和广义差分法 3.自回归模型随机误差项自相关的检验 对于包含滞后被解释变量Yt-1的自回归模型:
2 2
关;当 H Z 时,接受H 0,认为不存在一阶自相关。
2
It 0Yt 1Yt 1 ut
2.自回归模型 如果模型中包含解释变量X的本期值被解释 变量Y的若干期滞后值,即:
Yt 0 X t 1Yt 1 kYt k ut
则称其为k阶自回归模型,也叫内生滞后变量模型。 例如,消费函数模型 例如,税收函数模型
其中 vt ut ut 1 , 称上述变换过程为柯依克
变换,变换后得到的自回归模型为柯依克模型。 柯依克模型有两个特点:
一是以一个滞后被解释变量Yt 1代替了大量的 滞后解释变量X t i,最大限度地节省了自由度, 解决了滞后期长度k 难以确定的问题;
二是由于滞后一期的被解释变量Yt 1与X t的线性 相关程度小于X的各期滞后值之间的相关程度, 从而缓解了多重共线性。
Yt Wt ut
得到、的估计值,则原模型中各参数的估计 值为:
ˆ 0 ˆ 2 ˆ , 1 ˆ 4 ˆ , 2 ˆ 6
(2)常数型:即各期权数相等,此时认为滞后 变量的各期影响是相同的。
(3)倒V型:即权数先递增后递减呈倒V型,其 适用于近、远期影响较小,中间影响较大的滞后 变量模型。
Yt 1 0 X t 1 2 0 X t 2
(3)-(4)得
ut 1 (4)
Yt Yt 1 (1 ) 0 X t ut ut 1
则原分布滞后模型变成了一个自回归模型:
Yt (1 ) 0 X t Yt 1 vt
2 i 0
0 X t i 1 iX t i 2 i 2 X t i ut
i 0 i 0 i 0
k
k
k
k Z 0t X t i X t X t 1 X t k i 0 k 定义新变量 Z1t iX t i X t 1 2 X t 2 kX t k i 0 k 2 2 Z 2t i X t i X t 1 4 X t 2 k X t k i 0
Yt 0 X t 1Yt 1 ut
进行DW检验时DW统计量的值总是接近于2,DW 检验失效。为此,杜宾(Durbin)又提出了解决这 一问题的H检验法。 H检验的步骤为:
(1)提出假设: H0 : 0, H1 : 0
(2)计算H统计量
DW n H (1 ) ˆ) 2 1 nVar ( 1
i=0,1,2,
(2 )
其中λ 是一个介于0和1之间的常数,λ 值的大小
决定了滞后项系数递减速度的快慢,λ 值越小则 递减速度越快,所以将λ 称为分布滞后衰减率。
将(2)式代入(1)式得:
Yt 0 X t 0 X t 1 0 2 X t 2 ut (3)
将(3)式滞后一期,并在两端同时乘以λ ,得
ˆ 是Y 的系数估计值, 其中DW为DW统计量的值, 1 t 1 ˆ )是 ˆ 的方差。 n为样本容量,Var(
1 1
(3)对于大样本,在H 0成立时,H ~ N (0,1),对于 给定的显著性水平,由标准正态分布表查得临界 值Z ,当 H Z 时,拒绝H 0,认为存在一阶自相
Ct 0 X t 1 X t 1 2 X t 2 ut
近期收入对消费的影响较大,而远期收入的影响 将越来越小,则各期权数可取成:1/2,1/4,1/6. 则组合成新的解释变量为:
1 1 1 Wt X t X t 1 X t 2 2 4 6
估计模型:
不超过4,否则达不到减少变量个数的目的。
3.柯依克(Koyck)方法(无限分布滞后模型)
柯依克方法是将无限分布滞后模型转换为自 回归模型,然后进行估计。 对于无限分布滞后模型
Yt 0 X t 1 X t 1
递减:
ut
(1)
柯依克假定βi具有相同的符号,并且按几何级数
i 0 i ,
阿尔蒙认为其回归系数βi可以用滞后期i的适当次多 项式来逼近:
i 0 1i 2i 2
r i r (r k )
将这一关系式代入有限分布滞后模型,并经过适当 的变量变换,可以减少模型中变量个数,削弱模型 的多重共线性,从而可以估计模型中的参数。
主要步骤:
(1)阿尔蒙变换 对于有限分布滞后模型
Yt 0 X t 1 X t 1 k X t k ut i X t i ut
i 0 k
假定
i 0 1i 2i 2
k
将其代入有限分布滞后模型得:
Yt ( 0 1i 2i ) X t i ut
Ct 0Yt 1Ct 1 ut Tt 0Yt 1Tt 1 ut
三、外生滞后变量模型估计时存在的问题
(1)多重共线性问题; (2)自由度问题;
(3)滞后长度难以确定;无限分布滞后模型无 法使用OLS法。
四、分布滞后模型的估计
1.经验权数法(有限分布滞后模型) 所谓经验权数法,是根据实际经济问题的特点 及经验判断,对滞后变量赋予一定的权数,利用这 些权数构成各期滞后变量的线性组合,以形成新的 变量,再应用最小二乘法进行估计。 根据滞后结构的特点,经常使用的权数类型有: (1)递减型:即各期权值是递减的,此时假定随着 时间的推移,解释变量的影响将逐期降低。例如, 消费函数模型
二、滞后变量模型分类 1.分布滞后模型
如果模型中的滞后变量只是解释变量X的过去各 期值,即
Yt 0 X t 1 X t 1 k X t k ut
则称其为分布滞后模型,也叫外生滞后变量模型。 按照k是否有限,可分为有限和无限分布滞后模型。 例如:消费函数模型 Ct 0 X t 1 X t 1 2 X t 2 ut 投资函数模型