最大流与最小费用流
最小费用最大流问题ppt课件

v4 (5,3) vt
(3,0)
(2,1) v3
v1
Back 14
continued
(二)调整过程 (1)寻找以为终点的增广链----(反向追踪法)
若vt的第一个标号为v3 , 则弧(v3 , vt )是链上的弧。 接下来检查 v3的第一个标号, 为 v2, 则找出(v3 , v2 )是链上的弧。 同理, (v2 , v1 )和(vs , v1 )是链上的弧. 此时所求的增广链(vs , v1 , v2v3 , vt )。
(2)若在弧 (v j , vi )上 , fij 0, 则给 v j标号 (vi , l(v j )) 这 里 l(v j ) min[ l(vi ), f ji ] .此时,点 v j成为标号而未检查的点.
于是 vi 成为标号且已检查过的点.重复上述步骤,一旦 v t
被标上号,表明得到一条从 vs 到 v t 的增广链 ,转入调整过程.
3 、检查 v1
在弧 (v1 , v3 ) 上 , f13 c13 2, 不满足标号条件;
在弧 (v2 , v1 ) 上 , f 21 0, 则 v2的标号为 (v1,l(v2 )). 其中, l(v2 ) min[ l(v1), f21] min[ 4,1] 1 4 、检查 v2
若所有标号都已经检查过,而标号过程进行不下去时,则 算法结束,此时的可行流就是最大流.
10
2 、调整过程 (1)寻找以v t 为终点的增广链----(反向追踪法): 若vt的第一个标号为vk (或 vk ),则弧(vk , vt )(相应地(vt , vk ))是
链上的弧。 接下来检查vk的第一个标号, 若为vi (或 vi ), 则找 出(vi , vk )(相应地(vk , vi ))。 再检查的第一个标号, 依此下去, 直到 vs为止(2。)调此整时量被找 的l(v弧t ),就即构vt的成第了二增个广标链号。。
最大流与最小费用流

§7 最大流问题7.1 最大流问题的数学描述 7.1.1 网络中的流定义 在以V 为节点集,A 为弧集的有向图),(A V G =上定义如下的权函数:(i )R A L →:为孤上的权函数,弧A j i ∈),(对应的权),(j i L 记为ij l ,称为孤),(j i 的容量下界(lower bound );(ii )R A U →:为弧上的权函数,弧A j i ∈),(对应的权),(j i U 记为ij u ,称为孤),(j i 的容量上界,或直接称为容量(capacity );(iii )R V D →:为顶点上的权函数,节点V i ∈对应的权)(i D 记为i d ,称为顶点i 的供需量(supply /demand );此时所构成的网络称为流网络,可以记为),,,,(D U L A V N =。
由于我们只讨论A V ,为有限集合的情况,所以对于弧上的权函数U L ,和顶点上的权函数D ,可以直接用所有孤上对应的权和顶点上的权组成的有限维向量表示,因此D U L ,,有时直接称为权向量,或简称权。
由于给定有向图),(A V G =后,我们总是可以在它的弧集合和顶点集合上定义各种权函数,所以流网络一般也直接简称为网络。
在流网络中,弧),(j i 的容量下界ij l 和容量上界ij u 表示的物理意义分别是:通过该弧发送某种“物质”时,必须发送的最小数量为ij l ,而发送的最大数量为ij u 。
顶点V i ∈对应的供需量i d 则表示该顶点从网络外部获得的“物质”数量(0>i d 时),或从该顶点发送到网络外部的“物质”数量(0<i d 时)。
下面我们给出严格定义。
定义 对于流网络),,,,(D U L A V N =,其上的一个流(flow )f 是指从N 的弧集A 到R 的一个函数,即对每条弧),(j i 赋予一个实数ij f (称为弧),(j i 的流量)。
如果流f 满足∑∑∈∈∈∀=-Ai j j i ji A j i j ij V i d f f ),(:),(:,,(1)A j i u f l ij ij ij ∈∀≤≤),(,, (2)则称f 为可行流(feasible flow )。
最小费用最大流

Spfa实现
概念
• 网络流图论中的一种理论与方法,研究网络 上的一类最优化问题 。 • 所谓网络或容量网络指的是一个连通的赋权 有向图 D=(V、E、C) , 其中V 是该图的 顶点集,E是有向边(即弧)集,C是弧上的容 量。此外顶点集中包括一个起点和一个终点。 网络上的流就是由起点流向终点的可行流, 这是定义在网络上的非负函数,它一方面受 到容量的限制,另一方面除去起点和终点以 外,在所有中途点要求保持流入量和流出量 是平衡的。
(3,3,1)
v0
(2,2,1) v3
(1,1,1)
(4,6,0)
v2
(2,3,0) (2,2,0)
(9,3,0) v5
(3,4,0)
如果 f 是可行流,则对收、发点vt、vs有
∑fsi =∑fjt =Wf ,
即从vs点发出的物质总量 = vt点输入的量.Wf 称为网络流 f 的总流量.
上述概念可以这样来理解,如G是一个运输网络,则 发点vs表示发送站,收点vt表示接收站,中间点vk表示中间 转运站,可行流 fij 表示某条运输线上通过的运输量,容量 Cij表示某条运输线能承担的最大运输量,Wf 表示运输总 量.
将各弧的单位运费作为长度,求v0到vn的最短 增流路v0v1v3v4vn,路长为8,可增加1单位的 流值。
v1
(4,3,0)
v4 (2,5,0) vn
(3,3,0)
v0
(2,2,0) v3
(1,1,0)
(4,6,0)
v2
(2,3,0) (2,2,0)
(9,3,0) v5
(3,4,0)
将各弧的单位运费作为长度,求v0到vn的最短 增流路v0v1v3v4vn,路长为8,可增加1单位的 流值。
5-5 最小费用最大流问题-xfj

v2
v3
(10, 0) ①流量调整量 总流量v(f 总流量v(f(1))=5
v2
v3
=min{8-0,5-0,7ε1=min{8-0,5-0,7-0}=5 ②最小费用增广链的费用 ∑bij=1+2+1=4 ③新的可行流为f(1),总费 新的可行流为f =4× 用b1=4×5=20
vs →v2 →v1 →vt
2、最小费用流 对于一个费用容量网络,具有相同 对于一个费用容量网络, 流量 v(f) 的可行流中,总费用b(f)最小的 的可行流中,总费用b(f)最小的 可行流称为该费用容量网络关于流量 v(f) 的最小费用流,简称流量为 v(f) 的最小 的最小费用流,简称流量为 费用流。 费用流。
3、增广链的费用 当沿着一条关于可行流 f 进行调整,得到新的可行流 f 进行调整, 称 b( f ) − b( f ) 的增广 ,则 链(流量修正路线)µ,以修正量 流量修正路线) ,以修正量ε=1 增广链µ的费用。 为增广链µ的费用。
v2
v3
即是f 的最小费用增广链。 即是f(1)的最小费用增广链
第3次迭代
-4 4
v1
-2 6
பைடு நூலகம்
-1
(10, 2)
v1
(7, 7) (2, 0)
vs
-1
1
vt
2 (8, 8)
vs
(5, 5)
vt
(4, 3)
v2
3
v3
①零流弧保持原边,非饱和非 零流弧保持原边, 零流弧增添后向弧, 零流弧增添后向弧,饱和弧去 掉原边增添后向弧 ②用列表法求得最短路
增广费用网络图的 增广费用网络图的构造方法 将流量网络中的每一条弧( 将流量网络中的每一条弧(vi,vj)都看 作一对方向相反的弧,并定义弧的权数如 作一对方向相反的弧, 下: vi (cij,fij) c vj
最小费用最大流问题.

vs
(
5,2)
(
(
2,6)
8,1)
V2 10,3)ቤተ መጻሕፍቲ ባይዱV3
4,2)
第一轮:f 0为初始可行流,作相应的费用有向图网络L(f 0),如 图(a)。 在L(f 0)上用DijksTra标号法求出由vs到vt的最短路(最小费用链) 0 m i n 8,5, 5 7 μ0=(vs,v2,v1, ( vt)v ,并对 μ 按 进行流量的调整, 0 , v ) ,( v , v ) ,( v , v ) s 2 0 2 1 0 1 t 0 由于, (1) (1) 所以有 fs2 f12 f1t(1) 5,其余不变,得新的可行流f1的流量 有向图(b)。
vs
vt
2.下表给出某运输问题的产销平衡表与单位运价 表。将此问题转化为最小费用最大流问题,画出网 络图并求数值解。 2 3 产量 1 产地 销地
A B 销量 20 30 4 24 22 5 5 20 6 8 7
最小总费用为240
(20,8) A (0,8) s (30,7) (0,7) (5,8) (24,8)
4
vt
vs
1
6
2
2
v1
(7,5)
(2,0)
(10,0)
vt
(4,0)
v2
V(f
1)
(a) = 5
3
v3 vs
(8,5)
w(f0)
(5,5)
v2
(10,0)
v3
(b) f 1
v1 vs
(8,5)
(7,5)
(2,0)
(10,0)
vt
(4,0) 4
v1
vs
最小费用最大流问题

近似算法和启发式算法
要点一
近似算法
近似算法是一种用于求解NP-hard问题的有效方法,它可 以在多项式时间内找到一个近似最优解。最小费用最大流 问题的近似算法包括Ford-Fulkerson算法、EdmondsKarp算法等。
要点二
启发式算法
启发式算法是一种基于经验或直观的算法,它可以在合理 的时间内找到一个近似最优解。最小费用最大流问题的启 发式算法包括基于增广路径的算法、基于贪婪的算法等。
研究如何将最小费用最大流问题 应用于计算机科学领域,例如计 算机网络、云计算等。
物理学
研究如何借鉴物理学中的理论和 思想,解决最小费用最大流问题, 例如利用流体动力学中的思想来 研究网络中的流。
谢谢观看
Hale Waihona Puke 06未来研究方向和展望算法优化和改进
动态规划算法
研究如何优化动态规划算法,减少时间复杂度 和空间复杂度,提高求解效率。
近似算法
研究近似算法,在保证求解质量的前提下,提 高求解速度。
并行计算和分布式计算
研究如何利用并行计算和分布式计算技术,加速最小费用最大流问题的求解。
新的问题定义和模型
考虑更复杂的情况
和技术。
有界容量和无界容量
总结词
有界容量和无界容量是指在网络中节点之间 的容量是否有限制。
详细描述
在最小费用最大流问题中,如果节点之间的 容量有限制,即为有界容量问题;如果节点 之间的容量没有限制,即为无界容量问题。 有界容量问题可以通过增广路径算法、预流 推进算法等求解,而无界容量问题则需要采
用其他算法和技术进行求解。
算法概述
最小费用最大流问题是一种网络流问 题,旨在在给定有向图中寻找一条路 径,使得从源节点到汇点之间的总流 量最大,同时满足每个节点的流入量 等于流出量,以及每条边的容量限制。
最小费用最大流
最小费用最大流1.最大流问题1.1案例假设现在因为种种原因,我们只能通过地面线路来运输口罩物资,并且每一条线路是有流量限制的。
假设不考虑运输速度,并且源点S (杭州)的口罩物资产量是足够多的,我们需要求解汇点T(武汉)在不计速度的情况下能收到多少物资?对于这个流网络,我们可以轻松的获得汇点T的最大流量。
因为在这个图中,只有两条路径,分别是S → A → B → T和S → C → D → T两条路径来输送流量,前者最大流量是12 ,后者是4,所以最大流量总和是16。
1.2建模图1是连接产品产地Vs和销售地Vt的交通网,每一条弧代表两点间的运输线,弧旁的数字表示这条运输线的最大通过能力。
现在要求制定一个运输方案,使得从Vs运输到Vt的产品数量最多。
图1模型():(,):(,)max .,,,,s ,0,s.t 0,,V V st f c Vf f t f Vμυμυμυυμυυυμμυλμυμυλμλμμμυ∈∈≤∀∈⎧=⎪-=-=⎨⎪≠⎩≥∀∈∑∑其中λ表示总共运输量f μυ表示弧(),μυ中的实际流量(),c μυ表示弧(),μυ中的容量限制S,t 表示物质运输的起点和终点最大流问题的推广现实问题中的网络,不但边有容量,而且点也有容量。
例如运 输网络中表示中转站的点v, 点容量 c(v) 可表示该中转站能容纳的货物的数列。
对点有容量的网络 N ,流函数若满足对一点 v,流入v 的流量之和等于流出v 的流量之和,并且小于等于c(v),2.最小费用最大流问题上面我们介绍了一个网络上最短路以及最大流的算法,但是还没有考虑到网络上流的费用问题,在许多实际问题中,费用的因素很重要。
例如,在运输问题中,人们总是希望在完成运输任务的同时,寻求一个使总的运输费用最小的运输方案。
这就是下面要介绍的最小费用流问题。
在运输网络N = (s,t,V, A,U)中,设(),c μυ是定义在A上的非负函数,它表示通过弧(),μυ单位流的费用。
最大流与最小费用流
c67 = 7 − P = 7 - 6 = 1
通过第1次修改,得到图3。
图3 返回步骤①,进行第2次修改。
次修改: 第2次修改 次修改 选定①—②—⑤—⑦,在这条路中,由 于 P = c25 = 3 ,所以,将 c12 改为2 , 25 改 c 为0,c57 改为5,c 21 、 52 、 75 改为3。修改后 c c 的图变为图4。
x12 + x13 + x14 = x57 + x67 = f
x12 + x32 x + x 23 13 x14 + x34 x + x 35 25 x36 + x 46 = x 23 + x 25 = x32 + x34 + x35 + x36 = x 46 + x65 = x56 + x57 + x56 = x65 + x67
所以取 P = c13 = 6 。
③在路①—③—⑥—⑦中,修改每一 条弧的容量
c13 = 6-P = 6-6 = 0
c36 = 7 − P = 7 - 6 = 1
c31 = 0 + P = 0 + 6 = 6
c63 = 0 + P = 0 + 6 = 6
c76 = 0 + P = 0 + 6 = 6
f = f 0 ≤ f max
(15)
使其代价最小,即
d=
( i , j )∈V
∑d
ij
xij = min
(16)
式中:d ij 指单位车辆数通过弧 (i, j )的代价。
图11 代价条件
图1 约束条件
最大流与最小费用流
5
转入调整过程,令δ = δ vt = 2 为调整量,从 vt点 v4 开始,由逆增广链方向按标号[ +v4 , 2] 找到点, 令 f 4′t = f。 2 4t + 再由 v4 点标号 [ +v1, 2找到前一个点 v1 ,并 ] ′ 令 f14 = f14 + 2。按 v点标号找到点 v5。 1 ′ 由于标号为 v5 , ( v5 , v1 )为反向边,令 f15 = f15 2 ′ 由 v5 点的标号在找到 v2 ,令 f 25 = f 25 + 2 。 由 v2 点找到 vs,令 f s′2 = f s 2 + 2 调整过程结束,调整中的可增广链见图544,调整后的可行流见图5-45。
vj
三、求最大流的标号算法 设已有一个可行流f,标号的方法可分为两步:第 1步是标号过程,通过标号来寻找可增广链;第2 步是调整过程,沿可增广链调整f以增加流量。 1.标号过程 (1)给发点以标号 ( , +∞ ) (2)选择一个已标号的顶点 vi ,对于 vi 的所有 未标号的邻接点 v j 按下列规则处理: a) 若边 ( vi , v j ) ∈ E ,且 f ji > 0, 则令 δ j = min ( f ji , δ i ) , 并给以标号 ( vi , δ i ) 。 b) 若边 ( vi , v j ) ∈ E,且 fij < cij 时,令 δ j = min ( cij f ji , δ i ) 并给以标号 ( + vi , δ j )
j k
(即中间点 vi 的物资的输入量与输出量相等) 对收、发点 ut , us ,有 ∑ f si = ∑ f jt = W
i j
(即从 us 点发出的物资总量等于 ut 点输入量)W为 网络流的总流量。
最小费用最大流简介
6
最大流=f1+f2+f3=4+2+2=8
最小费用=48+26+30=104
算法设计:贪心策略
设p是图的一条增广路径,定义路径p的长度为:
w[i, j ]
w[i, j ]
i , j P
i ,。
如果p是一条最短(单位费用最小)的可增广路径, 称p是一条最小费用可增广路。
(4,6)
实例:
(容量,单位费用)
(2,5)
2
(5,7)
3
(4,3)
1
(6,2)
6 5
(8,5)
4
(7,6)
①、最小费用可增广路(最短路径) 1436 长度(单位流量总费用) =2+7+3=12 f 1=4 cost1=4*12=48
(4,6) (2,5)
2
4
(5,7) 4
3
4
(4,3)
1
(6,2)
6 5
(8,5)
4
(7,6)
(4,6)
(2,5)
2
4 (5,7) 4
3
4
(4,3)
1
②、最小费用可增广路 1456 长度(单位流量总费用) =2+6+5=13 f2 =2 cost2=2*13=26
6 5
(8,5)
(6,2)
4
(7,6)
(4,6)
(2,5)
2
(5,7) 2 4 2 (7,6)
// short[i]:i到源点1的最短距离(最小费用);
b:array[1..maxn] of integer; // b[i]:最小费用可增广路 径上结点i的前驱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (e)
eN ( v )
f (e), v I ,
其中: N (v) 表示 v 的所有出弧的集, N (v) 表示 v 的所有 入弧的集。则称 f 是网络 N 的一个流, f (e) 是边 e 的流量。 注 1: (1) 容量约束表示通过边的流量不能超过改边的 容量; 守恒条件表示在每个中间点, 流进与流出该点的总流 量相等,即保持中间点的流量平衡。 ( 2) 任一网络至少存在一个流, 如零流 ( f (e) 0, e V ) 。
定理 3
f 是网络 N 的最大流的充要条件是 N 不含 f 增广链。
最大流算法的基本思想(Ford-Fulkerson 算法): 判别网络 N 中当前给定的流 f (初始时,取 f 为零流)是否 存在增广链,若没有,则该流 f 为最大流;否则,求出 f 的改进流
f ' ,把 f ' 看成 f ,再进行判断和计算,直到找到最大流为止。 算法(标号法) : 这种方法分为以下两个过程: A.标号过程:通过标号过程寻找一条可增广轨。 B.增流过程:沿着可增广轨增加网络的流量。
Val f ' Val f
则称 f 为 N 的最大流。 定义 6 若 A V , s A, t A V A , 则称 N 中弧的集合 ( A, A) 是网络 N 的一个割 (cut) , 记作 K , 称 C( A , ) A 的容量。 设 K 是一个割, 若不存在割 K , 使得 C ( K ' ) C ( K ) , 则称 K 是
同理对 s 的邻接点 b 标 (s , 4) 。如图 a
( s ,3) a 3, 0 5, 0
c
3, 0பைடு நூலகம்
s ( s , )
4
5, 0
2, 0
1, 0 5, 0
t
b ( s , 4)
3, 0
d
(a)
(3)对与 a 相邻的点 c,标 (a ,3) ;与 b 相邻的点 d,标 (b ,3) ; 与 c 相邻的点 t,标 (c ,3) ,此时 t 3 ,同时得增广链 sact。如图 b
'
(2) E E {(s, x) | x X } {( y, t ) | y Y } ;
'
(3)c c(e), e E ;c (s, x) , x X ,c ( y, t ) , y Y 。 图 1 所示网络等价于图 2 所示的单源单汇网络。
' ' '
x1
, 2
例:单源单汇网络和多元多汇网络。
a
3, 3 5, 4
c
3, 3
s
4, 4
5,1
2, 0
1,1
5, 4
t
b
3, 3
d
x1
1,1
2, 2
6,1 3, 0
v1
4, 0
1, 0 5, 3
5,1
1, 0 2,1
y1
2, 2
v4
3, 2
3,1
s
4, 4
6, 0
y2
6, 4
x2
v3
y3
定义 2 设 N 为一个网络, f 是 E 上的非负函数,如果: (1)容量限制条件: 0 f (e) c(e) , e E ; (2)流量守恒条件:
标号为 ( x , y ) ,若 f ( y, x) 0 ,则不给 y 标号。 (iii)不断地重复步骤(ii)直到收点 t 被标号,或不再有顶点可以标号 为止。 当 t 被标号时, 表明存在一条从 s 到 t 的可增广轨, 则转向增流过程 (B) 。 如若 t 点不能被标号,且不存在其它可以标号的顶点时,表明不存在从 s 到 t 的可增广轨,算法结束,此时所获得的流就是最大流。
例 1:图 1 表示一个网络及网络流
x1
1,1 2, 2
6,1 3, 0
v1
4, 0
1, 0 5, 3
5,1
1, 0 2,1
y1
2, 2
v4
3, 2
3,1
s
4, 4
6, 0 6, 4
y2
x2
v3
y3
图1
发点集: 收点集:
X {x1 , x2} Y { y2 }
中间点集: I {v1, v2 , v3 , v4 , y1 , y2}
6,1
v1
3, 0
5,1 4, 0
1, 0
y1
2,1
1,1
2, 2
1, 0
2, 2
s
, 4
v4
3, 2
5,3
3,1
s 6, 0
6, 4 4, 4
,0 , 6 t y2 ,0
x2
v3
图2
y3
二、最大流与最小割
最大流问题是一类应用极为广泛的问题, 例如在交通运输网络中 有人流、车流、货物流,供水网络中有水流,金融系统中有现金流, 通讯系统中有信息流,等等。 定义 5 设 N (V , E, c, s, t ) 是一个网络, f 是一个流,若不存在 流 f ' ,使
c(e) f (e) e P 定义 9 设 l ( P) min l (e) ,其中 l (e) , eE ( P ) e P f (e) (1)若 l ( P) 0 ,则称 P 链为 f 饱和链; (2)若 l ( P) 0 ,则称 P 链为 f 非饱和链。 定义 10 设 f 是一个流, P 是从源 s 到汇 t 的一条链,若 P 满足 (1)在弧 e P 上, 0 f (e) c(e) ,即 P 中每条弧都是不饱和弧; (2)在弧 e P 上, 0 f (e) c(e) ,即 P 中每条弧都是非零弧; 则称 P 是关于流 f 的一条增广链。 显然一条 f 增广链就是一个从发点 s 到收点 t 的 f 非饱和链。若在 网络中存在一条 f 增广链,则表明 f 不是最大流。
'
( ,) i j A iS , jS
uij 为割 ( A, A)
N 的最小割。
注 4:割是从 A 到 A 的有向弧组成的
最大流与最小割的关系:
定理 1 设 f 是 N 的流, ( A, A) 是一个割,则: (1) Val f
eN ( A)
f (e)
eN ( A)
( s ,3) a (a ,3) c
5, 0
3, 0
3, 0
5, 0
s ( s , )
4, 0
2, 0
1, 0
t (c ,3)
增广链及最大流算法
定义 7 若 f 是网络 N 的一个流,对 e E , (1)若 f (e) c(e) ,则称 e 为 f 的饱和弧; (2)若 f (e) c(e) ,则称 e 为 f 的不饱和弧; (3)若 f (e) 0 ,则称 e 为 f 的正弧; (4)若 f (e) 0 ,则称 e 为 f 的零弧; 定义 8 若 P 是网络 N 中从源 s 到汇 t 的一条初等链(点、边 不重复的有向路) , 定义链的方向为从 s 到 t, 则链上的弧 (有向边) 分为两类: 正向弧:弧的方向与链的方向一致,正向弧的全体记作 P ; 反向弧:弧的方向与链的方向相反,反向弧的全体记作 P 。
这两个过程的步骤分述如下:
(A)标号过程:
xy , ) 0 (i) 对任意的弧 e ( x, y) E , 置 f(
令 s ;
; 给发点标号为 ( s , ) ,
(ii)若顶点 x 已经标号,则对 x 的所有未标号的邻接顶点 y 按以下规 则标号: ① 若(x , y ) Î E ,且 f ( x, y) c( x, y) 时,令
例2:求图3中网络的最大流。
a
3
5
c
3
s
4
5
2
1
t
5
b
3
图3
d
解: (1)对所有 ( x, y) E ,令 f (x,y) 0 ,如图 a 各边的第二个数。 标 s 为 ( s , ) ,令 s 。
(2)对 s 的邻接点 a 标 (s ,3) 。这里因 s 指向 a,故标 s 的上标为+,又 a min{c(s, a) f (s, a), s} min{3 0, } 3
(B)增流过程 (i)令 u t 。 (ii)若 u 的标号为 (v , t ) ) ,则 f (v, u) f (v, u) t ;若 u 的 标号为 (v , t ) ,则 f (u, v) f (u, v) t 。 (iii)若 u s ,把全部标号去掉,并回到标号过程(A) 。否 则,令 u v ,并回到增流过程(ii) 。 注: (1)标号 ( x , y ) 表示从 x 流入 y 的流可增加 y ; ( x , y ) 表示从 y 流入 x 的流可减少 y ; ( s , ) 表示发点可提供任意多的流 到别的点。 (2)算法终止后,令已标号的点的集合为 A ,则割 ( A, A) 即为 最小割,从而最大流的流量 Val f C( A, A) 。
y min{c( x, y) f ( x, y), x } ,
则给顶点 y 标号为 ( x , y ) ,若 f ( x, y) c( x, y) ,则不给顶点 y 标号。 ② 若(y, x )
y,x) 0 , 且 f( 令y m 则给 y n i{ ( , f) , y }x x , Î E,
定义 4 设 f 是网络 N 的一个流,则 f 的流的价值 Val f 定义为
Val f =
eN ( X )