Tri-bimaximal Neutrino Mixing and CKM Matrix in a SU(5)x(d)T Model

合集下载

芳基和杂芳基取代的四氢异喹啉及其阻断去甲肾上腺素、多巴胺和5

芳基和杂芳基取代的四氢异喹啉及其阻断去甲肾上腺素、多巴胺和5

专利名称:芳基和杂芳基取代的四氢异喹啉及其阻断去甲肾上腺素、多巴胺和5-羟色胺重摄取的用途
专利类型:发明专利
发明人:J·P·贝克,M·A·库里,M·A·史密斯
申请号:CN00818078.4
申请日:20001103
公开号:CN1414953A
公开日:
20030430
专利内容由知识产权出版社提供
摘要:在此提供式(I)化合物,其中R-R如文中所述,R为芳基或杂芳基。

此类化合物特别用于治疗一种疾病,所述疾病由5-羟色胺、去甲肾上腺素或多巴胺的可利用性降低引起或取决于5-羟色胺、去甲肾上腺素或多巴胺的可利用性降低。

申请人:阿尔巴尼分子研究公司
地址:美国纽约州
国籍:US
代理机构:中国专利代理(香港)有限公司
代理人:姜建成
更多信息请下载全文后查看。

PACSnumbers1215Ff,1130Hv,1210Dm,1125Mj…

PACSnumbers1215Ff,1130Hv,1210Dm,1125Mj…

a r X i v :0803.2889v 2 [h e p -p h ] 14 J u l 2008Mapping Out SU (5)GUTs with Non-Abelian Discrete Flavor SymmetriesFlorian Plentinger ∗and Gerhart Seidl †Institut f¨u r Physik und Astrophysik,Universit¨a t W¨u rzburg,Am Hubland,D 97074W¨u rzburg,Germany(Dated:December 25,2013)We construct a class of supersymmetric SU (5)GUT models that produce nearly tribimaximal lepton mixing,the observed quark mixing matrix,and the quark and lepton masses,from discrete non-Abelian flavor symmetries.The SU (5)GUTs are formulated on five-dimensional throats in the flat limit and the neutrino masses become small due to the type-I seesaw mechanism.The discrete non-Abelian flavor symmetries are given by semi-direct products of cyclic groups that are broken at the infrared branes at the tip of the throats.As a result,we obtain SU (5)GUTs that provide a combined description of non-Abelian flavor symmetries and quark-lepton complementarity.PACS numbers:12.15.Ff,11.30.Hv,12.10.Dm,One possibility to explore the physics of grand unified theories (GUTs)[1,2]at low energies is to analyze the neutrino sector.This is due to the explanation of small neutrino masses via the seesaw mechanism [3,4],which is naturally incorporated in GUTs.In fact,from the perspective of quark-lepton unification,it is interesting to study in GUTs the drastic differences between the masses and mixings of quarks and leptons as revealed by current neutrino oscillation data.In recent years,there have been many attempts to re-produce a tribimaximal mixing form [5]for the leptonic Pontecorvo-Maki-Nakagawa-Sakata (PMNS)[6]mixing matrix U PMNS using non-Abelian discrete flavor symme-tries such as the tetrahedral [7]and double (or binary)tetrahedral [8]groupA 4≃Z 3⋉(Z 2×Z 2)and T ′≃Z 2⋉Q,(1)where Q is the quaternion group of order eight,or [9]∆(27)≃Z 3⋉(Z 3×Z 3),(2)which is a subgroup of SU (3)(for reviews see, e.g.,Ref.[10]).Existing models,however,have generally dif-ficulties to predict also the observed fermion mass hierar-chies as well as the Cabibbo-Kobayashi-Maskawa (CKM)quark mixing matrix V CKM [11],which applies especially to GUTs (for very recent examples,see Ref.[12]).An-other approach,on the other hand,is offered by the idea of quark-lepton complementarity (QLC),where the so-lar neutrino angle is a combination of maximal mixing and the Cabibbo angle θC [13].Subsequently,this has,in an interpretation of QLC [14,15],led to a machine-aided survey of several thousand lepton flavor models for nearly tribimaximal lepton mixing [16].Here,we investigate the embedding of the models found in Ref.[16]into five-dimensional (5D)supersym-metric (SUSY)SU (5)GUTs.The hierarchical pattern of quark and lepton masses,V CKM ,and nearly tribi-maximal lepton mixing,arise from the local breaking of non-Abelian discrete flavor symmetries in the extra-dimensional geometry.This has the advantage that theFIG.1:SUSY SU (5)GUT on two 5D intervals or throats.The zero modes of the matter fields 10i ,5H,24H ,and the gauge supermul-tiplet,propagate freely in the two throats.scalar sector of these models is extremely simple without the need for a vacuum alignment mechanism,while of-fering an intuitive geometrical interpretation of the non-Abelian flavor symmetries.As a consequence,we obtain,for the first time,a realization of non-Abelian flavor sym-metries and QLC in SU (5)GUTs.We will describe our models by considering a specific minimal realization as an example.The main features of this example model,however,should be viewed as generic and representative for a large class of possible realiza-tions.Our model is given by a SUSY SU (5)GUT in 5D flat space,which is defined on two 5D intervals that have been glued together at a common endpoint.The geom-etry and the location of the 5D hypermultiplets in the model is depicted in FIG.1.The two intervals consti-tute a simple example for a two-throat setup in the flat limit (see,e.g.,Refs.[17,18]),where the two 5D inter-vals,or throats,have the lengths πR 1and πR 2,and the coordinates y 1∈[0,πR 1]and y 2∈[0,πR 2].The point at y 1=y 2=0is called ultraviolet (UV)brane,whereas the two endpoints at y 1=πR 1and y 2=πR 2will be referred to as infrared (IR)branes.The throats are supposed to be GUT-scale sized,i.e.1/R 1,2 M GUT ≃1016GeV,and the SU (5)gauge supermultiplet and the Higgs hy-permultiplets 5H and2neously broken to G SM by a 24H bulk Higgs hypermulti-plet propagating in the two throats that acquires a vac-uum expectation value pointing in the hypercharge direc-tion 24H ∝diag(−12,13,15i ,where i =1,2,3is the generation index.Toobtainsmall neutrino masses via the type-I seesaw mechanism [3],we introduce three right-handed SU (5)singlet neutrino superfields 1i .The 5D Lagrangian for the Yukawa couplings of the zero mode fermions then readsL 5D =d 2θ δ(y 1−πR 1) ˜Y uij,R 110i 10j 5H +˜Y d ij,R 110i 5H +˜Y νij,R 15j5i 1j 5H +M R ˜Y R ij,R 21i 1j+h.c. ,(3)where ˜Y x ij,R 1and ˜Y x ij,R 2(x =u,d,ν,R )are Yukawa cou-pling matrices (with mass dimension −1/2)and M R ≃1014GeV is the B −L breaking scale.In the four-dimensional (4D)low energy effective theory,L 5D gives rise to the 4D Yukawa couplingsL 4D =d 2θ Y u ij 10i 10j 5H +Y dij10i 5H +Y νij5i ∼(q i 1,q i 2,...,q i m ),(5)1i ∼(r i 1,r i 2,...,r im ),where the j th entry in each row vector denotes the Z n jcharge of the representation.In the 5D theory,we sup-pose that the group G A is spontaneously broken by singly charged flavon fields located at the IR branes.The Yukawa coupling matrices of quarks and leptons are then generated by the Froggatt-Nielsen mechanism [21].Applying a straightforward generalization of the flavor group space scan in Ref.[16]to the SU (5)×G A represen-tations in Eq.(5),we find a large number of about 4×102flavor models that produce the hierarchies of quark and lepton masses and yield the CKM and PMNS mixing angles in perfect agreement with current data.A distri-bution of these models as a function of the group G A for increasing group order is shown in FIG.2.The selection criteria for the flavor models are as follows:First,all models have to be consistent with the quark and charged3 lepton mass ratiosm u:m c:m t=ǫ6:ǫ4:1,m d:m s:m b=ǫ4:ǫ2:1,(6)m e:mµ:mτ=ǫ4:ǫ2:1,and a normal hierarchical neutrino mass spectrumm1:m2:m3=ǫ2:ǫ:1,(7)whereǫ≃θC≃0.2is of the order of the Cabibbo angle.Second,each model has to reproduce the CKM anglesV us∼ǫ,V cb∼ǫ2,V ub∼ǫ3,(8)as well as nearly tribimaximal lepton mixing at3σCLwith an extremely small reactor angle 1◦.In perform-ing the group space scan,we have restricted ourselves togroups G A with orders roughly up to 102and FIG.2shows only groups admitting more than three valid mod-els.In FIG.2,we can observe the general trend thatwith increasing group order the number of valid modelsper group generally increases too.This rough observa-tion,however,is modified by a large“periodic”fluctu-ation of the number of models,which possibly singlesout certain groups G A as particularly interesting.Thehighly populated groups would deserve further system-atic investigation,which is,however,beyond the scopeof this paper.From this large set of models,let us choose the groupG A=Z3×Z8×Z9and,in the notation of Eq.(5),thecharge assignment101∼(1,1,6),102∼(0,3,1),103∼(0,0,0),52∼(0,7,0),52↔4FIG.3:Effect of the non-Abelian flavor symmetry on θ23for a 10%variation of all Yukawa couplings.Shown is θ23as a function of ǫfor the flavor group G A (left)and G A ⋉G B (right).The right plot illustrates the exact prediction of the zeroth order term π/4in the expansion θ23=π/4+ǫ/√2and the relation θ13≃ǫ2.The important point is that in the expression for θ23,the leading order term π/4is exactly predicted by thenon-Abelian flavor symmetry G F =G A ⋉G B (see FIG.3),while θ13≃θ2C is extremely small due to a suppression by the square of the Cabibbo angle.We thus predict a devi-ation ∼ǫ/√2,which is the well-known QLC relation for the solar angle.There have been attempts in the literature to reproduce QLC in quark-lepton unified models [26],however,the model presented here is the first realization of QLC in an SU (5)GUT.Although our analysis has been carried out for the CP conserving case,a simple numerical study shows that CP violating phases (cf.Ref.[27])relevant for neutri-noless double beta decay and leptogenesis can be easily included as well.Concerning proton decay,note that since SU (5)is bro-ken by a bulk Higgs field,the broken gauge boson masses are ≃M GUT .Therefore,all fermion zero modes can be localized at the IR branes of the throats without intro-ducing rapid proton decay through d =6operators.To achieve doublet-triplet splitting and suppress d =5pro-ton decay,we may then,e.g.,resort to suitable extensions of the Higgs sector [28].Moreover,although the flavor symmetry G F is global,quantum gravity effects might require G F to be gauged [29].Anomalies can then be canceled by Chern-Simons terms in the 5D bulk.We emphasize that the above discussion is focussed on a specific minimal example realization of the model.Many SU (5)GUTs with non-Abelian flavor symmetries,however,can be constructed along the same lines by varying the flavor charge assignment,choosing different groups G F ,or by modifying the throat geometry.A de-tailed analysis of these models and variations thereof will be presented in a future publication [30].To summarize,we have discussed the construction of 5D SUSY SU (5)GUTs that yield nearly tribimaximal lepton mixing,as well as the observed CKM mixing matrix,together with the hierarchy of quark and lepton masses.Small neutrino masses are generated only by the type-I seesaw mechanism.The fermion masses and mixings arise from the local breaking of non-Abelian flavor symmetries at the IR branes of a flat multi-throat geometry.For an example realization,we have shown that the non-Abelian flavor symmetries can exactly predict the leading order term π/4in the sum rule for the atmospheric mixing angle,while strongly suppress-ing the reactor angle.This makes this class of models testable in future neutrino oscillation experiments.In addition,we arrive,for the first time,at a combined description of QLC and non-Abelian flavor symmetries in SU (5)GUTs.One main advantage of our setup with throats is that the necessary symmetry breaking can be realized with a very simple Higgs sector and that it can be applied to and generalized for a large class of unified models.We would like to thank T.Ohl for useful comments.The research of F.P.is supported by Research Train-ing Group 1147“Theoretical Astrophysics and Particle Physics ”of Deutsche Forschungsgemeinschaft.G.S.is supported by the Federal Ministry of Education and Re-search (BMBF)under contract number 05HT6WWA.∗********************************.de †**************************.de[1]H.Georgi and S.L.Glashow,Phys.Rev.Lett.32,438(1974);H.Georgi,in Proceedings of Coral Gables 1975,Theories and Experiments in High Energy Physics ,New York,1975.[2]J.C.Pati and A.Salam,Phys.Rev.D 10,275(1974)[Erratum-ibid.D 11,703(1975)].[3]P.Minkowski,Phys.Lett.B 67,421(1977);T.Yanagida,in Proceedings of the Workshop on the Unified Theory and Baryon Number in the Universe ,KEK,Tsukuba,1979;M.Gell-Mann,P.Ramond and R.Slansky,in Pro-ceedings of the Workshop on Supergravity ,Stony Brook,5New York,1979;S.L.Glashow,in Proceedings of the 1979Cargese Summer Institute on Quarks and Leptons, New York,1980.[4]M.Magg and C.Wetterich,Phys.Lett.B94,61(1980);R.N.Mohapatra and G.Senjanovi´c,Phys.Rev.Lett.44, 912(1980);Phys.Rev.D23,165(1981);J.Schechter and J.W. F.Valle,Phys.Rev.D22,2227(1980);zarides,Q.Shafiand C.Wetterich,Nucl.Phys.B181,287(1981).[5]P.F.Harrison,D.H.Perkins and W.G.Scott,Phys.Lett.B458,79(1999);P.F.Harrison,D.H.Perkins and W.G.Scott,Phys.Lett.B530,167(2002).[6]B.Pontecorvo,Sov.Phys.JETP6,429(1957);Z.Maki,M.Nakagawa and S.Sakata,Prog.Theor.Phys.28,870 (1962).[7]E.Ma and G.Rajasekaran,Phys.Rev.D64,113012(2001);K.S.Babu,E.Ma and J.W.F.Valle,Phys.Lett.B552,207(2003);M.Hirsch et al.,Phys.Rev.D 69,093006(2004).[8]P.H.Frampton and T.W.Kephart,Int.J.Mod.Phys.A10,4689(1995); A.Aranda, C. D.Carone and R.F.Lebed,Phys.Rev.D62,016009(2000);P.D.Carr and P.H.Frampton,arXiv:hep-ph/0701034;A.Aranda, Phys.Rev.D76,111301(2007).[9]I.de Medeiros Varzielas,S.F.King and G.G.Ross,Phys.Lett.B648,201(2007);C.Luhn,S.Nasri and P.Ramond,J.Math.Phys.48,073501(2007);Phys.Lett.B652,27(2007).[10]E.Ma,arXiv:0705.0327[hep-ph];G.Altarelli,arXiv:0705.0860[hep-ph].[11]N.Cabibbo,Phys.Rev.Lett.10,531(1963);M.Kobayashi and T.Maskawa,Prog.Theor.Phys.49, 652(1973).[12]M.-C.Chen and K.T.Mahanthappa,Phys.Lett.B652,34(2007);W.Grimus and H.Kuhbock,Phys.Rev.D77, 055008(2008);F.Bazzocchi et al.,arXiv:0802.1693[hep-ph];G.Altarelli,F.Feruglio and C.Hagedorn,J.High Energy Phys.0803,052(2008).[13]A.Y.Smirnov,arXiv:hep-ph/0402264;M.Raidal,Phys.Rev.Lett.93,161801(2004);H.Minakata andA.Y.Smirnov,Phys.Rev.D70,073009(2004).[14]F.Plentinger,G.Seidl and W.Winter,Nucl.Phys.B791,60(2008).[15]F.Plentinger,G.Seidl and W.Winter,Phys.Rev.D76,113003(2007).[16]F.Plentinger,G.Seidl and W.Winter,J.High EnergyPhys.0804,077(2008).[17]G.Cacciapaglia,C.Csaki,C.Grojean and J.Terning,Phys.Rev.D74,045019(2006).[18]K.Agashe,A.Falkowski,I.Low and G.Servant,J.HighEnergy Phys.0804,027(2008);C.D.Carone,J.Erlich and M.Sher,arXiv:0802.3702[hep-ph].[19]Y.Kawamura,Prog.Theor.Phys.105,999(2001);G.Altarelli and F.Feruglio,Phys.Lett.B511,257(2001);A.B.Kobakhidze,Phys.Lett.B514,131(2001);A.Hebecker and J.March-Russell,Nucl.Phys.B613,3(2001);L.J.Hall and Y.Nomura,Phys.Rev.D66, 075004(2002).[20]D.E.Kaplan and T.M.P.Tait,J.High Energy Phys.0111,051(2001).[21]C.D.Froggatt and H.B.Nielsen,Nucl.Phys.B147,277(1979).[22]Y.Nomura,Phys.Rev.D65,085036(2002).[23]H.Georgi and C.Jarlskog,Phys.Lett.B86,297(1979).[24]H.Arason et al.,Phys.Rev.Lett.67,2933(1991);H.Arason et al.,Phys.Rev.D47,232(1993).[25]D.S.Ayres et al.[NOνA Collaboration],arXiv:hep-ex/0503053;Y.Hayato et al.,Letter of Intent.[26]S.Antusch,S.F.King and R.N.Mohapatra,Phys.Lett.B618,150(2005).[27]W.Winter,Phys.Lett.B659,275(2008).[28]K.S.Babu and S.M.Barr,Phys.Rev.D48,5354(1993);K.Kurosawa,N.Maru and T.Yanagida,Phys.Lett.B 512,203(2001).[29]L.M.Krauss and F.Wilczek,Phys.Rev.Lett.62,1221(1989).[30]F.Plentinger and G.Seidl,in preparation.。

中微子物理进展-中国科学院高能物理研究所

中微子物理进展-中国科学院高能物理研究所

Dirac中微子的RGE跑动. Ratz, M. Schmidt, hep-ph/0506280 (JHEP)
邢志忠, 张贺, hep-ph/0601106
某些模型或统一理论的RGE效应
梅建伟, 邢志忠, hep-ph 0506304 (PLB) 中微子民主型混合 罗舒, 邢志忠, hep-ph/0509065 (PLB) Tri-Bimaximal中微子混合 M. Schmidt, A. Smirnov, hep-ph/0607232 夸克轻子互补
5
实验进展 (KamLAND)
6
实验进展 (KamLAND)
7
振荡
PRL 94 (2005) 081801
实验进展 (KamLAND)
8
实验进展 (Super-K)
9
实验进展 (Super-K)
10
实验进展 (Super-K)
11
T. Kajita/ISVHECRI 06
实验进展 (MINOS)
2
6月30日-7月5日,Lepton-Photon 2005国际会议,Uppsala
若干事件 (2006)
4月22日,APS April Meeting (50 Years since the Discovery of
Parity Nonconservation in the
3
Weak Interaction),Dallas
中微子物理进展
*****2005年5月至2006年10月*****
邢志忠 (高能所)
(A)若干事件
(B)实验进展
(C)理论热点
(D)总结展望
高能物理学会第七届学术年会,06年10月,桂林
若干事件 (2005)

用于溶血栓的寡肽化合物及其制备方法和应用[发明专利]

用于溶血栓的寡肽化合物及其制备方法和应用[发明专利]

专利名称:用于溶血栓的寡肽化合物及其制备方法和应用专利类型:发明专利
发明人:彭师奇,赵明,李珊
申请号:CN201010573793.8
申请日:20101130
公开号:CN102477076A
公开日:
20120530
专利内容由知识产权出版社提供
摘要:本发明涉及用于溶血栓的寡肽化合物及其制备方法和应用。

本发明的用于溶血栓的寡肽化合物如通式6a-f(式中n=6、8、10、12、14和16)所示。

本发明通过动物实验评价了用于溶血栓的寡肽化合物的溶血栓活性和靶向性能,证明了本发明用于溶血栓的寡肽化合物除了具有优秀的溶血栓活性外,还具有靶向性能和预防新栓形成的作用,以及自主装性能。

申请人:首都医科大学
地址:100069 北京市丰台区右安门外西头条10号
国籍:CN
代理机构:北京科龙寰宇知识产权代理有限责任公司
更多信息请下载全文后查看。

三羟异黄酮对大鼠海马CA1区神经元自发放电的影响(英文)

三羟异黄酮对大鼠海马CA1区神经元自发放电的影响(英文)

三羟异黄酮对大鼠海马CA1区神经元自发放电的影响(英文)王茹;武宇明;张浩;王昕;何瑞荣【期刊名称】《神经科学通报》【年(卷),期】2005(21)6【摘要】目的研究三羟异黄酮(GENISTEIN,GST)对静息状态下的海马脑片神经元活动的影响。

方法应用细胞外记录单位放电技术。

结果 (1)在48个CA1区神经元放电单位给予GST(10,50,100 ΜMOL/L)2 MIN,有46个放电单位(95.83%)放电频率明显降低,且呈剂量依赖性;(2)在9个CA1区神经元放电单位上,GST(50ΜMOL/ L)的抑制效应可被G蛋白激活的内向整流型钾通道(G PROTEIN-COUPLED INWARDLY RECTIFYING K+ CHANNELS,GIRK)阻断剂(TETRAETHYLAMMONIUM,TEA)1 MMOL/L完全阻断;(3)10个放电单位灌流一氧化氮合酶抑制剂(NG-NITRO-L-ARGININE METHYL ESTER,L-NAME)50ΜMOL/L,有9个单位(90.0%)放电明显增加,在此基础上灌流GST(50 ΜMOL/L)2 MIN,放电被抑制;(4)预先用0.2 MMOL/L的L-GLUTAMATE(L-GLU)灌流海马脑片,11个放电单位放电频率明显增加,表现为癫痫样放电,在此基础上灌流GST(50ΜMOL/L)2 MIN,其癫痫样放电被抑制。

结论 GST可抑制海马神经元自发放电,并可抑制由L-NAME和L-GLUTAMATE诱发的神经元放电。

提示GST对中枢神经元通过降低其活动而具有一定程度的保护作用,这种作用与钾电流有关,似与其激动GIRK促进K+外流引起细胞膜超极化以及NO 产生增加有关。

【总页数】5页(P380-384)【关键词】海马脑片;GST;TEA;L-NAME;L-glutamate【作者】王茹;武宇明;张浩;王昕;何瑞荣【作者单位】河北医科大学基础医学研究所生理室【正文语种】中文【中图分类】Q426;R338.4【相关文献】1.还元注射液对实验性脑出血大鼠生理参数、海马CA1神经元自发放电的影响 [J], 张春燕;李亚明2.神经生长因子预处理对拟AD模型大鼠海马CA1区神经元自发放电和NFT的影响 [J], 陈粲;吕心瑞;李清春;董宇华;蒋乃昌3.地昔帕明对大鼠短暂脑缺血致海马CA1神经元自发放电的影响 [J], 朱子涛;张雪翔;刘健;金国章4.白藜芦醇抑制大鼠海马CA1区神经元放电(英文) [J], 李明;王庆山;陈怡;王泽民;刘政;郭淑梅因版权原因,仅展示原文概要,查看原文内容请购买。

心磷脂靶向肽抑制β

心磷脂靶向肽抑制β

专利名称:心磷脂靶向肽抑制β‑淀粉样蛋白寡聚物毒性专利类型:发明专利
发明人:黑兹尔·H·司徒,亚历山大·V·比尔克,保罗·萨博,布莱恩·尹格·赵,玛格丽塔·任
申请号:CN201480063400.5
申请日:20140929
公开号:CN106163537A
公开日:
20161123
专利内容由知识产权出版社提供
摘要:本公开内容提供芳香族阳离子肽组合物及其使用方法。

所述方法包括所述芳香族阳离子肽用于降低毒性β淀粉样蛋白(Aβ)肽的作用的用途,其包括阻断细胞外Aβ寡聚物的积聚、抑制Aβ介导的氧合酶活性、降低线粒体功能障碍和/或预防Aβ诱发的神经元细胞凋亡。

申请人:康奈尔大学
地址:美国纽约
国籍:US
代理机构:北京同达信恒知识产权代理有限公司
更多信息请下载全文后查看。

甾体皂苷抗痴呆研究进展

本实 验 室进行 了多 年 甾体 皂 苷 化 学 及抗 痴呆 活性 研 究 。从 知 母 、重 楼 、麦冬 、黄 精 、穿 山
龙 、剑麻 、胡芦巴、蜘蛛抱蛋等药材和上市成药 中分离鉴定 了一 系列 甾体皂苷单体化合物;利 用生物转化等方法制备 了多种甾体皂苷衍生物 ,构建 了含 2 0 0 余 种单体化合物 的甾体皂苷聚焦 化合物库 。对一系列 甾体皂苷进行了活性筛选及构效关系研究 。知母皂苷 BⅡ 是 中药知母 中最主
2 0 1 3年 第 三 十 卷 第 二
பைடு நூலகம்
性应激小 鼠海马内与钙离子信号通路 、突触囊泡循环等信号通路相关的蛋 白发生了显著变化,瑞香
素给药后的慢性应激小鼠 海马内 与D N A损伤修复、 免疫调节等信号通路相关的蛋白发生了显著变
化 。结论 ( 1 )糖皮质激素对细胞线粒体功能呈动态性的影响,长时间暴露于高浓度的糖皮质激素 会损伤神经元 的活性 ;( 2 )慢性应激会损伤大脑的空间学习和记忆能力 ,可能引起大脑的神经退行 性病变;( 3 )瑞香素能够改善慢性应激引起 的认知损伤。
国内外多个团队进行 了甾体皂苷的抗痴呆相关研究 ,最具代表性 的是知母皂苷的研究 。徐 江平等报道了知母总皂苷 ( S A a B )对于脑缺血再灌注后引起 的脑损伤具有保护作用 ,其可降低 缺血损伤后脑组织含水量 ,增加缺血组织 S O D活性,降低异常 MD A含量 ;对 衰老大 鼠 S A a B
2 7
甾体 皂苷抗痴呆研究进展
马百平 赵 阳 熊呈琦 张洁 康利平 余河水 袁建超
军事医学科学院放射与辐射医学研究所 甾体皂苷是一类重要 中药活性成分 ,大量存 在于知母 、蒺藜、穿山龙 、黄 山药 、黄精、麦
冬等 中药 中,也是心脑舒通、地奥心血康 、盾 叶冠心宁片等成药制剂 的主要成分 ,这些主含 甾 体皂苷的成药在临床上显示 了良好的心脑血管活性和安全性 ,也说明了甾体皂苷的 良 好成药性 。

DETERMINATION OF jV ub j

CITATION: K. Hagiwara
et al.
(Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: ) June 19, 2002 st be provided. The measurements to date have made use of detector hermeticity and the well-determined beam parameters to de ne a missing momentum that is de ned as the neutrino momentum. Signal-to-background ratios (S/B) of order one have been obtained in these channels. To extract jVub j from an exclusive channel, the form factors for that channel must be known. The form factor normalization dominates the uncertainty on jVubj. The q2 dependence of the form factors, which is needed to determine the experimental e ciency, also contributes to the uncertainty, but at a much reduced level. For example, the requirement of a sti lepton for background reduction in these analyses introduces a q2 dependence to the e ciency. In the limit of a massless charged lepton (a reasonable limit for the electron and muon decay channels), the B ! ` decay depends on one form factor f1(q2 ): 2 d?(B0 ! ?`+ ) = jV j2 G2 p3 MB sin2 jf (q2)j2; (1) F ` 1 ub dy d cos ` 32 3 2 where y = q2=MB , and ` is the angle between the charged lepton direction in the virtual W (` + ) rest frame and the direction of the virtual W . For the vector meson nal states and !, three form factors, A1 , A2 and V , are necessary (see e.g., Ref. 6). Calculation of these form factors constitutes a considerable theoretical industry, with a variety of techniques now being employed. Form factors based on lattice calculations 11{23], and on light cone sum rules 24{32], currently have uncertainties in the 15% to 20% range. A variety of quark model calculations exist 33{47]. Finally, a number of other approaches 48{53], such as dispersive bounds and experimentally-constrained models based on Heavy Quark Symmetry, seek to improve the q2 range over which the form factors can be estimated without introduction of a signi cant model dependence. Unfortunately, all these calculations currently have contributions to the uncertainty that remain uncontrolled. The light cone sum rules calculations assume quark-hadron duality, o ering a \canonical" contribution to the uncertainty of 10%, but with no known means of rigorously limiting that uncertainty. The lattice calculations to date remain in the \quenched" approximation (no

2001-2010年十年化学赛题重组卷3 有机化学(三)

2001-2010年十年化学赛题重组卷3有机化学(三)第1题(6分)2003年5月报道,在石油中发现了一种新的烷烃分子,因其结构类似于金刚石,被称为“分子钻石”,若能合成,有可能用做合成纳米材料的理想模板。

该分子的结构简图如下:1-1该分子的分子式为;1-2该分子有无对称中心?1-3该分子有几种不同级的碳原子?1-4该分子有无手性碳原子?1-5该分子有无手性?第2题(5分)二战期间日本是在战场上唯一大量使用毒气弹的国家,战争结束日军撤退时,在我国秘密地遗弃了大量未使用过的毒气弹,芥子气是其中一种毒气。

芥子气的分子式为(ClCH2CH2)2S。

人接触低浓度芥子气并不会立即感受痛苦,然而,嗅觉不能感受的极低浓度芥子气已能对人造成伤害,而且,伤害是慢慢发展的。

2-1用系统命名法命名芥子气。

2-2芥子气可用两种方法制备。

其一是ClCH2CH2OH与Na2S反应,反应产物之一接着与氯化氢反应;其二是CH2=CH2与S2Cl2反应,反应物的摩尔比为2 : 1。

写出化学方程式。

2-3用碱液可以解毒。

写出反应式。

第3题(8分)组合化学是一种新型合成技术。

对比于传统的合成反应如A+B=AB,组合化学合成技术则是将一系列A i(i=1,2,3,…)和一系列 B j(j=1,2,3,…)同时发生反应,结果一次性地得到许多个化合物的库(library),然后利用计算机、自动检测仪等现代化技术从库中筛选出符合需要的化合物。

今用21种氨基酸借组合化学技术合成由它们连接而成的三肽(注:三肽的组成可以是ABC,也可以是AAA或者AAB等等,还应指出,三肽ABC不等于三肽CBA:习惯上,书写肽的氨基酸顺序时,写在最左边的总有未键合的α-氨基而写在最右边的总有未键合的羧基)。

3-1.该组合反应能得到多少个三肽的产物库。

答:个。

3-2.假设所得的库中只有一个三肽具有生物活性。

有人提出,仅需进行不多次实验,即可得知活性三肽的组成(每次实验包括对全库进行一次有无生物活性的检测)。

标准模型

标准模型在粒子物理学里,标准模型(英语:Standard Model, SM)是一套描述强力、弱力及电磁力这三种基本力及组成所有物质的基本粒子的理论。

它隶属量子场论的范畴,并与量子力学及狭义相对论相容。

到目前为止,几乎所有对以上三种力的实验的结果都合乎这套理论的预测。

但是标准模型还不是一套万有理论,主要是因为它并没有描述到引力。

历史背景现在普遍认为对于标准模型的最初研究是谢尔登·格拉肖在1960年发现的电弱相互作用。

在1967年,史蒂芬温伯格和阿卜杜勒·萨拉姆将希格斯机制引入格拉肖的弱电理论,形成我们现在看到它的形式。

希格斯机制被普遍的认为能够解释粒子的质量来源,包括玻色子、费米子(夸克,轻子和重子)。

1973年发现由Z玻色子引起的弱中性流之后,电弱理论被广泛的接受。

由此贡献,萨拉姆和温伯格获得1979年的诺贝尔奖。

W和Z玻色子在1981年被实验所发现,而他们的质量已经被当时所逐步建立的标准模型预言了。

至于强相互作用的理论,大多在1973-74年做出进步:那会儿正是有关实验得出成果的时候。

强子所带的分数电荷也是那时候验证的。

标准模型的内容标准模型共61种基本粒子(见表)包含费米子及玻色子——费米子为拥有半奇数的自旋并遵守泡利不相容原理(这原理指出没有相同的费米子能占有同样的量子态)的粒子;玻色子则拥有整数自旋而并不遵守泡利不相容原理。

简单来说,费米子就是组成物质的粒子而玻色子则负责传递各种作用力。

基本粒子种类世代反粒子色总计夸克 2 3 成对 3 36轻子 2 3 成对无色 12胶子 1 1 自身8 8W粒子 1 1 成对无色 2Z粒子 1 1 自身无色 1光子 1 1 自身无色 1希格斯粒子1 1 自身无色 1总计61电弱统一理论与量子色动力学在标准模型中合并为一。

这些理论都是规范场论,即它们把费米子跟玻色子(即力的中介者)配对起来,以描述费米子之间的力。

由于每组中介玻色子的拉格朗日函数在规范变换中都不变,所以这些中介玻色子就被称为规范玻色子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Flavor Physics
Table 1. Charge assignments. The parameter ω = eiπ/6 . T3 SU(5) ( d) T Z12 ′ Z12 10 1 ω5 ω φ SU(5) ( d) T Z12 ′ Z12 1 3 ω3 ω3 Ta 10 2 ω2 ω4 φ′ 1 3 ω2 ω6 F 5 3 ω5 ω8 ψ 1 2′ ω6 ω7 H5 5 1 ω2 ω 10 ψ′ 1 2 ω9 ω8
Tri-bimaximal Neutrino Mixing and CKM Matrix in a SU (5) × (d)T Model
Mu-Chun Chen1
1
a
and K.T. Mahanthappa2b
arXiv:0710.2118v1 [hep-ph] 11 Oct 2007
2
Department of Physics & Astronomy, University of California at Irvine, Irvine, CA, 92697, USA Department of Physics, University of Colorado at Boulder, Boulder, CO, 80309, USA
1 Introduction
The measurements of neutrino oscillation parameters have entered a precision era. The global fit to current data from neutrino oscillation experiments give the following best fit values and 2σ limits for the mixing parameters [1]: sin2 θ12 = 0.30 (0.25 − 0.34), sin2 θ23 = 0.5 (0.38 − 0.64), sin2 θ13 = 0 (< 0.028). These values for the mixing parameters are very close to the values arising from the so-called “tri-bimaximal” mixing (TBM) matrix [2], √ 2/3 1/√3 0√ UTBM = − 1/6 1/√3 −1/ (1) √2 , − 1/6 1/ 3 1/ 2 which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ⊙,TBM = 1/3 for the solar mixing angle. Even though the predicted θ⊙,TBM is currently still allowed by the experimental data at 2σ , as it is very close to the upper bound at the 2σ limit,
Abstract. In this talk, we present a model based on SU (5) × (d) T which successfully gives rise to near tri-bimaximal leptonic mixing as well as realistic CKM matrix elements for the quarks. The Georgi-Jarlskog relations for three generations are also obtained. Due to the (d) T transformation property of the matter fields, the b-quark mass can be generated only when the (d) T symmetry is broken, giving a dynamical origin for the hierarchy between mb and mt . There are only nine operators allowed in the Yukawa sector up to at least mass dimension seven due to an additional ′ Z12 × Z12 symmetry, which also forbids, up to some high orders, operators that lead to proton decay. The resulting model has a total of nine parameters in the charged fermion √and neutrino sectors, and hence is very predictive. In addition to the prediction for θ13 ≃ θc /3 2, the model 1 θc cos β , which is a consequence of the Georgigives rise to a sum rule, tan2 θ⊙ ≃ tan2 θ⊙,TBM − 2 Jarlskog relations in the quark sector. This deviation could account for the difference between the experimental best fit value for the solar mixing angle and the value predicted by the tri-bimaximal mixing matrix. PACS. 12.10.Dm Unified theories and models of strong and electroweak interactions – 12.15.Ff Quark and lepton masses and mixing
T −→ GT :
1 0
T −→ nothing :
(d )
′ ψ ′ = ψ0 invariant :
T −→ GS : ζ = ζ0 ,
N = N0
η =u
with (d) T family symmetry in which the tri-bimaximal neutrino mixing and realistic CKM matrix arise.
a b
Email: muchunc@ Email: ktm@
it may be ruled out once more precise measurements are made in the upcoming experiments. It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry in the lepton sector based on A4 [3]. However, due to its lack of doublet representations, CKM matrix is an identity in most A4 models [4]. In addition, to explain the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. We consider in [5] a different finite group, the double tetrahedral group, (d) T , which is a double covering of A4 . Because it has the same four in-equivalent representations as in A4 , the tri-bimaximal mixing pattern can be reproduced. In addition, (d) T has three in-equivalent doublets, 2, 2′ , and 2′′ , which can be utilized to give the 2 + 1 representation assignments for the quarks [6], as having been known, in the context of SU(2) flavor group, to give realistic quark mixing matrix and mass hierarchy [7]. The SU (5) GUT symmetry in our model relates the down type quark and the charged lepton sectors, leading to a novel “quarklepton complementarity” relation, a sum rule between the solar mixing angle and the Cabibbo angle. In ad′ dition, our model has an Z12 × Z12 symmetry, which gives rise to the mass hierarchy dynamically. As a result of the symmetries in our model, only nine operators are allowed up to dim-7, and thus our model is very predictive. This is the first GUT model combined
相关文档
最新文档