10章作业习题解

10章作业习题解
10章作业习题解

机械波习题答案

第十一章 机械波 一. 选择题 [ C ]1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为 (A) )2 1(cos 50.0ππ+=t y , (SI). (B) )2 121 (cos 50.0ππ-=t y , (SI). (C) )2 121 (cos 50.0ππ+=t y , (SI). (D) )2 141 (cos 50.0ππ+=t y ,(SI). 提示:设O 点的振动方程为O 0()cos()y t A t ω?=+。由图知,当t=2s 时,O 点的振动状态 为:O 0(2)cos(2)=0 0y A v ω?=+>,且 ,∴0322πω?+=,0322 π ?ω=-,将0?代入振动方程得:O 3()cos(2)2 y t A t π ωω=+ -。由题中所给的四种选择,ω取值有三种:,,24πππ,将ω的三种取值分别代入O 3()cos(2)2 y t A t πωω=+-中,发现只有答案(C )是正确的。 [ B ]2. 图中画出一向右传播的简谐波在t 时刻的波形 图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为 提示: 由题中所给波形图可知,入射波在P 点的振动方向向下;而BC 为波密介质反射面,故在P 点反射波存在“半波损失”,即反射波与入射波反相,所以,反射波在P 点的振动

方向向上,又P 点为波节,因而得答案B 。 [ A ]3. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是 提示:由图可知,P 点的振动在t=0 [ B ]4. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零. 提示:动能=势能,在负的最大位移处时,速度=0,所以动能为零,势能也为零。 [ B ]5. 在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同. (B) 振幅不同,相位相同. (C) 振幅相同,相位不同. (D) 振幅不同,相位不同. 提示:根据驻波的特点判断。 [ C ]6. 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是 (A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4. (C) A 1 / A 2 = 2. (D) A 1 / ωS A O ′ ω S A O ′ ω A O ′ ω S A O ′ (A) (B)(C)(D) S

材力习题集

第一章绪论 1-1矩形平板变形后为平行四边形,水平轴线在四边形AC边保持不变。求(1)沿AB 边的平均线应变;(2)平板A点的剪应变。 (答案:εAB=7.93×10-3γXY=-1.21×10-2rad) 第二章拉伸、压缩与剪切 2-1 试画图示各杆的轴力图,并指出轴力的最大值。 2-2 一空心圆截面杆,内径d=30mm,外径D=40mm,承受轴向拉力F=KN作用,试求横截面上的正应力。(答案:MPa 7. 72 = σ)

2-3 题2-1 c 所示杆,若该杆的横截面面积A=502mm ,试计算杆内的最大拉应力与最大压应力 (答案:MPa t 60max ,=σ MPa c 40max ,=σ) 2.4图示轴向受拉等截面杆,横截面面积A=5002mm ,载荷F=50KN 。试求图示截面m-m 上 的正应力与切应力,以及杆内的最大正应力与最大切应力。 (答案:MPa MPa MPa MPa 50 ; 100 ; 24.49 ; 32.41max max ==-==τστσαα)

2.5如图所示,杆件受轴向载荷F 作用。该杆由两根木杆粘接而成,若欲使粘接面上的正应力为其切应力的二倍,则粘接面的方位角θ应为何值(答案: ο6.26=θ) 2.6 等直杆受力如图所示,试求各杆段中截面上的轴力,并绘出轴力图。

2.7某材料的应力-应变曲线如图所示, 图中还同时画出了低应变去区的详图,试确定材料的弹性模量E 、屈服极限s σ、强度极限b σ、与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。 2.8某材料的应力-应变曲线如图所示,试根据该曲线确定: ( 1)材料的弹性模量E 、比例极限P σ与屈服极限2.0σ; (2)当应力增加到MPa 350=σ时,材料的正应变ε, 以及相应的弹性应变 e ε与塑性应变p ε

基础工业工程各章节作业习题答案.doc

各章节作业习题 ※<第一、二章> 1.什么是工业工程?试简明地表述IE的定义。 2.如何理解工业工程的内涵? 3.试述经典IE与现代IE的关系。如何理解经典IE是现代IE的基础和主要部分? 4.如何理解工业工程与生产率工程的关系? 5.IE学科的性质如何,这样理解这一性质? 6.IE学科与相关学科的关系是什么? 7.IE的学科范畴包括哪些主要知识领域?企业应用的主要领域是哪些? 8.企业工业工程师要求具备什么样的知识结构? 9.什么是IE意识?为什么说“掌握IE方法和技术是必要的,而树立IE意识更重要”? ※<第三章生产率概述> 1.企业的生产运作有哪几种类型?各有什么特点? 2.企业生产运作与管理存在的主要问题是什么? 3.生产率从本质上讲反映的是什么? 4.生产率测评的意义是什么?

5.生产率测评的种类与方法有哪些? 6.提高生产率的方法有哪些? ※<第四章工作研究> 1.什么是工作研究?工作研究的对象、特点是什么? 2.工作研究的内容和分析工具是什么? 3.工作研究包括哪些内容?工作研究的两种技术的关系如何? 4.工作研究的步骤是什么? 5.方法研究的概念、特点与目的是什么? 6.方法研究的内容是什么? 7.方法研究的基本步骤有哪些? ※<第五章程序分析> 1.程序分析的概念、特点、种类是什么? 2.程序分析的步骤和常用工具是什么? 3.工艺程序分析的概念、特点和分析对象是什么? 4.工艺程序图的组成和作用规则是什么? 5.工艺程序图有哪几种基本形式? 6.流程程序分析的概念、特点和种类是什么?

7.布置和经路分析的概念、特点、目的是什么? 8.布置和经路分析的种类有哪些? 9.任意选定一个超市,绘出其设施布置简图以及顾客移动路线图,分析现行布置的优缺点,提出改进意见。 10.某空气调节阀由阀体、柱塞套、柱塞、座环、柱塞护圈、弹簧、O型密封圈、锁紧螺母、管堵等组成。各组成部分的加工工艺和装配顺序如下: (1)阀体:切到规定长度、磨到定长、去毛刺、钻铰4孔、钻铰沉头孔、攻螺纹、去毛刺、检验与柱塞以及柱塞套组件装配、加锁紧螺母、加管堵、检查、包装、贴出厂标签、最终检查、出厂。 (2)柱塞套:成型、钻、切到长度、加工螺纹、钻孔、去毛刺、吹净、检查与柱塞组件装配、装配后在加弹簧与阀体装配。 (3)柱塞:铣、成型、切断、检查与座环组件装配,装配后在加O 形环与柱塞套装配。 (4)座环:成型、钻、切断、检查与柱塞护圈装配,装配后组件加O形环与柱塞装配。 (5)柱塞护圈:成型、钻、攻内螺纹、套外螺纹、检查与座环装备。根据给定的资料数据,绘制出该空气调节阀的工艺流程图。 11.某产品的制造工艺过程如表4-1所示,绘制该产品流程程序图。(表格) 12.某汽车零部件生产产家,打算组装汽车内部用来连接电气零部件的电线,并将其制作成一个用组合电线。现行设施布置以及物流路线

物体的受力分析及典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。 【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质

量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图b 中物体A 沿竖直面下滑,接触面粗糙。图c 中物体A 沿光滑斜面下滑。图d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同 【例7】如图1—10所示,物体A 叠放在物体B 上,水平地面光滑,外力F 作用于物体B 上使它们一起运动,试分析两物体受到的静摩擦力的方向。

第十四章机械波作业及参考答案

第十械波 一. 选择题 [C] 1.(基础训练1)图14-10为一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是 (A) ]31 )2(cos[01.0π + -π=t y P (SI). (B) ]31 )2(cos[01.0π++π=t y P (SI) . (C) ]31 )2(2cos[01.0π+-π=t y P (SI). (D) ]3 1 )2(2cos[01.0π--π=t y P (SI). 【提示】由t=2s 波形,及波向X 轴负向传播,波动方程 })2[(cos{0 ?ω+-+ -=u x x t A y ,?为P 点初相。以0x x =代入。 [C] 2.(基础训练4)一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是() (A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零. 【提示】在波动的传播过程中,任意时刻的动能和势能不仅大小相等而且相位相同,在平衡位置,动能最大,势能最大。 [D] 3.(基础训练7)在长为L ,一端固定,一端自由的悬空细杆上形成驻波,则此驻波的基频波(波长最长的波)的波长为 (A) L . (B) 2L . (C) 3L . (D) 4L . 【提示】形成驻波,固定端为波节,自由端为波腹。波长最长, 4 L λ =。 [D] 4.(自测提高3)一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图14-24所示.则坐标原点O 的振动方程为 (A) ]2 )(cos[π + '-=t t b u a y . (B) ]2)(2cos[π -'-π=t t b u a y . (C) ]2 )(cos[π +'+π=t t b u a y . 图14-24

材料力学习题册答案-第9章-压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

受力分析经典题型

专练3 受力分析物体的平衡 一、单项选择题 1.如图1所示,质量为2 k g的物体B和质量为1 k g的物体 C用轻弹簧连接并竖直地静置于水平地面上.再将一个质 量为3 k g的物体A轻放在B上的一瞬间,弹簧的弹力大 小为(取g=10 m/s2)() A.30 N B.0 C.20 N D.12 N 答案 C 2.(2014·上海单科,9)如图2,光滑的四分之一圆弧轨道AB固定在竖直平面内,A端与水平面相切,穿在轨道上的小球在拉力 F作用下,缓慢地由A向B运动,F始终沿轨道的切线方向, 轨道对球的弹力为F N,在运动过程中() A.F增大,F N减小B.F减小,F N减小 C.F增大,F N增大D.F减小,F N增大 解析 对球受力分析,受重力、支持力和拉力,根据共点力平衡 条件,有:F N=mg cos θ和F=mg sin θ,其中θ为支持力 F N与竖直方向的夹角;当物体向上移动时,θ变大,故F N 变小,F变大;故A正确,BCD错误. 答案 A 3.(2014·贵州六校联考,15)如图3所示,放在粗糙水平面 上的物体A上叠放着物体B.A和B之间有一根处于压缩 状态的弹簧,物体A、B均处于静止状态.下列说法中正 确的是() A.B受到向左的摩擦力B.B对A的摩擦力向右 C.地面对A的摩擦力向右D.地面对A没有摩擦力 解析弹簧被压缩,则弹簧给物体B的弹力水平向左,因此物体B平衡时必受到A对B水平向右的摩擦力,则B对A的摩擦力水平向左,故A、B均错

误;取A 、B 为一整体,因其水平方向不受外力,则地面对A 没有摩擦力作用,故D 正确,C 错误. 答案 D 4.图4所示,物体A 置于水平地面上,力F 竖直向下作用于物 体B 上,A 、B 保持静止,则物体A 的受力个数为( ) A .3 B .4 C .5 D .6 解析 利用隔离法对A 受力分析,如图所示. A 受到重力G A ,地面给A 的支持力N 地, B 给A 的压力N B →A , B 给A 的摩擦力f B →A ,则A 、 C 、 D 错误,B 正确. 答案 B 5.(2014·广州综合测试)如图5所示,两梯形木块A 、B 叠放在 水平地面上,A 、B 之间的接触面倾斜.A 的左侧靠在光滑的 竖直墙面上,关于两木块的受力,下列说法正确的是( ) A .A 、 B 之间一定存在摩擦力作用 B .木块A 可能受三个力作用 C .木块A 一定受四个力作用 D .木块B 受到地面的摩擦力作用方向向右 解析 A 、B 之间可能不存在摩擦力作用,木块A 可能受三个力作用,选项A 、C 错误,B 正确;木块B 也可能不受地面的摩擦力作用,选项D 错误. 答案 B 6.(2014·佛山调研考试)如图6所示是人们短途出行、购物 的简便双轮小车,若小车在匀速行驶的过程中支架与水平 方向的夹角保持不变,不计货物与小车间的摩擦力,则货 物对杆A 、B 的压力大小之比F A ∶F B 为( ) A .1∶ 3 B.3∶1 C .2∶1 D .1∶2 解析 以货物为研究对象进行受力分析,如图所示,利用力 的合成法可得tan 30°=F B ′F A ′ ,根据牛顿第三定律可知F B =F B ′、F A =F A ′,解得F A ∶F B =3∶1,选项B 正确.

材力题解第10章

10-1. 某型柴油机的挺杆长为l =257mm ,圆形横截面的直径d=8mm 。钢材的 E=210GPa ,σp =240MPa 。挺杆承受的最大压力P=1.76kN 。规定n st =2~5。试校核挺杆的稳定性。 解:(1)求挺杆的柔度 挺杆的横截面为圆形,两端可简化为铰支座,μ=1,i=d/4 计算柔度 1 1 9.925.1284λλσπλμμλ ∴===== P E d l i l 挺杆是细长压杆,用欧拉公式计算临界压力 (2)校核挺杆的稳定性 () KN l EI P d I cr 31.6 642 24===μππ 工作安全系数 58.3max == P P n cr 所以挺杆满足稳定性要求。 10-5. 三根圆截面压杆,直径均为d=160mm 材料为Q235钢,E=200GPa , σp =200MPa ,σs =240MPa 。三杆均为两端铰支,长度分别为l 1、l 2和l 3,且l 1=2l 2=4l 3=5m 。试求各杆的临界压力P cr 。 解:(1)求柔度极限值 查表得Q235钢:a = 304MPa, b = 1.12MPa 573.9921=-= ==b a E S P σλσπλ (2)求各杆的临界压力Pcr 1杆: () KN l EI P d I d l i l cr l 2540 641254 /12 2 1411 11==∴==?== μππλμλ 2杆:

KN A P MPa b a i l cr cr cr l l 4705 2345 .6221 222 2===-=∴==σλσλλλμλ 3杆: KN A P i l S cr l 482525.3132 3 3==∴==σλμλ 10-7. 无缝钢管厂的穿孔顶杆如图所示。杆长l =4.5m ,横截面直径d=150mm ,材 料为低合金钢,E=210GPa ,σp =200MPa 。两端可简化为铰支座,规定n st =3.3。试求顶杆的许可压力。 解:(1 () KN l EI P d I d l i l E cr P 5.254341204/18.1012 241 1=== =?====μππλμλσπ λ (2)求顶杆的许可压力 kN n P P st cr 8.770][== 10-9. 在图示铰接杆系中,AB 和BC 皆为细长压杆,且截面相同,材料一样。若 杆系因在ABC 平面内丧失稳定而同时失效,并规定0<θ<π/2,试确定P 为最大值时的角。 P

中学物理受力分析经典例题__物理受力分析

中学物理受力分析经典例题 1.分析满足下列条件的各个物体所受的力,并指出各个力的施力物体. 2.对下列各种情况下的物体A 进行受力分析 3. 对下列各种情况下的物体A 进行受力分析,在下列情况下接触面均不光滑. 4.对下列各种情况下的A 进行受力分析(各接触面均不光滑) (1)沿水平草地滚动的足球 V (3)在光滑水平面上向右运动的物体球 (2)在力F 作用下静止水 平面上的物体球 F (4)在力F 作用下行使在 路面上小车 F V v (5)沿传送带匀速运动的物体 (6)沿粗糙的天花板向右运动的物体 F>G F A V (2)沿斜面上滑的物体A (接触面光滑) A V (1)沿斜面下滚的小球, 接触面不光滑. A V (3)静止在斜面上的物体 A (4)在力F 作用下静止在斜面上的物体A. A F (5)各接触面均光滑 A (6)沿传送带匀速上滑的 物块A A F 1)A 静止在竖直墙面上 A v (2)A 沿竖直墙面下滑 A (4)静止在竖直墙轻上的物体A F A (1)A 、B 同时同速向右行使向 B A F F B A (2)A 、 B 同时同速向右行 使向 (6)在拉力F 作用下静止 在斜面上的物体A F A (5)静止在竖直墙轻上的物体A F A

5.如图所示,水平传送带上的物体。 (1)随传送带一起匀速运动 (2)随传送带一起由静止向右起动 6.如图所示,匀速运动的倾斜传送带上的物体。 (1)向上运输 (2)向下运输 7.分析下列物体A 的受力:(均静止) (4)静止的杆,竖直墙面光滑 A (5)小球静止时的结点A A (6)小球静止时的结点A A α B A B A (光滑小球A ) A B α

第十章习题解(上网)

第十章习题解 10-8 波源作简谐运动,其方程为()m t πcos240100.43-?=y , 形成的波形以30m·s-1 的速度沿直线传播.(1)求波的周期及波长;(2)写出波动方程. 解:分析:已知波源振动方程求波动物理量及波动方程,可先将振动方程与其一般式 ()?ω+=t cos A y 比较,求出振幅A 、角频率ω及初相φ0 ,该类物理量与波动方程的一般 式 ()[]0cos ?ω+-=u x t A y /相应的物理量相同.利用已知波速u 、ω=2πν =2π /T 、λ=u T 即可写出相应波动方程. (1)由已知波源振动方程:质点振动的角频率1s π240-=ω.波的周期就是振动的周期,故有: 波动周期: s 1033.8/π23-?==ωT (1) 波长: λ=uT =0.25 m (2) (2) 将已知波源振动方程与谐振动方程一般式比较可得波动周期、角频率、初相: A =4.0 ×10-3m 1s π240-=ω φ0 =0 故以波源为原点,沿x 轴正向传播的波动方程为: ()[]() () m π8π240cos 100.4/cos 3 0x t u x t A y -?=?+-ω=- (3) 10-9 已知波动方程为:y=0.05sin(10πt –0.6x)m , (1) 求波长、频率、波速和周期; (2)说明x=0时方程的意义,并作图表示; 解:分析:可采用比较法求解,先将已知波动方程改写成余弦形式,与波动方程一般式 ()[]0cos ?ω+-=u x t A y /比较可求出相应物理量,当x 确定时波动方程即成为

质点的振动方程. (1)波动方程改写成余弦形式: y=0.05cos[10π(t -x / 5π)-π / 2](m) 得: u=5π=15.7m ?s -1 ν=5Hz T=1 / ν=0.2 s (1) λ= uT =3.14m (2) 当x=0时波动方程成为坐标原点处质点的振动方程: y=0.05cos(10πt -π / 2)(m) (2) 由(2)式作如图所示; 10-20 如图所示两相干波源分别在P 、Q 两点处,波源发出频率ν、波长λ,初相相同的两 列相干波.设PQ =3λ/2,R 为PQ 连线上的一点.求: (1)自P 、Q 发出的两列波在R 处的相位差; (2)两列波在R 处干涉的合振幅; 解:分析:两波源初相相同,故两波在点R 处的相位差Δφ仅由其波程差决定.因R 处质点同时受两列相干波的作用,其振动为同频率、同振动方向的两谐振动合成,合振幅为: ? ?++=cos 2212221A A A A A (1) 两相干波在R 处的相位差为: π=λ=?3/Δπ2Δr (1) (2) 由于π3Δ=,则合振幅为: (s)

第十章-梁的应力-习题答案

习题 10?1一工字型钢梁,在跨中作用集中力F,已知l=6m,F=20kN,工字钢的型号为20a,求梁中的最大正应力。 解:梁内的最大弯矩发生在跨中kN.m 30 max = M 查表知20a工字钢3 cm 237 = z W 则 MPa 6. 126 Pa 10 6. 126 10 237 10 306 6 3 max max = ? = ? ? = = - z W M σ 10?2一矩形截面简支梁,受均布荷载作用,梁的长度为l,截面高度为h,宽度为b,材料的弹性模量为E,试求梁下边缘的总伸长。 解:梁的弯矩方程为()2 2 1 2 1 qx qlx x M- = 则曲率方程为() () ? ? ? ? ? - = =2 2 1 2 1 1 1 qx qlx EI EI x M x z z ρ 梁下边缘的线应变()()? ? ? ? ? - = =2 2 1 2 1 2 2 qx qlx EI h x h x z ρ ε 下边缘伸长为() 2 3 2 02 2 1 2 1 2Ebh ql dx qx qlx EI h dx x l l z l = ? ? ? ? ? - = = ?? ?ε 10?3已知梁在外力作用下发生平面弯曲,当截面为下列形状时,试分别画出正应力沿横截面高度的分布规律。 解:各种截面梁横截面上的正应力都是沿高度线性分布的。中性轴侧产生拉应力,另一 b h

侧产生压应力。 10?4 一对称T 形截面的外伸梁,梁上作用均布荷载,梁的尺寸如图所示,已知l =1.5m ,q =8KN/m ,求梁中横截面上的最大拉应力和最大压应力。 解: 1、设截面的形心到下边缘距离为y 1 则有 cm 33.74 108410 4104841=?+???+??= y 则形心到上边缘距离 cm 67.433.7122=-=y 于是截面对中性轴的惯性距为 4 2323cm 0.86467.24101241033.3841284=??? ? ????+?+???? ????+?=z I 2、作梁的弯矩图 设最大正弯矩所在截面为D ,最大负弯矩所在截面为E ,则在D 截面 MPa 08.15Pa 1008.15100.8641033.710778.168 2 31max t,=?=????==--y I M z D σ MPa 61.9Pa 1061.910 0.8641067.410778.16 8 232max c,=?=????==--y I M z D σ 在E 截面上 MPa 40.5Pa 1040.5100.8641067.4100.168 2 32max t,=?=????==--y I M z E σ MPa 48.8Pa 1048.810 0.8641033.7100.16 8 231max c,=?=????==--y I M z E σ 所以梁内MPa 08.15max t,=σ,MPa 61.9max c,=σ C

受力分析经典题及答案

一、选择题 1、粗糙的水平面上叠放着A和B两个物体,A和B间的接触面也是粗糙的,如果用水平力F拉B,而B仍保持静止,则此时() A.B和地面间的静摩擦力等于F,B和A间的静摩擦力也等于F. B.B和地面间的静摩擦力等于F,B和A间的静摩擦力等于零. C.B和地面间的静摩擦力等于零,B和A间的静摩擦力也等于零. D.B和地面间的静摩擦力等于零,B和A间的静摩擦力等于F. 2、如图所示,重力G=20N的物体,在动摩擦因数为0.1的水平面上向左运动, 同时受到大小为10N的,方向向右的水平力F的作用,则物体所受摩擦力大 小和方向是( ) A.2N,水平向左B.2N,水平向右C.10N,水平向左D.12N,水平向右 3、水平地面上的物体在水平方向受到一个拉力F和地面对它的摩擦力f的作用。在 物体处于静止状态的条件下,下面说法中正确的是:() A.当F增大时,f也随之增大B.当F增大时,f保持不变 C.F与f是一对作用力与反作用力D.F与f合力为零 4、木块A、B分别重50 N和60 N,它们与水平地面之间的动摩擦因数均为0.25;夹在A、B之间的轻弹簧被压缩了2cm,弹簧的劲度系数为400N/m.系统置于水平地面上静止不动。现用F=1 N的水平拉力作用在木块B上.如图所示.力F作用后( ) A.木块A所受摩擦力大小是12.5 N B.木块A所受摩擦力大小是11.5 N C.木块B所受摩擦力大小是9 N D.木块B所受摩擦力大小是7 N 5、如图所示,质量为m的木箱在与水平面成θ的推力F作用下,在水平地面上滑行,已知 木箱与地面间的动摩擦因数为μ,那物体受到的滑动摩擦力大小为() A.μmg B.μ (mg+F sinθ) C.F cosθD.μ(mg+F cosθ) 6、如图所示,质量为m的物体置于水平地面上,受到一个与水平面方向成α角的拉力F 作用,恰好做匀速直线运动,则物体与水平面间的动摩擦因数为() A.F cosα/(mg-F sinα)B.F sinα/(mg-F sinα) C.(mg-F sinα)/F cosαD.F cosα/mg 7、如图所示,物体A、B的质量均为m,A、B之间以及B与水平地面之间的动摩擦系数均为μ水平拉力F 拉着B物体水平向左匀速运动(A未脱离物体B的上表面)F的大小应为( ) A.2μmg B.3μmg C.4μmg D.5μmg 8、如图所示物体在水平力F作用下静止在斜面上,若稍许增大水平力F, 而物体仍能保持静止时() A..斜面对物体的静摩擦力及支持力一定增大 B.斜面对物体的静摩擦力及支持力都不一定增大 C.斜面对物体的静摩擦力一定增大,支持力不一定增大 D.斜面对物体的静摩擦力不一定增大,支持力一定增大 9、重为10N的木块放在倾角为θ=300的斜面上受到一个F=2N的水平恒力的作用做匀速直线运动,(F 的方向与斜面平行)则木块与斜面的滑动摩擦系数为() A.2/10 B.0.6 C.3/3 D.无法确定 10、用大小相等、方向相反,并在同一水平面上的力F挤压相同的木板,木板中间夹着两块相同的砖,砖和木板均保持静止,则() A.两砖间摩擦力为零B.F越大,板与砖之间的摩擦力就越大 C.板砖之间的摩擦力大于砖的重力D.两砖之间没有相互挤压的力

材基第三章习题及答案

第三章 作业与习题的解答 一、作业: 2、纯铁的空位形成能为105 kJ/mol 。将纯铁加热到850℃后激冷至室温(20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。(e 31.8=6.8X1013) 6、如图2-56,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。 (1)分析该位错环各段位错的结构类型。 (2)求各段位错线所受的力的大小及方向。 (3)在τ的作用下,该位错环将如何运动? (4)在τ的作用下,若使此位错环在晶体中稳定 不动,其最小半径应为多大? 解: (2)位错线受力方向如图,位于位错线所在平面,且于位错垂 直。 (3)右手法则(P95):(注意:大拇指向下,P90图3.8中位错 环ABCD 的箭头应是向内,即是位错环压缩)向外扩展(环扩大)。 如果上下分切应力方向转动180度,则位错环压缩。 (4) P103-104: 2sin 2d ?τd T s b = θRd s =d ; 2/sin 2 θ?d d = ∴ τ ττkGb b kGb b T R ===2 注:k 取0.5时,为P104中式3.19得出的结果。 7、在面心立方晶体中,把两个平行且同号的单位螺型位错从相距100nm 推进到3nm 时需要用多少功(已知晶体点阵常数a=0.3nm,G=7﹡1010Pa )? (31002100 32ln 22ππGb dr w r Gb ==?; 1.8X10-9J ) 8、在简单立方晶体的(100)面上有一个b=a[001]的螺位错。如果

它(a)被(001)面上b=a[010]的刃位错交割。(b)被(001)面上b=a[100]的螺位错交割,试问在这两种情形下每个位错上会形成割阶还是弯折? ((a ):见P98图3.21, NN ′在(100)面内,为扭折,刃型位错;(b)图3.22,NN ′垂直(100)面,为割阶,刃型位错) 9、一个 ]101[2- =a b 的螺位错在(111)面上运动。若在运动过程中遇 到障碍物而发生交滑移,请指出交滑移系统。 对FCC 结构:(1 1 -1)或写为(-1 -1 1) 10、面心立方晶体中,在(111)面上的单位位错]101[2-=a b ,在(111) 面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出: γπ242 b G d s ≈ 应为 γπ242a G d s ≈ (G 为切变模量,γ为层错能) (P116式3.33,两个矢量相乘的积=|b1|˙|b2|˙cos(两矢量夹角) 11、在面心立方晶体中,(111)晶面和)(- 111晶面上分别形成一个扩展位错: (111)晶面:]211[6]112[6]110[2----+→a a a =A+B )111(- 晶面:]211[6]211[6]011[2a a a +→-=C+D 两个扩展位错在各自晶面上滑动时,其领先位错相遇发生位错反应,求出新位错的柏氏矢量;用图解说明上述位错反应过程;分析新位错的组

表上作业法

第三章 运输问题 主要内容 运输问题的模型、算法 讲授重点 运输问题的模型、算法 讲授方式 讲授式、启发式 第一节 运输问题及其数学模型 一、运输问题的数学模型 设某种物品有m 个产地A 1,A 2,…,A m ,各产地的产量分别是a 1,a 2,…,a m ;有n 个销地B l ,B 2,…,B n ,各销地的销量分别为b l ,b 2,…,b n 。假定从产地A i (i =1,2,…,m)向销地B j (j =1,2,…,n)运输单位物品的运价是c ij ,问怎样调运这些物品才能使总运费最小? 这是由多个产地供应多个销地的单品种物品运输问题。为直观清楚起见,可列出该出该问题的运输表,如表3-1所示。 设 ij x 表示从A i 运往B j 的物品数量, ij c 表示从A i 运往B j 的单位物品的运价。则对于平 衡运输问题( ∑∑=== n j j m i i b a 1 1),其数学模型的一般形式可表示为: ∑∑=== n j m i ij ij x c s 11 min ()()()????? ???? ==≥====∑∑==n j m i x n j b x m i a x ij j m i ij i n j ij ,2,1;,2,10 ,,2,1,,2,11 1 (3.1) 二、运输问题数学模型的特点 对于平衡运输问题( ∑∑=== n j j m i i b a 1 1 ),可以证明其有如下两个特点: (1)矩阵A 的秩R(A)=m+n-1。 (2)问题必有最优解,而且当j i b a ,皆为整数时,其最优解必为整数最优解。 第二节 表上作业法求解运输问题 一、给出运输问题的初始可行解(初始调运方案) 1、最小元素法 解题步骤: ⑴在运价表中找到最小运价c 1k ; ⑵将的A L 产品给B k ;

(word完整版)初中物理受力分析练习题

1.试分析下图中物体A是否受弹力作用,若受弹力,试指出其施力物体. 2.体育课上一学生在水平篮球场上拍篮球,如下图所示,试分析篮球与地面作用时,地面给篮球的弹力的方向. 3、如图所示,物体A在竖直向上的拉力F的作用下能静止在斜面上,关于A受力的个数, 下列说法中正确的是 A.A一定受两个力作用 B.A一定受四个力作用 C.A可能受三个力作用 D.A受两个力或者四个力作用 4. 如右图所示,两人分别用100 N的力拉弹簧秤的秤钩和拉环,则弹簧秤读数为( ) A.50 N B.0 N C.100 N D.200 N 5. 关于弹簧的劲度系数的说法中正确的是 A. 因胡克定律可写成k = f x , 由此可知弹力越大, 劲度系数越大 B. 在弹性限度内, 弹簧拉长一些后, 劲度系数变小 C. 在弹性限度内, 无论弹簧拉长或缩短劲度系数都不变 D. 将弹簧截去一段后, 剩下的部分弹簧的劲度系数比原来大 6. 如图所示, 光滑的硬杆固定, 杆上穿一个小球. 轻绳一端系在小球上, 在另一端用力F 竖直向下拉, 小球沿杆向下运动, 则 A. 杆对小球的弹力垂直于杆斜向上 B. 小球只受重力和杆对小球的弹力作用 C. 小球受重力、杆对小球的弹力和绳的拉力作用 7、三个质量均为1kg的相同木块a、b、c和两个劲度均为500N/m的 相同轻弹簧p、q用轻绳连接如图,其中a放在光滑水平桌面上。 开始时p弹簧处于原长,木块都处于静止。现用水平力缓慢地向左拉p弹簧的左端,直到c木块刚好离开水平地面为止,取 10m/s2。该过程p弹簧的左端向左移动的距离是__________ F θ

8.关于合力的下列说法,正确的是 [ ] A.几个力的合力就是这几个力的代数和 B.几个力的合力一定大于这几个力中的任何一个力 C.几个力的合力可能小于这几个力中最小的力 D.几个力的合力可能大于这几个力中最大的力 9.5N和7N的两个力的合力可能是 [ ] A.3N B.13N C.2.5N D.10N 10.用两根绳子吊起—重物,使重物保持静止,若逐渐增大两绳之间的夹角,则两绳对重物的拉力的合力变化情况是[ ] A.不变 B.减小C.增大 D.无法确定 11.有三个力,F1=2N,F2=5N,F3=8N,则 [ ] A.F1可能是F2和F3的合力B.F2可能是F1和F3的合力 C.F3可能是F1和F2的合力D.上述说法都不对 12.三个共点力F1,F2,F3。其中F1=1N,方向正西,F2=1N,方向正北,若三力的合力是2N,方向正北,则F3应是 [ ] 13.重为20 N的物体除受到重力外,还受到另外两个力的作用而静止,已知它受到的其中一个外力F1=10 N,则另外一个外力F2的大小可能是( ) A.5 N B.8 N C.10 3 N D.20 N 14.如图3所示,六个力中相互间的夹角为60°,大小如图所示,则它们的合力大小和方向各如何? 15.如图4所示,物体受F1,F2和F3的作用,其中F3=10N,物体处于静止状态,则F1和F2的大小各为多少?

机械波习题及答案 (2)

. . 波的形式传播波的图象 认识机械波及其形成条件,理解机械波的概念,实质及特点,以及与机械振动的关系; 理解波的图像的含义,知道波的图像的横、纵坐标各表示的物理量.能在简谐波的图像中指出波长和质点振动的振幅,会画出某时刻波的图像 一、机械波 ⑴机械振动在介质中的传播形成机械波. ⑵机械波产生的条件:①波源,②介质. 二、机械波的分类 ⑴)横波:质点振动方向与波的传播方向垂直的波叫横波.横波有波峰和波谷. ⑵纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有疏部和密部. 三、机械波的特点 (1)机械波传播的是振动形式和能量,质点只在各自的平衡位置附近振动,并不随波迁移. ⑵介质中各质点的振动周期和频率都与波源的振动周期和频率相同 ⑶离波源近的质点带动离波源远的质点依次振动 ⑷所有质点开始振动的方向与波源开始振动的方向相同。 四、波长、波速和频率的关系 ⑴波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长. 振动在一个周期里在介质中传播的距离等于一个波长,对于横波:相邻的两个波峰或相邻的两个波谷之间的距离等于一个波长.对于纵波:相邻的两个密部中央或相邻的两个疏部中央之间的距离等于一个波长. ⑵波速:波的传播速率叫波速.机械波的传播速率只与介质有关,在同一种均匀介质中,波速是一个定值,与波源无关. ⑶频率:波的频率始终等于波源的振动频率. ⑷波长、波速和频率的关系:v=λf=λ/T 五、波动图像 波动图象是表示在波的传播方向上,介质中各个质点在同一时刻相对平衡位置的位移,当波源做简谐运动时,它在介质中形成简谐波,其波动图象为正弦或余弦曲线. 六、由波的图象可获取的信息 ⑴该时刻各质点的位移. ⑵质点振动的振幅A. ⑶波长. ⑷若知道波的传播方向,可判断各质点的运动方向.如图7-32-1所示,设波向 右传播,则1、4质 点沿-y方向运动;2、 3质点沿+y方向运 动. ⑸若知道该时 刻某质点的运动方 向,可判断波的传播 方向.如图7-32-1中若质点4向上运动,则可判定该波向左传播. ⑹若知波速v的大小。可求频率f或周期T,即f=1/T=v/λ. ⑺若知f或T,可求波速v,即v=λf=λ/T ⑻若知波速v的大小和方向,可画出后一时刻的波形图,波在均匀介质中做匀速运动,Δt时间后各质点的运动形式,沿波的传播方向平移Δx=vΔ t 有关机械波的内容近年经常在选择题中出现,尤其是波的图象以及波的多值解问题常常被考生忽略。 【例1】关于机械波,下列说法中正确的是( ) A.质点振动方向总是垂直于波的传播方向 B.简谐波沿长绳传播时,绳上相距半个波长的两质点的振动位移总是相同 C.任一振动质点每经过一个周期沿波的传播方向移动一个波长 D.在相隔一个周期的两个时刻,同一介质点的位移、速度和加速度总相同 【解析】波有纵波和横波两种,由于横波的质点振动方向总是与波的传播方向垂直,而纵波的质点振动方向与波的传播方向平行,所以选项A是错误的。 由于相距半个波长的两质点振动的位移大小相等,方向相反,所以选项B是错误的。 机械振动,并不沿着传播方向移动,所以选项C是错误的。 相隔一个周期的两个时刻,同一介质质点的振动状态总是相同的,所以选项D正确. 图7-32-1

材料力学第十一章习题选及其解答

11-2. 桥式起重机上悬挂一重量G=50kN 的重物,以匀速度v=1m/s 向前移动(在 图中移动的方向垂直于纸面)。若起重机突然停止移动,重物将象单摆一样向前摆动。若梁为No14工字钢,吊索截面面积A=5×10-4m 2,试问当惯性力为最大值时,梁及吊索内的最大应力增加多少? 解:(1)起重机突然停止时,吊索以初速v 作圆周运动,此时吊索轴力增量是 kN R v g G ma N n D 28.12 =?==Δ (2)吊索的应力增量是 MPa A N σD d 56.2== ΔΔ (3)梁内最大弯矩的增量是 l N M D ΔΔ4 1 = (4)查表得梁的抗弯截面系数 3610102m W -?= (5)梁内最大正应力的增量是 MPa W M σd 68.15'==ΔΔ 11-4. 轴上装一钢质圆盘,盘上有一圆孔。若轴与盘ω=40 1/s 的匀角速度转动, 试求轴内因这一圆孔引起的最大正应力。

解:(1)假设挖空圆盘和圆孔部分的质量分别是M 和m ,它们的质心距轴线的 距离分别为R 的r ,则有 mr MR = (2)挖空圆盘的惯性力是 kN ωr g V γωmr ωMR Ma F n n 64.10222=?= === 上式中钢的密度取 3/8.76m kN γ= (3)轴内的最大正应力增量是 MPa W l F W M σn d 5.1241max max ===Δ 11-5. 在直径为100mm 的轴上装有转动惯量I=0.5kN ?m ?s2的飞轮,轴的转速为 300r/min 。制动器开始作用后,在20转内将飞轮刹住,试求轴内最大剪应力。设在制动器作用前,轴已与驱动装置脱开,且轴承的磨擦力矩可以不计。 解:(1)飞轮作匀减速转动 2 2 20/25.120 /42.3130 s rad φ ωωεωs rad π n ωt t -=-=∴=== (2)惯性力距是 kNm εI m d 96.1=-= (3)轴在飞轮和制动器之间发生扭转变形 MPa d πT W T τm T t d 10163 max === ∴= 11-6. 钢轴AB 的直径为80mm ,轴上有一直径为80mm 钢质圆杆CD ,CD 垂直 于AB 。若AB 以匀角速度ω=40rad/s 转动。材料的许用应力[σ]=70MPa ,密度为7.8g/cm3。试校核AB 轴及CD 杆的强度。

相关文档
最新文档