小学立体图形专题练习及答案

合集下载

最新人教版一年级数学上册《立体图形的认识》专项练习

最新人教版一年级数学上册《立体图形的认识》专项练习

最新人教版一年级数学上册《立体图形的认识》专项练习一、填空题。

1.下面哪些物品的形状是长方体?在()里画“√”。

2.谁的小眼睛最亮。

( )个( )个( )个( )个二、连线题。

1.把形状相似的物体用线连起来。

2.照样子,连一连。

三、选择题。

1.不可以滚动的图形是()。

A.长方体 B.圆柱C.球
2.先摆一个正方体,在正方体的左边摆一个圆柱,右边摆一个球,再在圆柱的上边摆一个长方体,摆法正确的是()。

A. B. C.
3.和的正方体数量不太一样图形是()。

A. B. C.
四、解答题。

1.数一数,填一填。

2.
(1)上面一共有()种立体图形,数量最多的立体图形是()。

(2)球从左起排第(),从右数排()。

(3)把正方体涂成红色,长方体涂成黑色。

3.数图形。

(1)数一数,填一填。

(2)(长方体圆柱球)和正方体同样多,其中最少的是(长方体正方体圆柱球)。

(圈出正确的答案)
(3)和一共有()个。

立体图形练习题答案

立体图形练习题答案

立体图形练习题一长方体与正方体例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为2a2平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+2a2=240,可知,a2=25,故a=5(厘米).又因为2a2+4ah=190,所以,原来长方体的体积为:V=a2h=25×7=175(立方厘米).例2如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长.解:原来正方体的表面积为:6×3a×3a=6×9a2(平方厘米).六个边长为a的小正方形的面积为:6×a×a=6a2(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=12a2(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=4a2(平方厘米).根据题意:6×9a2-6a2+3(12a2-4a2)=2592,化简得:54a2-6a2+24a2=2592,解得a2=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍.解:把每一块积木锯三次,锯成8块小立方体(如下图).这样,每锯(倍),因此全部小积木的表面总面积就比原积木表面总面积增加了一倍.例4 有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?解:水池中水面升高部分水的体积就是投入水中的碎石体积.沉入中、小水池中的碎石的体积分别是:3×3×0.04=0.36立方米,2×2×0.11=0.44立方米.它们的和是:0.36+0.44=0.8立方米.把它们都沉入大池里,大池水面升高部分水的体积也应当是0.8立方米,而大池的底面面积是4×4=16平方米,所以,大水池的水面升高:例5 下图是正方体的展开图之一,当用它组成立方体时,图中的哪一边与带★记号的边相接触呢?解:对于这个问题,考虑将各面拼凑成正方体是一种方法,但如只考虑边的连接会更简洁:首先☆和G连接,其次H和I连接,且X、Y、Z 三点重合为正方体的一个顶点,因此与★连接的是K边.例6 下图是正方体的11种展开图和2种伪装图(即它们不是正方体的展开图).请你指出伪装图是哪两个?解:无论哪一个图中都有六个小正方形,都好像有道理,但当我们把相邻两边逐一拼合后,不能变成正方体的是(10)和(12),这两个图形,都是有五面在拼合时不成问题,但是最后一面总是挤在外面而成不了正方体.例7 如下面的各图中均有若干个六面体,每小题图中的几个六面体上A、B、C、D、E、F六个字母的排列顺序完全相同(即每个小题中六面体上刻字母的方式是完全一样的)试判断各小题的图中A、B、C三个字母的对面依次是哪几个字母?解:(1)由图中可知,A与B、C、E、F都相邻,故A的对面是D.E、F的位置可按右手关系得出,伸出右手,伸直大拇指按(1)中右图所示,让四指方向从A转动而指向F,此时大拇指正好指向E(向上).如果,判断为F在C对面,由(1)中左图所示,让四指的方向从A向F,此时大拇指指向B,与(1)中右图矛盾,故F在B的对面,E在C的对面.(2)~(6)按A、B、C顺序给出对面的字母:(2)E、D、F;(3)F、E、D;(4)D、F、E;(5)E、D、F;(6)F、E、D.例8有一块正方体的蛋糕.用刀子将它一刀切成两半,为了使切口成正六边形,应该怎样切呢?解:一般地,按照平常习惯的切法切下去,得到的切口成为上图中(1)的正方形或者像(2)、(3)那样的长方形.如果斜切下去时样子就不一样了,比如像(4)那样,以打算切的顶点作一方,将不相邻的某一边的中点作另一方,沿它的连接线来切,切口变成菱形.如果再进一步,连接相邻边的中点,沿着它的连线来切,如上图中(5)所示,因为切口的各边都是连接边和边的中点的直线,所以长度都相等,相邻边夹角也相等,边数是六,故是正六边形.模拟训练一、填空题:1.一块矩形纸板,长8厘米,宽6厘米,把它折成底面为正方形的长方体的侧面,则这个长方体的底面面积为______平方厘米.2.有一个棱长为6厘米的正方体木块,如果把它锯成棱长是2厘米的正方体若干块,表面积增加了______平方厘米.3.把一根2米长的方木锯成两段,表面积增加 288平方厘米,原来这根方木的体积是______立方厘米.4.把棱长为a厘米的两个正方体拼成一个长方体,长方体的表面积是5.把棱长1厘米的正方体2100个,堆成一个实心的长方体,它的高是10厘米,长和宽都大于高,这个长方体的长与宽的和是______厘米.二、选择题:1.一个正方体的体积是343立方厘米,它的全面积是__平方厘米.(A)42 (B)196 (C)294 (D)3922.把棱长为3分米的正方体锯成两个长方体,这两个长方体表面积的和是______平方分米.(A)54 (B)72 (C)108 (D)以上都不对3.如下图,一个木制的正方体的棱长为2分米,每个面的正中有一个正方形的孔通到对边,边长为1分米,孔的各棱平行于正方体相对的棱,那么这个镂空几何体的总表面积的平方分米数是____.(A)24 (B)30 (C)36 (D)424.如下页图立方体的每个角都被切下去(图中仅画了两个).问所得到的几何体有__条棱?(A)24(B)30 (C)36 (D)425.立方体各面上的数字是连续的整数(如图).如果每对对面上的两个数的和相等,那么,这三对数的和是__.(A)75 (B)76 (C)78 (D)81三、解答题:1.一个木盒从外面量长10厘米,宽8厘米,高5厘米,木板厚1厘米.问①做这个木盒最少需要1厘米厚的木板多少平方厘米?②这个木盒的容积是多少立方厘米?2.将一个长9厘米,宽8厘米,高3厘米的长方体木块锯成若干个小正方体(锯痕宽度忽略不计),然后再拼成一个大正方体,求这个大正方体的表面积.3.一个边长为6厘米的正方体铁盒装满了水,将水倒入一个长9厘米,宽8厘米的长方形水槽内,若铁皮厚度不计,求水深.4.把19个边长为2厘米的正方体重叠起来,作成如下图那样的组合形体,求这个组合形体的表面积.5.将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗).求这个大正方体的体积和表面积.6.用字母标出一个正方体的各面,下图中是三个不同方位的这一个正方体,问字母A、B、C的对面是什么字母?7.下图是一个正方体及其两个展开图.这个正方体还有九种不同的展开图(下图),请把这九个展开图填上相应的数字(注意数字的方向).8.下左图中的立方体,被两个平面所截,你能在这个正方体的展开图中画出相应的截线吗?(下右图)9.在下页图所示的12个展开图中,哪些可以做成没有顶盖的五个面的小方盒?10.下页图是一张3×5的方格纸,在保持每个方格完整的条件下,将它剪成三部分,使每部分都可以折成一个棱长为1的没有顶盖的小方盒,怎样剪?答案:一、填空题:2.432平方厘米.3.28800立方厘米.5.2100÷10=210,把210分解质因数,因为棱长为1厘米,所以符合条件(大于10厘米)的长和宽只能是15厘米和14厘米,故长与宽的和是29厘米.二、1.①256平方厘米;②144立方厘米.2.216平方厘米.3.3厘米.4.(4×9+4×10+4×8)×2=216平方厘米.5.216立方厘米,216平方厘米.6.A对面是E,B对面是F,C对面是D.7.8.9.第2,3,5,6,7,8,11,12共8个.10.如图:二、立体图形计算例1 下图是由18个边长为1厘米的小正方体拼成的,求它的表面积.分析与解答求这个长方体的表面积,如果一面一面地去数,把结果累计相加可以得到答案,但方法太繁.如果仔细观察,会发现这个立体的上下、左右、前后面的面积分别相等.因此列式为:(9+8+7)×2=48(平方厘米).答:它的表面积是48平方厘米.例2 一个圆柱体底面周长和高相等.如果高缩短了2厘米,表面积就减少12.56平方厘米.求这个圆柱体的表面积.分析一个圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.解题的关键在于求出底周长.根据条件:高缩短2厘米,表面积就减少12.56平方厘米,用右图表示,从图中不难看出阴影部分就是圆柱体表面积减少部分,值是12.56平方厘米,所以底面周长C=12.56÷2=6.28(厘米).这个问题解决了,其它问题也就迎刃而解了.解:底面周长(也是圆柱体的高):12.56÷2=6.28(厘米).侧面积:6.28×6.28=39.4384(平方厘米)两个底面积(取π=3.14):表面积:39.4384+6.28=45.7184(平方厘米)答:这个圆柱体的表面积是45.7184平方厘米.例3 一个正方体形状的木块,棱长为1米.若沿正方体的三个方向分别锯成3份、4份和5份,如下图,共得到大大小小的长方体60块,这60块长方体的表面积的和是多少平方米?分析如果将60个长方体逐个计算表面积是个很复杂的问题,更何况锯成的小木块长、宽、高都未知使得计算小长方体的表面积成为不可能的事.如果换一个角度考虑问题:每锯一次就得到两个新的切面,这两个面的面积都等于原正方体一个面的面积,也就是,每锯一次表面积增加1+1=2平方米,这样只要计算一下锯的总次数就可使问题得到解决.解:原正方体表面积:1×1×6=6(平方米),一共锯了多少次:(次数比分的段数少1)(3-1)+(4-1)+(5-1)=9(次),表面积:6+2×9=24(平方米).答:60块长方体表面积的和是24平方米.例4一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米.瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?分析由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的3倍(6÷2).62.172立方厘米=62.172毫升=0.062172升.答:酒精的体积是62.172立方厘米,合0.062172升.例5一个稻谷囤,上面是圆锥体,下面是圆柱体(如下图).圆柱的底面周长是9.42米,高2米,圆锥的高是0.6米.求这个粮囤的体积是多少立方米?分析按一般的计算方法,先分别求出锥、柱的体积再把它们合并在一起求出总体积.但我们仔细想一想,如果把圆锥形的稻谷铺平,把它变成圆圆柱体,高是(2+0.2)米.这样求出变化后直圆柱的体积就可以了.解:圆锥体化为圆柱体的高:底面积:体积:7.065×(2+0.2)=15.543(立方米).答:粮囤的体积是15.543立方米.例6 皮球掉在一个盛有水的圆柱形水桶中.皮球的直径为12厘米,水桶底面直径为60厘米.皮球有2/3的体积浸在水中(下图).问皮球掉进水中后,水桶的水面升高多少厘米?分析皮球掉进水中后排挤出一部分水,使水面升高.这部分水的体积的大小等于皮球浸在水中部分的体积,再用这个体积除以圆柱形水桶底面积,就得到水面升高的高度.解:球的体积:=288π(立方厘米).水桶的底面积:π×302=900π(平方厘米).例7 下图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,求剩下的体积是原正方体的百分之几?(保留一位小数).分析直圆锥底面直径是正方体的棱长,高与棱长相等.剩下体积等于原正方体体积减去直圆锥体积.解:正方体体积:63=216(立方厘米).=56.52(立方厘米).剩下体积占正方体的百分之几.(216-56.52)÷216≈0.738≈73.8%.答:剩下体积占正方体体积的73.8%.例8 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的直孔,如下图.圆孔的直径是4厘米,孔深5厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?分析解题时,既要注意圆柱体的外表面积,又要注意圆孔内的表面,同时还要注意到零件的底面是圆环.由于打孔的深度与柱体的长度不相同,所以在孔内还要有一个小圆的底面需要涂油漆,这一点不能忽略.但是,我们可以把小圆的底面与圆环拼成一个圆,即原圆柱体的底面.解:涂漆面积:=3.14×(18+60+20)=3.14×98=307.72(平方厘米).答:涂油漆面积是307.72平方厘米.模拟训练1.一根圆柱形钢材,沿底面直径割开成两个相等的半圆柱体,如下图.已知一个剖面的面积是960平方厘米,半圆柱的体积是3014.4立方厘米.求原来钢材的体积和侧面积.2.在一只底面直径是40厘米的圆柱形盛水缸里,有一个直径是10厘米的圆锥形铸件完全浸于水中.取出铸件后,缸里的水下降0.5厘米,求铸件的高.3.在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为1厘米的正方形,洞深1厘米(如下图).求挖洞后木块的表面积和体积.4.如下图所示的一个零件,中间一段是高为10厘米,底面半径为2厘米圆柱体,上端是一个半球体,下端是一个圆锥,它的高是2厘米.求这个零件的体积.5.塑料制的三棱柱形的筒里装着水(如下页图(1)是这个筒的展开图,图中数字单位为厘米).把这个筒的A面作为底面,放在水平桌面上,水面的高度是2厘米(如下页图(2)).问①若把B面作为底面,放在水平的桌面上,水面的高度是多少厘米?②若把C面作为底面,放在水平桌面上,水面高度是多少厘米?为4分米、3分米、2分米.把两堆碎石分别沉浸在中、小水缸的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉浸在大水缸中,大水缸中水面将升高多少厘米?7.如下图是一个正方体,H、G、F分别为棱AB、AD、AE的中点.现沿三角形GFH的面锯掉一个角,问锯掉这块的体积是整个立方体体积的几分之几?(提示:V棱柱=S·h,S为底面积,h为高.可见棱锥的体积是等底等高的棱柱体积的三分之一.)答案1.3014.4×2=6028.8(立方厘米),960×π=3014.4(平方厘米).答:原钢材体积是6028.8立方厘米,侧面积是3014.4平方厘米.2.下降部分水的体积:铸件的高:答:铸件的高是24厘米.3.提示:大正方体的边长为4厘米,挖去的小正方体边长为1厘米,说明大正方体木块没被挖通,因此,每挖去一个小正方体木块,大正方体的表面积增加“小洞内”的4个侧面积.解:6个小洞内新增加面积的总和:1×1×4×6=24(平方厘米),原正方体表面积:42×6=96(平方厘米),挖洞后木块表面积:96+24=120(平方厘米),体积:43-13×6=58(立方厘米).答:挖洞后的表面积是120平方厘米,体积是58立方厘米.=150.72(立方厘米).答:这个零件的体积是48π立方厘米,即约150.72立方厘米.5.解:以A为底面时,水的体积为:①以B面为底面时:由于以A为底面时,有水的部分占其纵截面(底边角形高度的一半,即为1.5厘米.②以C面为底面时,水的高度为:6.解:两堆碎石的体积之和:3分米=30厘米,2分米=20厘米,302×4+202×11=8000(立方厘米).沉浸在大水缸中水面应升高高度:4分米=40厘米,8000÷402=5(厘米).答:如果沉浸在大水缸中,水面升高5厘米.7.解:将正方体沿各棱中点,依水平和垂直方向切开,可得8个相同的小正方体,每个小正方体又可切成2个小三棱柱体,每个小三棱柱体的体积是等底等高三棱锥(即锯掉的一角)体积的三倍.因此锯掉的这块体积是三.旋转体例1 甲、乙两个圆柱形水桶,容积一样大,甲桶底圆半径是乙桶的1.5倍,乙桶比甲桶高25厘米,求甲、乙两桶的高度.分析与解答如下图.由题意,设乙桶半径为r,则甲桶半径为1.5r;甲桶高度为h,则乙桶高度为h+25,则π(1.5r)2h=πr2(h+25),2.25r2h=r2(h+25),2.25h=h+25,∴h=20(厘米),h+25=45(厘米).答:甲桶高度为20厘米,乙桶高度为45厘米.例2 一块正方形薄铁板的边长是22厘米,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁板围成一个圆锥筒,求它的容积(结果取整数部分).筒底的周长=2πr=11π,解得r=5.5厘米.因为母线长是22厘米,所以圆锥的高答:所求圆锥筒的容积约为674立方厘米.为2米,圆锥的高为1米,这堆谷重约多少公斤(谷的比重是每立方米重720公斤,结果取整数部分)?答:这堆谷子重约306公斤.例4 有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,再把石子全部拿出来,求此时容器内水面的高度.解:如上页图,设石子取出后,容器内水面高度为x厘米,则倒圆锥容器的容积等于水的体积加上石子的体积.根据体积公式有x3=(52×10-196)×4=54×4=27×8=33×23,∴x=6.答:石子取出后,容器内水面的高为6厘米.例5 有一草垛,如下图,上部是圆锥形,下部是圆台形,圆锥的高为0.7米,底面圆周长为6.28米,圆台的高为1.5米,下底面周长为4.71米.如果每立方米草约重150公斤,求这垛草的重量(结果取整数部分).分析与解答圆锥的体积:圆台上底半径:r上=r=1米,∴草垛体积为:V圆锥+V圆台=0.73+3.63=4.36(立方米),故草垛的重量为:150×4.36=654(公斤).答:草垛约重654公斤.例6 如下右图,在长为35厘米的圆筒形管子的横截面上,最长直线段为20厘米,求这个管子的体积.分析如上左图,AB是截面圆环的最长直线段,O是截面圆环的圆心.过O作AB的垂线,垂足是C,以O为圆心,以OC为半径作圆,即管截面的内圆周.连结AO,根据勾股定理有:AO2=AC2+CO2,∴AO2-OC2=AC2,同理AO2-OC2=BC2,∴S圆环=π·AO2-π·OC2=π·(AO2-OC2)解:先求出管子横截面的圆环面积为则管子的体积为:π·r2外径·h-πr2内径h=圆环面积×h=100π×35=3500π(立方厘米)答:这个管子的体积为3500π立方厘米.模拟训练一、填空题:1.一个圆柱体的侧面积是m平方厘米,底面半径是2厘米,它的体积是___立方厘米.2.一个圆锥的母线长为8厘米,底面直径为12厘米,那么这个圆锥的侧面积等于____平方厘米.3.圆台的上、下底面半径分别为2厘米和5厘米,母线长为4厘米,那么这个圆台的表面积等于____.4.用半径为2厘米的半圆形铁皮卷成的圆锥形容器,则它的底面半径为____厘米,容积是____立方厘米.5.一个圆锥的高是10厘米,侧面展开图是半圆,那么圆锥的侧面积等于____.二、选择题:1.一个圆柱体高80厘米,侧面积为1.5平方米,它的全面积是____(精确到0.01平方米).(A)1.78平方米(B)2.06平方米(C)3.74平方米(D)5.25平方米2.圆锥的侧面积为427.2平方厘米,母线长为17厘米,那么圆锥的高是___(精确到0.01厘米).(A) 5.75厘米(B)15厘米(C)16.52厘米(D)5.25厘米3.圆柱的一个底面积是S,侧面展开图是一个正方形,那么这个圆柱的侧面积是___.(A)4πS(B)2πS4.母线和底面直径相等的圆锥叫做等边圆锥,一个等边圆锥的底面半径是5厘米,那么它的侧面积是_______.(A)25平方厘米(B)50π平方厘米(C)100π平方厘米(D)250π平方厘米5.把一个底面半径是1厘米的圆柱体侧面展开,得到一个正方形,这个圆柱体的体积是立方厘米(取r=3.14).(A) 1 (B) 3.14(C)3.14×3.14 (D) 3.14×6.286.长、宽分别为6寸、4寸的长方形铁片,把它围成一个圆桶,另加一个底,形成圆柱形的杯子,这个杯子的最大容积是____.三、解答题:1.一个底面直径是20厘米的圆柱形容器中装着水,水中放置一个底面半径是9厘米,高20厘米的铁质圆锥体,当圆锥从桶中取出后,桶内的水将下降多少厘米?2.在一只底面半径为20厘米的圆柱形小桶里,有一半径为10厘米的圆柱形钢材浸在水中.当钢材从桶里取出后,桶里的水下降了3厘米.求这段钢材的长.3.有A、B两个容器,如下页图,先将A容器注满水,然后倒入B 容器,求B容器的水深.(单位:厘米)4.从一个底面半径为3厘米,高为4厘米的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到一个如下图的几何体.求这个几何体的表面积和体积.5.圆锥形烟囱帽的底的半径是40厘米,高是30厘米,计算它的侧面面积.若烟囱表面要涂油漆,已知每平方米需要油漆150克,问需油漆多少克?6.一个圆台的母线长为25厘米,而两个底面半径之比为1:3,已知圆台的侧面积等于1000π平方厘米,求这个圆台的全面积.7.把一条导线以螺旋状绕在圆柱管上,绕成十圈,圆柱管的外圆周长4厘米,导线的两端点位于圆柱的同一条母线上,每线长(两端点之间的距离)为9厘米.试求导线的长度.8.在长为1米的圆筒形管子的横截面上,最长直线段为12厘米,求此管子的体积.9.如下页图,长方形纸片ABCD中,AB=3厘米,BC=4厘米,①如果以BC为底边,折成一个底面为正方形的长方体,加盖后其体积为V1;如果以AB为底边,同样折成一个长方体,其体积为V2,求V1∶V2.②如果以BC为底边,把纸卷成一个圆柱,其体积为V3;如果以AB为底边,把纸片卷成一个圆柱,其体积为V4,求V3∶V4(取π=3.14).③这四个不同形状的形体,加盖后其表面积之比又分别是多少(即求S1∶S2和S3∶S4)?10.一个几何体如下图,求它的表面积.答案一、1.m立方厘米;2.48π(平方厘米);3.57π(平方厘米).5.设圆锥母线为l厘米,底面半径为r厘米,根据题意有πl=2πr.故二、三、∴x=5.4(厘米).2.设这段钢材长为x厘米,则π×202×3=π×102×x,∴x=12厘米.∴h=4.8厘米.4.因为底面半径为3厘米,高为4厘米,所以挖掉圆锥的母线长等于=3.14×2000=6280(平方厘米)=0.628(平方米),0.628×150=94.2(克).6.设圆台上底半径为x厘米,则π×(x+3x)×25=1000π.解得x=10(厘米),故3x=30(厘米).圆台的全面积等于:1000π+π×102+π×302≈0.628(平方米).7.把圆柱表面和导线一起展开在一个平面上,母线(9厘米),10个重复的圆周(10×4厘米)和导线(l厘米)构成一个直角三角形,因此,管子的体积为36π×100=3600π(立方厘米).∴V1∶V2=4∶3.∴S1∶S2=112∶105.∴V3∶V4=4∶3,=145∶134.10.几何体的表面积:=108π+360π+240+400+160=468π+800.。

小学奥数几何专题--立体图形(六年级)竞赛测试.doc

小学奥数几何专题--立体图形(六年级)竞赛测试.doc

小学奥数几何专题--立体图形(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【答案】600【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10106600.【题文】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【答案】120【解析】原正方体的表面积是44696(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边评卷人得分长是1厘米的正方形.从而,它的表面积是:9646120平方厘米.【题文】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【答案】15000【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:5050615000(平方厘米).【题文】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米?【答案】【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2228(平方厘米);左右方向、前后方向:22416(平方厘米),1144(平方厘米),41(平方厘米),4(平方厘米),这个立体图形的表面积为:41(平方厘米).【题文】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【答案】18【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数2增加的面数.原正方体表面积:1166(平方米),一共锯了(21)(31)(41)6次,6112618(平方米).【题文】一个表面积为的长方体如图切成27个小长方体,这27个小长方体表面积的和是多少平方厘米?【答案】168平方厘米【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为.【题文】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【答案】54【解析】当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【题文】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当 b2h时,如何打包?⑵当 b2h时,如何打包?⑶当 b2h时,如何打包?【答案】如解析图【解析】图2和图3正面的面积相同,侧面面积正面周长长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h6b,图3的周长是12h4b.两者的周长之差为2(b2h).当b2h时,图2和图3周长相等,可随意打包;当b2h时,按图2打包;当b2h时,按图3打包.【题文】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【答案】1034【解析】考虑所有的包装方法,因为6123,所以一共有两种拼接方式:第一种按长宽高116拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高123拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【题文】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【答案】214【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:(平方分米);侧面:(平方分米),(平方分米).这个立体图形的表面积为:(平方分米).【题文】如图,棱长分别为厘米、厘米、厘米、厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是多少平方厘米?【答案】194平方厘米【解析】 (法1)四个正方体的表面积之和为:(平方厘米),重叠部分的面积为:(平方厘米),所以,所得到的多面体的表面积为:(平方厘米).(法2)三视图法.从前后面观察到的面积为平方厘米,从左右两个面观察到的面积为平方厘米,从上下能观察到的面积为平方厘米.表面积为(平方厘米).【题文】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【答案】54【解析】从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面个左面个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(平方厘米).上下面左右面前后面【题文】用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?【答案】46平方厘米【解析】该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于个小正方形的面积,所以该图形表面积为46平方厘米.【题文】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【答案】56【解析】(平方米).【题文】棱长是厘米(为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为,此时的最小值是多少?【答案】5【解析】切割成棱长是1厘米的小正方体共有个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为,而,所以小正方体的总数是25的倍数,即是25的倍数,那么是5的倍数.当时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有个,表面没有红色的小正方体有个,个数比恰好是,符合题意.因此,的最小值是5.【题文】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【答案】74【解析】要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有(个),用黑色的;在面上但不在边上的小正方体有(个),其中个用黑色.这样,在表面的个的正方形中,有22个是黑色,(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【题文】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【答案】307【解析】每个长方体的棱长和是厘米,所以,每个长方体长、宽、高的和是厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个面,有个;涂两面的长方体,若两面不相邻,应涂两个面,有个;若两面相邻,应涂一个面和一个面,此时有个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个面、一个面,有个;若三面两两相邻,有个,所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有个.【题文】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【答案】108【解析】设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设,那么分成的小正方体个数为,为了使小正方体的个数尽量少,应使最小,而两数之积一定,差越小积越小,所以当时它们的和最小,此时共有个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令,此时共有个小正方体.因为,所以至少要把这个大长方体分割成108个小正方体.【题文】把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【答案】22【解析】一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有(个).(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴⑵⑶⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由个方格组成的环,这9个方格中只能有个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的个方格中最多能有个可染成红色.⑶剩下个方格,分布在条棱上,这个格子中只能有个能染成红色.综上所述,能被染成红色的方格最多能有个格子能染成红色,第一种解法中已经给出个红方格的染色方法,所以个格子染成红色是最多的情况.【题文】一个长、宽、高分别为厘米、厘米、厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【答案】1107【解析】本题的关键是确定三次切下的正方体的棱长.由于,为了方便起见.我们先考虑长、宽、高分别为厘米、厘米、厘米的长方体.因为,容易知道第一次切下的正方体棱长应该是厘米,第二次切时,切下棱长为厘米的正方体符合要求.第三次切时,切下棱长为厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:(立方厘米).【题文】有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标的为黑色,图中共有黑色积木多少块?【答案】17【解析】分层来看,如下图(切面平行于纸面)共有黑色积木17块.【题文】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?【答案】216【解析】第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是.【题文】如图所示,一个的立方体,在一个方向上开有的孔,在另一个方向上开有的孔,在第三个方向上开有的孔,剩余部分的体积是多少?表面积为多少?【答案】100;204【解析】求体积:开了的孔,挖去,开了的孔,挖去;开了的孔,挖去,剩余部分的体积是:.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:.求表面积:表面积可以看成外部和内部两部分.外部的表面积为,内部的面积可以分为前后、左右、上下三个方向,面积分别为、、,所以总的表面积为.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:上下方向:左右方向:总表面积为.总结:“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【题文】如图,原来的大正方体是由个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?【答案】72【解析】对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数l【题文】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?【答案】73【解析】解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有个,由侧面图形抽出的小正方体有个,由底面图形抽出的小正方体有个,正面图形和侧面图形重合抽出的小正方体有个,正面图形和底面图形重合抽出的小正方体有个,底面图形和侧面图形重合抽出的小正方体有个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,,所以共抽出了52个小正方体.,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:【题文】右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【题文】图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?图⑴图⑵【答案】20【解析】首先,我们把展开图折成立体图形,见下列示意图:图⑴图⑵对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面,那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微妙关系:图⑶图⑷由图⑷可见,图⑴这个立体的体积与图⑶这个被切去了8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是,所以切掉8个角后的体积是.再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为的立方体来套.如果把图⑵的立体图形放入边长为的立方体里的话是可以放进去的.这是切去了四个角后的图形,从上面的分析可知一个角的体积为,所以图⑵的体积是:,那么前者的体积是后者的倍.【题文】如图,用高都是米,底面半径分别为米、米和米的个圆柱组成一个物体.问这个物体的表面积是多少平方米?(取)【答案】32.97【解析】从上面看到图形是右上图,所以上下底面积和为(立方米),侧面积为(立方米),所以该物体的表面积是(立方米).【题文】有一个圆柱体的零件,高厘米,底面直径是厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是厘米,孔深厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【答案】307.72【解析】涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为(平方厘米).【题文】圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是多少立方厘米.(结果用表示)【答案】立方厘米或立方厘米【解析】当圆柱的高是12厘米时体积为(立方厘米)当圆柱的高是12厘米时体积为(立方厘米).所以圆柱体的体积为立方厘米或立方厘米.【题文】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.()【答案】100.48【解析】圆的直径为:(米),而油桶的高为2个直径长,即为:,故体积为立方米.【题文】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?()【答案】2056【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:(厘米),原来的长方形的面积为:(平方厘米).【题文】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少平方厘米.原来的圆柱体的体积是多少立方厘米?【答案】25.12【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为厘米,底面半径为厘米,所以原来的圆柱体的体积是(立方厘米).【题文】一个圆柱体的体积是立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? ()【答案】16【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为(厘米),所以增加的表面积为(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为厘米,所以侧面长方形的面积为平方厘米,所以增加的表面积为平方厘米.【题文】一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是多少立方厘米.(取)【答案】100.48【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为厘米的圆柱,空气部分构成高为厘米的圆柱,瓶子的容积为这两部分之和,所以瓶。

小学立体图形专题练习及答案

小学立体图形专题练习及答案

立体图形表面积体积计算和答案一、填空题1.一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到一个 ,这个形体的体积是 .(3.14×42)×4=200.96(立方分米).2.把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成,故表面积为4×54=216(平方厘米).3.图中是一个圆柱和一个圆锥(尺寸如图).问:柱锥V V 等于 .ππππ816828,316424312⨯=⨯⎪⎭⎫⎝⎛⨯==⨯⎪⎭⎫ ⎝⎛⨯⨯=柱锥V V ,故241=柱锥V V .4.在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用 块正方体木块,至少需要块正方体木块.884至多要20块(左下图),至少需要6块(右下图).5.一个圆柱形玻璃杯中盛有水,水面高2.5厘米,玻璃内侧的底面积是72平方厘米,在这个杯中放进棱长6厘米的正方体的铁块后,水面没有淹没铁块,这时水面高 厘米.水的体积为72×2.5=180(cm 2),放入铁块后可以将水看作是底面积为72-6×6=36(cm 2)的柱体,所以它的高为180÷36=5(cm)二、解答题1.一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?若铁块完全浸入水中,则水面将提高326)3040(203=⨯÷(厘米).此时水面的高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面.设放入铁块后,水深为x 厘米.因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有: x x 20201030403040⨯+⨯⨯=⨯解得x =15,即放进铁块后,水深15厘米.(图(图2121221 21 1 1 1 1 1 1 1 12112.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨1小时.有下列(A)-(E)不同的容器(图2),雨水下满各需多少时间? (注: 面是朝上的敞口部分.)在例图所示的容器中,容积:按水面积=(10×10×30):(10×30)=10:1,需1小时接满,所以容器(A):容积:接水面积=(10×10×10):(10×10)=10:1,需1小时接满; 容器(B):容积:接水面积=(10×10×30):(10×10)=30:1,需3小时接满; 容器(C):容积:接水面积=(20×20×10-10×10×10):(10×10)=30:1,需3小时接满;容器(D):容积:接水面积=(20×20×10-10×10×10):(20×10)=15:1,需1.5小时接满;13122(((((雨容器(E):容积:接水面积=20×S:S=20:1(S 为底面积),接水时间为2小时.3、如图是一个立体图形的侧面展开图,求它的全面积和体积.这个立体图形是一个圆柱的四分之一(如图),圆柱的底面半径为10厘米,高为8厘米.它的全面积为:810281014.32411014.34122⨯⨯+⨯⨯⨯⨯+⨯⨯⨯6.4421606.125157=++=(平方厘米).它的体积为:62881014.3412=⨯⨯⨯(立方厘米).18 8c m10cm。

小学数学六年级奥数《立体图形(1)》练习题(含答案)

小学数学六年级奥数《立体图形(1)》练习题(含答案)

小学数学六年级奥数《立体图形(1)》练习题(含答案)一、填空题1.一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 .2.如图,在一块平坦的水泥地上,用砖和水泥砌成一个长方体的水泥池,墙厚为10厘米(底面利用原有的水泥地).这个水泥池的体积是 .3.一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到一个 ,这个形体的体积是 .4.把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.5.图中是一个圆柱和一个圆锥(尺寸如图).问:柱锥V V 等于 .6.一个长方体的表面积是67.92平方分米.底面的面积是19平方分米.底面周长是17.6分米,这个长方体的体积是 .2 单位:米7.一块长方体木块长2.7米,宽1.8分米,高1.5分米.要把它裁成大小相等的正方体小木块,不许有剩余,小正方体的棱长最大是 分米.8.王师傅将木方刨成横截面如右图(单位:厘米)那样高40厘米的一根棱柱.虚线把横截面分成大小两部分,较大的那部分的面积占整个底面的60%.这个棱柱的体积是 立方厘米.9.小玲有两种不同形状的纸板.一种是正方形的,一种是长方形的(如下图).正方形纸板的总数与长方形纸板的总数之比是1:2.她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完.在小玲所做的纸盒中,坚式纸盒的总数与横式纸盒的总数之比是 .10.在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用 块正方体木块,至少需要 块正方体木块.二、解答题11.一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?12.如图表示一个正方体,它的棱长为4厘米,在它的上下、前后、左右的正中位置各挖去一个棱长为1厘米的正方体,问此图的表面积是多少?8 28 2412(图1)(图2)13.下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.14.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨水将它下满要用1小时.有下列(A )-(E )不同的容器(图2),雨水下满各需多少时间(注面是朝上的敞口部分.)PF2cm 2cm (A ) (B ) (C ) (D ) (E ) 雨———————————————答 案——————————————————————1. 96分米.正方体的底面积为384÷6=64(平方分米).故它的棱长为512÷64=8(分米),棱长的总和为8×12=96(分米).2. 8.96立方米.(3-0.1×2)×(1.8-0.1×2)×2=8.96(立米米).3. 圆柱体,200.96立方分米.(3.14×42)×4=200.96(立方分米).4. 216.这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成,故表面积为4×54=216(平方厘米).5. 241. ππππ816828,3164243122⨯=⨯⎪⎭⎫ ⎝⎛⨯==⨯⎪⎭⎫ ⎝⎛⨯⨯=柱锥V V ,故241=柱锥V V .6. 32.3立方分米.长方体的侧面积是67.92-19×2=29.92(平方分米),长方体的高为29.92÷17.6=1.7(分米),故长方体的体积为19×1.7=32.3(立方分米).7. 0.3长、宽、高分别是270厘米、18厘米和15厘米,而270、18和15的最大公约数为3(厘米),这就是小正方体棱长的最大值.8. 17200.设较大部分梯形高为x 厘米,则较小部分高为(28- x )厘米.依题意有: 4:6)28()824(21:)2412(21=⎥⎦⎤⎢⎣⎡-⨯+⨯⎥⎦⎤⎢⎣⎡+⨯x x 解得x =16,故这棱柱的体积为 1920040)1628()824(2116)2412(21=⨯⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯+⨯(立方厘米).9. 3:1.一个竖式的无盖纸盒要用一个正方形纸板和4个长方形纸板,一个横式的无盖纸盒要用2个正方形纸板和3个长方形纸板.设小玲做的纸盒中,有x 个竖式的, y 个横式的,则共用正方形纸板(x +2 y )个,用长方形纸板(4 x +3 y )个,依题意有: (x +2 y ):(4 x +3 y )=1:3.解得x : y =3:1.10. 20,6.至多要20块(左下图),至少需要6块(右下图).11. 若铁块完全浸入水中,则水面将提高326)3040(203=⨯÷(厘米).此时水面的高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面.设放入铁块后,水深为x 厘米.因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有:x x 20201030403040⨯+⨯⨯=⨯解得x =15,即放进铁块后,水深15厘米.12. 大正方体的表面还剩的面积为()9014622=-⨯(厘米2),六个小孔的表面积为()305162=⨯⨯(厘米2),因此所求的表面积为90+30=120(厘米2).13. 截面的线在展开图中如右图的A -C -Q -P -A .14. 在例图所示的容器中,容积:按水面积=(10×10×30):(10×30)=10:1,需1小时接满,所以容器(A):容积:接水面积=(10×10×10):(10×10)=10:1,需1小时接满; 容器(B):容积:接水面积=(10×10×30):(10×10)=30:1,需3小时接满; 容器(C):容积:接水面积=(20×20×10-10×10×10):(10×10)=30:1,需32 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1A小时接满;容器(D):容积:接水面积=(20×20×10-10×10×10):(20×10)=15:1,需1.5小时接满;容器(E):容积:接水面积=20×S:S=20:1(S为底面积),接水时间为2小时.。

六年级下册数学试题- 专题24立体图形的认识 全国通用 有答案

六年级下册数学试题- 专题24立体图形的认识  全国通用 有答案

24.立体图形的认识知识要点梳理一、立体图形的展开图正方体的展开图长方体的展开图圆柱的展开图圆锥的展开图二、观察物体在实际生活中,常常需要对一个物体从不同角度、不同方位进行观察,来获得其形状、大小、颜色等各方面的信息。

1.从不同的角度、不同的方位观察物体,看到物体的形状可能是不同的。

2.能正确辨认从正面、侧面、上面观察到的物体的形状。

三、立体图形的认识1.长方体与正方体特征的区别与联系2、圆柱、圆锥的特征考点精讲分析典例精讲考点1立体图形的认识【例1】一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是多少厘米?【精析】根据长方体棱长总和的计算公式,计算出长方体的高。

【答案】40÷4-5-3=2(厘米)答:高是2厘米。

【归纳总结】长方体的棱长总和=(长+宽+高)×4。

【例2】把一个大正方体木块表面涂上红色的漆(如图),锯成完全一样的27块小正方体木块。

小正方体中一面红色、二面红色、三面红色各有多少块?【精析】我们可以想象一下,大正方形被切割成小正方体后,一面有红色的在大正方体每个面的最中间(如A处),两面有红色的在大正方体每条棱的中间(如B处),三面有红色的在大正方体的8个角上(如C处),没有红色的在中心内部。

【答案】因为正方体有6个面,12条棱,8个顶点,所以一面有红色的是6块,两面有红色的是12块,三面有红色的是8块。

【归纳总结】根据正方体表面涂色的特点,分别得出切割后的小正方体涂色面的排列特点。

【例3】用一个平面去截一个正方体,把正方体分为两个多面体,则截面最多会是()边形。

【精析】正方体有六个面,欲截最多边,肯定是平面与最多的面相交,形成的交线越多,多边形边数就越多。

让截面过正方体的各条棱的中点。

【答案】六【归纳总结】正方体有六个面,用平面去截正方体时,最少与三个面相交得三角形,最多与六个面相交得六边形。

考点2图形的展开与折叠【例4】在下面四个正方体中,()正方体展开后可能得到右面的展开图。

小学数学毕业考试立体图形真题练习

小学数学毕业考试立体图形真题练习

小学数学毕业考试立体图形真题练习一、选择题1.将一个正方体木块加工成一个最大的圆柱形木块,圆柱形木块上的底面直径是二、图形计算11.求表面积。

12.求下面组合图形的体积。

(单位:厘米,取3.14)=13.一个零件的形状如下图所示,求这个零件的体积。

三、解答题14.吴老师买了一套新房,客厅长6米,宽4米,高3米。

请同学们帮吴老师算一算装修所需要的部分材料。

(1)客厅准备用边长5分米的方砖铺地面,需要多少块?(2)准备粉刷客厅的四周墙壁和顶面,门窗、电视墙等10平方米不粉刷,实际粉刷的面积是多少平方米?15.神舟十三号飞船的飞行目标是对接我国空间站“天和”核心舱,将三名航天员运送至中国空间站。

神舟十三号乘组人员在空间站工作和生活六个月,创造了我国航天员在太空驻留天数的新纪录。

飞船主体由轨道舱、返回舱和推进舱构成。

轨道脑主体为圆柱形,集工作、吃饭和睡觉等诸多功能于一体,总长度为2.8米,直径约2.2米(如图)它的体积大约是多少?(得数保留一位小数)16.求瓶子的体积。

(单位:cm)17.一只底面半径为40厘米的圆柱形水桶内盛有80厘米深的水,将一个高8厘米的圆锥形铁块沉没水中,水没有溢出,水面上升1.5厘米,铁块的底面积是多少平方厘米?18.毕业啦!同学们用卡纸做了一顶“博士帽”(如图),帽子上面是边长为30厘米的正方形,下面是底面直径为20厘米、高为8厘米的无盖无底圆筒,做这顶帽子的上、下部分,分别用卡纸多少平方厘米?(连接处不计)18.一个圆锥形的沙堆,底面面积是28.26平方米,高是6米。

用这堆沙在20米宽的公路上铺2厘米厚的路面,能铺多少米?20.一块蛋糕如下图,在它的表面涂上奶油,需要涂多少平方厘米的奶油?这块蛋糕体积多大?21.一根长2米,横截面直径是20厘米的木头浮在水面上,它正好是一半露出水面。

(1)这根木头的体积是多少立方厘米?(2)这根木头与水接触的面积是多少平方厘米?22.如图是一个粮囤的示意图,它是由圆锥和圆柱两部分组成的。

人教版小学数学六年级《立体图形》基础训练题

人教版小学数学六年级《立体图形》基础训练题

立体图形基础题一、选择题1.一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍。

A、2B、6C、8【答案】C【解析】长方体的体积=长×宽×高,长、宽和高都扩大2倍,则体积就扩大了2×2×2=8倍,根据此选择即可。

2.我们在画长方体时一般只画出三个面,这是因为长方体()。

A.只有三个面 B.只能看到三个面 C.最多只能看到三个面【答案】C【解析】把长方体放在桌面上,最多可以看到3个面。

根据此选择。

3.沿着圆柱上下两个底面的直径把圆柱切开,可以得出()形。

A.长方形B.圆形C.梯形【答案】A。

【解析】沿着圆柱的上下两个底面的直径把圆柱切开,可以得出长方形。

根据此选择即可。

4.一个圆锥是由橡皮泥捏成的,要切一刀把它分成两块,()切割,截面会是圆;()切割,截面会是三角形。

A.垂直于底面B.平行于底面【答案】B;A。

【解析】一个圆锥是由橡皮泥捏成的,要切一刀把它分成两块,平行于底面切割,截面会是圆;垂直于底面切割,截面会是三角形,根据此选择即可。

5.沿着圆柱的高,把圆柱的侧面展开,得不到()。

A. 梯形B.长方形C.正方形【答案】A【解析】沿着圆柱的高把圆柱的侧面展开,可以得到长方形或正方形,根据此选择即可。

6.一个长方体的长是4厘米,宽是3.5厘米,高是1.5厘米,它的底面的面积是()平方厘米。

A.6B.14C.5.25D.21【答案】B【解析】长方体的底面的面积=长×宽7.一个长方体的棱长和是36厘米,它的长、宽、高的和是()厘米。

A.3 B.9 C.6 D.4【答案】B【解析】棱长总和除以4,得出长、宽、高的和:36÷4=9;据此选择即可。

8.下列说法错误的是()。

A.正方体是长、宽、高都相等的长方体。

B.长方体与正方体都有12条棱。

C.长方体的6个面中至少有4个面是长方形。

D.长方体的6个面中最多有4个面是长方形。

【答案】D【解析】长方体的6个面一般情况下都是长方形,特殊的情况下,至少有4个面是长方形,所以D的说法是错误的;据此选择即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体图形表面积体积计算和答案
一、填空
1 . 一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,
得 到一个,这个形体的体积是.
(3. 14 X 42) X 4=200. 96 (立方分米).
2 .把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个
立 方体的表面积是 平方厘米.
这个立方体的表面由3X3X2+8X2+10X2=54个小正方形组成,故表面积为 4X54=216(平方厘米).
4.在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正 东方向看如下图(2),要摆出这样的图形至多能用一块正方体木块,至少需要
块正方体木块.
(图1) (图2)
至多要20块(左下图),至少需要6块(右下图).
2 2 1 1
1 1 1 1
1
1 1 1
2 2
1
1
2
1
1
2
3.图中是一个圆柱和一个圆锥(尺寸如图).问:?等于 _____ .
%
5. 一个圆柱形玻璃杯中盛有水,水面高2. 5厘米,玻璃内侧的底面积是72平方厘米,在这个杯中放进棱长6厘米的正方体的铁块后,水面没有淹没铁块,这时水面高厘米.
水的体积为72X2.5=180®/),放入铁块后可以将水看作是底面积为72-6 X6:36(c疗)的柱体,所以它的高为180 + 36=5(。

〃])
二、解答题
1. 一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10 厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?
7
若铁块完全浸入水中,则水面将提高203 +(40x30)= 6;(厘米).此时水面的高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面.
设放入铁块后,水深为x厘米.因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有:
40x30x = 40x30x10+20X20A-
解得x=15,即放进铁块后,水深15厘米.
2.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨
水将它下满要用1小时.有下列(4)-(石)不同的容器(图2),雨水下满各需多少时在例图所示的容器中,容积:按水面积=(10X10X30): (10X30)=10:1,需1小时接满,所以
容器(A):容积
:接水面积二(10X10X10) : (10X10)=10:1,需1小时接满; 容器(B):容积:接水面积二(10X10X30) : (10X10)=30:1,需3小时接满;
容器(C):容积:接水面积二(20X20X10-10X10X10) : (10X10)=30:1,需 3 小时接满;
容器(D):容积:接水面积二(20 X20X 10-10 X 10X 10) : (20X 10)=15:1,需
1.5小时接满;
容器(E):容积:接水面积=20XS:S=20:l(S 为底面积),接水时间为2小时.
3、如图是一个立体图形的侧面展开图,求它的全面积和体积.
这个立体图形是一个圆柱的四分之一(如图),圆柱的底面半径为10厘米,高为8 厘米
间?
(£)
O
面是朝上的敞口部
(B
10cm
】。


上 图1
20cm
(D )
2 cm
它的全面积为:
2xlx3.14xlO2 +1x2x3.14x10x8 + 2x10x8
4 4
=157 + 125.6 + 160 = 442.6 (平方厘米).
它的体积为:,x3.14xl()2 x8 = 628 (立方厘米).。

相关文档
最新文档