悬臂梁桥分析与设计说明
悬臂梁桥分析与设计说明

悬臂梁桥分析与设计说明1. 概要本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。
墩为钢筋混凝土双柱桥墩,墩高15m。
(注:本例题并非实际工程,仅作为软件功能介绍的参考例题。
)在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。
通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法等。
阶段01--双悬臂阶段02--最大悬臂阶段03--边跨满堂施工阶段04--挂梁阶段05--收缩徐变图1. 分析模型桥梁概况及一般截面桥梁形式:三跨混凝土悬臂梁桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。
预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力截面形式如下图2. 跨中箱梁截面图3. 墩顶箱梁截面梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH=70构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算❑移动荷载适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD2. 设置操作环境打开新文件(新项目),以 ‘混凝土悬臂梁’ 为名保存(保存)。
结构设计知识:悬臂梁结构设计的基本原理与方法

结构设计知识:悬臂梁结构设计的基本原理与方法悬臂梁是一种常见的结构,其基本原理是支点只有一个,而另一端则悬空。
这种结构常用于桥梁和建筑物的梁式结构。
在设计悬臂梁时,应重视结构强度、稳定性和刚度等问题。
本文将从这些方面入手,探讨悬臂梁结构设计的基本原理和方法。
一、悬臂梁的强度设计强度是悬臂梁设计中最重要的问题之一。
在设计中,需要考虑悬臂梁的截面形状、材料和支点位置等因素。
若悬臂梁截面形状不合理,可能会导致局部应力过大,从而引起结构破坏。
因此,在设计中应尽量选择合适的截面形状,如矩形或圆形等,避免出现尖锐的边角。
另外,材料的选择也非常重要。
不同材料的强度和刚度有差异,通常常用的材料有钢、混凝土和木材等。
在选择材料时,应考虑材料的强度、耐用性和成本等因素。
同时,还需要对材料进行强度检验,确保其符合设计要求。
支点位置是悬臂梁设计的另一个重要因素。
支点的位置和方式会直接影响悬臂梁的强度和稳定性。
因此,在设计中需要仔细考虑支点的位置和设置方式。
通常情况下,支点的位置应该选择在横向中心线位置,避免偏离中心线而导致结构扭曲或损坏。
另外,支点的设置方式也是需要考虑的因素,如采用承板式支座或滑动支座等。
这些支座的选择应该根据悬臂梁的实际情况进行选择。
二、悬臂梁的稳定性设计稳定性是悬臂梁设计的另一重要问题。
在设计中,需要考虑悬臂梁的整体结构稳定性和支点稳定性两个方面。
整体结构稳定性是指悬臂梁在承受荷载时整体结构不发生倾覆或破坏。
在设计中,需要对悬臂梁做出合理的结构设计,例如采用合适的垂直支撑和斜杆支撑等结构措施,以提高悬臂梁的整体稳定性。
支点稳定性是指悬臂梁支点的稳定性,其主要是根据支点的类型和尺寸来确定。
支点的设计应当遵循以下原则:首先,支点必须有足够的刚度和强度,能够承受悬臂梁上的全部荷载;其次,支点应该与悬臂梁之间形成良好的摩擦力,并能够在受到荷载时保持稳定不变。
三、悬臂梁的刚度设计刚度是悬臂梁设计中需要考虑的另一个重要问题。
土木工程中的悬臂梁设计

土木工程中的悬臂梁设计悬臂梁作为土木工程中重要的结构元素之一,承载着重要的功能和责任。
它在桥梁、高楼大厦等建筑物的建设中起到了至关重要的作用。
悬臂梁的设计涉及多个方面,包括力学原理、材料性能、结构安全等等。
本文将从多个角度对土木工程中悬臂梁设计进行探讨。
首先,悬臂梁设计需要充分考虑力学原理。
力学是土木工程中不可或缺的重要学科,它为悬臂梁的设计提供了理论指导。
在设计中,需要考虑到悬臂梁所受到的力的大小和方向,以及对这些力的响应和抵抗能力。
只有深入理解和有效应用力学原理,才能确保悬臂梁的设计达到预期效果。
其次,材料性能是悬臂梁设计中不可忽视的因素。
悬臂梁需要选择合适的材料,以满足对结构强度、耐久性等性能的要求。
常见的材料包括钢、混凝土和木材等。
不同材料在承重能力、耐腐蚀性、可塑性等方面存在差异,需要根据具体情况进行选择。
此外,材料的质量和施工工艺也对悬臂梁的设计和使用起到重要影响。
另外,结构安全是悬臂梁设计的核心考虑因素之一。
悬臂梁作为支撑和承载其他结构的重要组成部分,必须具备足够的结构安全性。
在设计中,需要考虑地震、风力、温度等外部因素对悬臂梁的影响。
通过合理的结构设计和施工工艺,确保悬臂梁具备足够的抗震和抗风能力,以及对温度变化的适应能力。
只有保证结构的安全性,才能保障建筑物的稳定性和可靠性。
此外,悬臂梁设计还需要考虑使用寿命和维护保养。
悬臂梁作为长期使用的结构元素,需要具备较长的使用寿命。
因此,在设计中需要考虑材料的耐久性、防腐蚀措施等方面。
同时,悬臂梁的维护保养也是保障其长期使用的重要环节。
定期检查、修复和加固工作能够延长悬臂梁的使用寿命,确保其在使用过程中不出现问题。
最后,悬臂梁设计需要充分考虑美学和工程实用性的结合。
作为建筑物的一部分,悬臂梁需要考虑其外观与建筑整体风格的协调,以满足美学要求。
同时,在实际使用中,悬臂梁需要满足工程的实用性要求,如方便施工、易于维护等。
因此,在设计中需要找到美学与实用性的平衡点,使悬臂梁既具有良好的外观效果,也能满足实际使用的需要。
悬臂梁桥

悬臂浇筑施工连续梁桥一、悬浇梁体分段1、墩顶梁段A(0号段)(1)长度一般为5m~10m;(但也不一定,这主要根据具体情况而定,比如韩家店1桥号桥主桥为122+210+122m的连续刚构体系,为了刚开始能放两个挂篮对称施工,0号块有15m。
增江大桥0号块仅4 m。
)(2)施工托架①在混凝土浇筑以前,应对托架进行试压;检查托架的承载力和稳定性,消除永久变形,测定弹性变形,为底模高程的调整提供依据。
2、由0号段两侧对称分段悬臂浇筑部分B(1)长度一般为2.5m~5m,也有个别跨度大的桥梁的分段为2.5m、3.5m、4.5m;(2)一般一个梁段的施工周期为6~10天;(3)根据计算经验,梁段的多少直接影响结构配束计算,在不影响工期的前提下,适当增加梁段数,十分有利于纵向预应力钢束配置,以避免因梁段不足采用大吨位预应力钢束引起张拉端局部应力过大。
同时也使全桥截面受力状态均衡,边缘应力储备适当。
3、边孔在支架上浇筑部分C(1)长度一般为2~3个悬臂浇筑分段长;4、合拢段D合拢段的施工通常是悬臂浇筑施技术中的重要工序。
(1)长度一般为2m~3m,一般2m用得最多;(2)合拢方法;(3)不宜过小;二、挂篮使用经验1、XX桥(1)挂篮在施工过程中的布置一般为对称的,挂篮单方向的长度一般比所划分悬浇的梁段长度长0.5m~1m;举个例子,悬浇梁段的划分长度为4.5m,则挂篮单方向的长度可取为6m,两支点间的距离可取为5m。
(2)挂篮重量与最重梁段的比例为0.45。
2、建德洋安大桥(主跨120m连续梁桥)(1)用的是菱形挂篮。
(2)计算经验:挂篮的前后吊点假设为前面已浇梁段的两个端面点即可,对整个结构影响不大的3、XXXX主桥(1)挂篮的前后吊点假设为前面已浇梁段的两个端面点(2)挂篮重量取为800kN,以临时荷载考虑三、施工挂篮1、按照构造形式可分为桁架式,斜拉式,型钢式,混合式;2、平行桁架式挂篮(1)结构特点:它的上部结构一般为一等高桁架,其受力特点是:底模平台及侧模支架所承荷载均由前后吊杆垂直传至桁架节点和箱梁底板上,故又称吊篮式结构,桁架在梁顶用压重或锚固或二者兼之来解决倾覆稳定问题,桁架本身为受弯结构。
悬臂梁桥的设计与计算

我国的大型 T 构桥
序 号 1 2 3 4 5 6 7 8 9 10 桥名 重庆长江大桥 泸州长江大桥 葛州坝三江桥 乌龙江桥 柳州桥 佳木斯松花江桥 闽江新洪山桥 青铜峡黄河公路桥 石嘴山黄河公路桥 安徽五河淮河桥 跨径(m ) L Lb 174 69. 5 170 65 158 144 55. 5 120 47. 5 120 45 110 42. 25 90 90 90 30. 4 Lg 35 40 33 25 30 25 悬臂主梁尺寸( m ) H 1 H 2 底缘曲线 11. 0 3. 2 三次曲线 10. 0 2. 5 8. 5 7. 5 10. 1 2. 0 2. 0 9. 2 园弧线 园弧线 园弧线
第四章 悬臂梁桥的设计与计算
第一节 悬臂梁桥的体系 与构造特点
一、体系特点 • 由于支点负弯矩的卸载作用,跨中正弯 矩大大减小 • 由于弯矩图面积的减小,跨越能力增大 • 体系形式:双悬臂、单悬臂、双悬臂加 挂孔、 T 形刚构 • 缺点行车条件不好
双悬臂梁桥
均布荷载q
单悬臂梁桥
均布荷载q
多跨悬臂梁桥
4 、腹板及顶、底板厚度 • 顶板——满足横向抗弯及纵向抗压要求 一般采用等厚度,主要由横向抗 弯控制 • 腹板——主要承担剪应力和主拉应力 一般采用变厚度腹板,靠近悬臂 端处受构造要求控制,靠近支点 处受主拉应力控制,需加厚。
多跨连续梁桥
T形刚构桥
连续刚构桥
二、构造特点
1 、跨径布置 • 各跨跨径比 • 悬臂长与跨径比
具体考虑因素 • 材料
– 钢筋混凝土——悬臂较短,减小负弯矩 – 预应力混凝土——悬臂可适当加长
• 施工方法
– 纵向分缝——必须考虑锚孔的吊装重量 – 横向分缝——可适当加长悬臂长度
悬臂和连续体系梁桥课件

双悬臂梁桥 均布荷载q
PPT学习交流
3
3. 悬臂梁桥设计与构造:
静定体系; 跨中正弯矩减小→减小跨度内主梁的高度→降低钢筋混凝土数量和结构自重→恒载 内力的减小。 构造特点: (1)截面形式 悬臂部分(锚孔):吊装时采用肋梁;悬臂浇注时采用箱梁; 挂孔:一般采用肋梁,便于吊装; 一般采用变高度梁,底缘曲线采用抛物线、正弦曲线、圆弧、折线。 (2)跨径布置和梁高尺寸
PPT学习交流
10
2.T形刚构的若干布置形式:
PPT学习交流
11
3.T形刚构的构造:
T形刚构的布置应尽可能对称,以避免T形刚构的桥墩承受不平衡弯矩; 全桥的T形单元尺寸尽可能相同, 以简化设计与施工; 钢筋混凝土T构桥,挂梁的经济长度一般在跨径的0.5~0.7范围内; 预应力混凝土T构,挂梁经济长度一般在跨径的0.22~0.5范围内; 主孔跨径大时,取较小比值,并应使挂梁跨径不超过35~40m,以利安装;
PPT学习交流
9
4.1.2 T形刚构桥
1. 分类及力学特点:
(1)带挂梁的T构桥型
静定结构; 施工无需体系转换; 省掉设置大吨位支座装置、更换支座的麻烦; 当挂梁与两岸引桥的简支跨尺寸和构造相同时,更能加快全桥施工进度, 以获得良好经济效益。
(2)带铰的T构桥型静定结构;
超静定结构;
竖向荷载时,相邻的T形刚构结构通过剪力铰而共同受力。
PPT学习交流
8
5. 悬臂梁桥优缺点及应用:
优点:悬臂梁桥在施工阶段和成桥运营阶段两者受力状态是一致的, 非常适宜于悬臂施工方法。
缺点:(1)裂缝→雨水侵入梁体;
(2)挂梁与悬臂端衔接处产生不利行车的折点。
应用范围:国内箱形薄壁钢筋混凝土悬臂梁桥最大跨径为55m,国外一 般在70~80m以下;预应力混凝土悬臂梁桥一般在100m以下,世界最大的 跨径为150m。
桥梁工程第7章 悬臂梁桥、连续梁桥和连续刚构桥

悬臂梁桥还需在跨间增加悬臂和挂梁间的牛腿及伸缩装臵, 行车 条本港大桥( 主跨 510 m)
6
目前, 国内采用箱形截面的钢筋混凝土悬臂梁桥最大跨径为 55 m, 常用跨径在30 m以内, 国外一般在 70 ~80 m。 预应力混凝土悬臂 梁桥国内常用跨径为 30 ~50 m, 国外最大跨径为 150 m。 三孔预应 力混凝土悬臂梁桥, 在采用平衡悬臂法装配施工时, 中孔也可不用 挂梁而仅在跨中用剪力铰相连, 这种带剪力铰的悬臂体系为一次 超静定结构。 苏联曾建造过一座中跨跨径为 128 m 的悬臂梁桥。 除钢筋混凝土和预应力混凝土悬臂梁桥外, 还有钢悬臂梁桥, 如重庆嘉陵江大桥, 日本港大桥 ( 图 7. 2 ) , 美 国的康摩多 巴雷桥
底板和顶板厚度提供了构造上的保证。 腹板与顶、底板连接处的
梗腋常用布臵形式参见本章第二节连续梁桥有关内容。 宽桥宜采用单箱双室截面, 其顶板、底板、腹板厚度可参照单 箱单室截面的规定取用, 但中间腹板厚度可以比两侧腹板厚度小 5 cm。
悬臂梁桥的设计与计算PPT课件

Q 0 R
M 0
Re
H
h 2
27
2、45°斜截面的抗拉验算(按轴心受拉构件)
Zj
Rj cos45
Z j1R g( A gw A gH c4 o 5 s A gc v 4 o)5 s s 28
3、最弱斜截面验算(按偏心受拉构件)
判别标准: 边缘应力最大
A
b1
h cos
W
1 6
•
b1
23
中跨——锚梁与挂孔刚度相近时 悬臂与挂孔联合等代为跨度2l2+l3的简支梁
24
第三节 牛腿计算
一、计算截面宽度
25
二、截面内力
N Rs in H cos Q Rcos H s in
M
Re h tg 2来自H h 2 26
三、验算截面内力 1、竖直截面(按抗弯构件验算)
N 0 H
• 腹板——下弯的纵向钢筋 需要时布置竖向预应力钢筋
16
6、牛腿 • 截面小、受力复杂
17
第二节 悬臂梁桥的计算要点
一、恒载内力 • 静定结构 • 变截面 • 手算可采用影响线加栽 • 施工中的内力状态可能出现控制应力
18
二、活载内力
1、纵向——某些截面可能出现正负最不利 弯矩
2、横向
• 箱梁——专门分析
9 石嘴山黄河公路桥 90
10
安徽五河淮河桥
90
30.4
29 .2
5.0
1.9
半立方抛 物线
10
2、截面形式 • 悬臂部分(锚孔)——吊装时采用肋梁
悬臂施工时采用箱梁 • 挂孔——一般采用肋梁,便于吊装
11
3、梁高 • 一般采用变高度梁 • 支点梁高/跨中梁高 = 2~2.5 优点:增加支点抗弯能力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬臂梁桥分析与设计说明1. 概要本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。
墩为钢筋混凝土双柱桥墩,墩高15m。
(注:本例题并非实际工程,仅作为软件功能介绍的参考例题。
)在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。
通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法等。
阶段01--双悬臂阶段02--最大悬臂阶段03--边跨满堂施工阶段04--挂梁阶段05--收缩徐变图1. 分析模型桥梁概况及一般截面桥梁形式:三跨混凝土悬臂梁桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。
预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力截面形式如下图2. 跨中箱梁截面图3. 墩顶箱梁截面梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH=70构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算❑移动荷载适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD2. 设置操作环境打开新文件(新项目),以 ‘混凝土悬臂梁’ 为名保存(保存)。
将单位体系设置为 …KN ‟和…m ‟。
该单位体系可根据输入数据的种类任意转换。
文件 / 新项目文件 / 保存 (混凝土悬臂梁 )工具 / 单位体系 长度> m ; 力>KN图4. 设置单位体系单位体系还可以通过点击画面下端状态条的单位选择键()来进行转换。
3. 定义材料和截面定义材料下面定义模型中所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性/ 材料类型>混凝土 ; 规范> JTG04(RC )数据库> C50 名称〉主梁 ↵ 类型>混凝土 ; 规范> JTG04(RC ) 数据库> C40 名称〉桥墩 ↵名称(Strand1860 ) ; 类型>钢材 ; 规范> JTG04(S ) 数据库>图5. 定义材料对话框定义截面预应力混凝土连续梁通常采用箱梁截面,可以使用截面数据库中的设计截面来定义。
首先定义控制位置的一般截面,然后再使用一般截面定义变截面。
(注:因为对于主梁要进行PSC 设计和RC 设计,因此主梁截面必须用设计截面来定义,而墩截面必须用数据库/用户截面来定义。
)同时定义多种材料特性时,使用键可以连续输入。
模型 /材料和截面特性/ 截面/添加截面类型>设计截面> 单箱单室 截面号 ( 1 ) ; 名称 (跨中)图6. 定义跨中位置处截面图7. 定义支座位置处截面根据已定义的等截面定义变截面模型 /材料和截面特性/ 截面/添加截面类型>变截面> 单箱单室截面号 ( 3 ) ; 名称 (跨中-支座) 偏心>中-上部截面I 、J 端通过导入已经定义的跨中截面和支座截面来定义。
图8. 变截面“跨中-支座”定义对话框图9. 变截面“支座-跨中”定义对话框图10 定义桥墩截面挂梁截面与跨中截面形式一样,可由跨中截面复制生成。
在材料和截面列表中选择跨中截面,然后点击截面列表右侧的复制命令,生成新的截面,然后再对新生成的截面修改截面名称即可。
图11 复制生成挂梁截面最终全桥截面数据如下图所示——图12. 截面列表定义材料时间依存特性并连接施工过程需要考虑主梁和桥墩的收缩徐变特性,为了考虑徐变、收缩,下面定义混凝土材料的时间依存特性。
材料的时间依存特性参照以下数据来输入。
标号强度 : f cu,k = 50000 KN/m 2 (主梁),f cu,k = 40000 KN/m 2(桥墩) 相对湿度 : RH = 70 %理论厚度 : 1m(采用程序自动计算) 拆模时间 : 3天模型 /材料和截面特性/ 时间依存性材料(徐变和收缩)名称 (主梁收缩徐变) ; 设计标准>China(JTG D62-2004) 标号强度 (50000)环境年平均相对湿度(40 ~ 99) (70) 构件的理论厚度 (1) 水泥种类系数(Bsc):5 开始收缩时的混凝土材龄 (3) ↵名称 (桥墩收缩徐变) ; 设计标准>China(JTG D62-2004) 标号抗压强度 (40000)环境年平均相对湿度(40 ~ 99) (70) 构件的理论厚度 (1) 水泥种类系数(Bsc):5开始收缩时的混凝土材龄 (3) ↵截面形状比较复杂时,可使用模型>材料和截面特性值>修改单元材料时间依存特性 的功能来输入h 值。
图13. 定义主梁的徐变和收缩特性图14. 定义桥墩的徐变和收缩特性参照图15将一般材料特性和时间依存材料特性相连接。
即将时间依存材料特性赋予相应的材料。
模型/ 材料和截面特性/ 时间依存材料连接时间依存材料类型>徐变和收缩>主梁徐变和收缩选择指定的材料>材料>1:主梁选择的材料时间依存材料类型>徐变和收缩>桥墩徐变和收缩选择指定的材料>材料>2:桥墩选择的材料图15. 连接时间依存材料特性4. 建立结构模型利用建立节点和扩展单元的功能来建立单元。
模型>节点>建立节点坐标(0,0,0)模型>单元>扩展单元全选扩展类型>节点 线单元单元类型>梁单元; 材料>1:主梁; 截面> 1: 跨中生成形式>复制和移动复制和移动>等间距>dx,dy,dz>(1, 0, 0)复制次数>(110)图16. 建立几何模型根据桥梁所处位置给各桥梁段赋予实际的截面信息。
参照前面的图1可以看到,本桥在边跨的端部为等截面,中跨的挂梁部分为等截面,其他主梁为变截面,各截面对应的单元编号如下表所示——以修改截面由低变高梁段,即“跨中-支座” 梁段截面信息为例,首先通过窗口选择单元14~29以及单元64~79,或者直接在单元选择框内输入单元编号“14to29 64to79”回车,则模型窗口中显示“14to29 64to79”单元被选中,然后在树形菜单中选择“跨中-支座”截面,按下鼠标左键不放,拖放至模型窗口,松开鼠标左键,则原模型窗口中被选择的单元的截面信息被重新赋予为“跨中-支座”截面,如下图所示——图17. 选择要修改截面信息的单元图18. 修改截面信息后单元选择框多种选择和解除选择方式对于变截面构件需要定义每个单元适用的变截面信息,而对于一组变化规律相同的单元,使用变截面组功能更快更方便的定义一组变截面单元修改截面信息后会发现对应变截面梁段截面变化不连续,因此需要对变截面梁段定义变截面组.模型/材料和截面特性/变截面组组名称>跨中-支座单元列表>14to29 64to79(可以直接输入单元编号,也可以在模型窗口中选择单元)截面形状的变化z轴>多项式(1.6),对称平面,i,距离:0my轴>线性添加↵则该段变截面梁段的形状改变如下图所示——图19. 定义变截面组后结构显示形状按照如上所述方法,修改中墩墩顶单元截面信息、截面由高变低(即截面“支座-跨中”梁段截面信息及变截面组信息),其中“支座-跨中”梁段的变截面组信息参考如下:模型/材料和截面特性/变截面组组名称> 支座-跨中单元列表>32to47 82to97截面形状的变化z轴>多项式(1.6),对称平面,j,距离:0my轴>线性添加↵建立桥墩单元选择墩顶处对应的主梁节点31和81,通过建立墩顶节点和扩展单元的功能建立桥墩单元。
模型/节点/复制和移动形式>复制复制和移动>等间距间距:(0,0,-3.5)复制次数:1次 适用↵图20. 复制墩顶主梁节点选择复制生成的主梁底部节点,沿桥横向复制生成墩顶节点视图>选择新近建立的个体(或者直接在窗口选择复制生成的节点112,113) 模型/节点/复制和移动形式>复制复制和移动>任意间距 方向:y 间距:(2,-4) 适用↵注意输入间距时,中间的逗号不能用中文逗号,必须使用英文逗号。
图21. 复制生成墩顶节点选择新建项目,节点114to117模型/单元/扩展扩展类形>节点-〉线单元单元属性>梁单元材料>2:桥墩截面>5:矩形桥墩复制和移动>等间距(0,0,-1) 复制次数>15适用图22. 扩展生成桥墩修改单元的理论厚度主梁和桥墩建立完成后,就可以通过程序自动计算每个单元的构件理论厚度——模型/材料和截面特性/修改单元的材料时间依存特性选项>添加/替换单元依存材料特性>构件的理论厚度自动计算(开)规范>中国标准公式为:a( 0.5 )全选适用图23. 修改单元理论厚度定义结构组、边界组和荷载组为了进行施工阶段分析,将在各施工阶段(construction stage)所要激活和钝化的单元、边界条件、荷载定义为组,并利用组来定义施工阶段。