小学数学四年级上学期思维训练卷
小学四年级上册数学思维训练14题(附答案),能力培优全国通用

小学四年级数学思维练习14题〔附答案〕小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟, 乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛, 赶一头牛过河.【分析】要使过河时间最少,应抓住以下两点:〔1〕同时过河的两头牛过河时间差要尽可能小〔2〕过河后应骑用时最少的牛回来.解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1 = 3分钟然后骑在丙牛背上赶丁牛过河后, 再骑乙牛返回,用时6 + 2 = 8分钟最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟.总共用时〔2+1〕+ 〔6+ 2〕+ 2= 13分钟.一张数学试卷,只有25道选择题.做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分,假设小明得了78分,那么他做对了多少题,做错多少题,没做多少题答案与解析:答案:做对20道题,做错2题,没做的3题解析:78+0 19余二,说明他至少做对了20道题,由于如果只做对19道题的话至多得76分.那么他能做对21题吗设他做对21题,其他全做错,得21X-4 = 80分,大于78分.所以他只能做对20道题,20X080,得了80分,实际上得了78分, 所以还得做错两道,既然剩下5道题,错了2道,那么有3道题没做.有一牧场,养牛27头,6天把草吃尽;养牛23头,9天把草吃尽.如果养牛21头,那么几天能把牧场上的草吃尽呢并且牧场上的草是不断生长的.〞答案:一般解法:把一头牛一天所吃的牧草看作1,那么就有:⑴27头牛6天所吃的牧草为:27X^162 〔这162包括牧场原有的草和6天新长的草.〕〔2〕23头牛9天所吃的牧草为:23X^207 〔这207包括牧场原有的草和9天新长的草.〕〔3〕1 天新长的草为:〔207—162〕 +〔96〕=15〔4〕牧场上原有的草为:27X^15X^72⑸每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72+〔2 J 15〕 = 72+a12〔天〕所以养21头牛,12天才能把牧场上的草吃尽.规定运算终〞为a※b=a+2b-2.计算:〔8※7〕派6 解析:有括号的先算括号,根据题意,8派7=8+2 X 7-2=2020派6=20+2乂6-2=30甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍【解析】解选题的关键是找出哪个量是变量,哪个量是不变量.从条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲,乙两班图书总和是不变的量. 最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍,依据耨和倍问题的方法,先求出乙班现有图书多少本.再与原有图书本教相比拟,可以求出甲班给乙班多少本书〔见下列图〕.甲、乙两班共有图书的本数是;30 I 120=150 〔本〕甲班给乙班假设干本国书后.甲' 二两班共有的僖数是:2+1 = 3 〔倍〕乙班现有的图书本数是:150-3=50 C本〕甲班给乙班图书本数是:50-30=20 〔本〕综合其式:〔30+120〕彳〔2+1〕 =50 〔本〕50-30=20 〔本〕验算:〔120-20〕+ 〔30+20〕=2〔倍〕〔120-20〕+〔30+20〕=150 〔本〕警:甲班给乙班20本出书后,甲班图书是乙班图书的2倍.【答案】甲班给乙班20本桌子上有3张红卡片,2张黄卡片,每张卡片都不相同.如果将它们横着排成一排,同种颜色的卡片不分开,一共有〔〕种排法 .I答案】24【嘱桁】♦张红卡片存T料摞法.3折苗卡片有工冲俳法,卸前色的卡片方押排法.所以共有盟.,1; I; - 7卅不同的排法小明将连续偶数2、4、6、8、10、12、14、16、••逐个相加,得结果2021.验算时发现漏加了一个数,那么,这个漏加的数是〔〕【答案】58【解析】2+4+6+8+• •…+90=2070 2070-2021=58.计算:28+208+2021+20008=()【答案】22252【分析】28+208+2021+20008=(20+8) + (200+8) + (2000+8) + (20000+8) =20+200+2000+20000+8 X 4=22252被除数是214,除数是17,余数是10,商是.【分析】求商,根据:商=〔被除数-余数〕除数,代入数据解答即可.【解答】解:〔214—10〕 +17 = 204+ 17答:商是12.【答案】12.脱式计算.248 + 2+2=(34+14) X63=脱式计算:248 + 2+2(34+14) X63【分析】①从左往右依次计算除法;②先算小括号的加法,再算乘法.【解答】解:①248+ 2 + 2= 124+ 2=62②(34+14) X 63= 48X63= 3024【点评】此题考查整数四那么混合运算顺序, 分析数据找到正确的计算方法.一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量.一只小猪的重量等于几只鸭的重量【答案】:见解析【解析】:由于3只鸡的重量等于4只鸭的重量,所以6只鸡的重量等于8只鸭的重量,又由于一只小猪的重量等于6只鸡的重量,所以一只小猪的重量等于8只鸭的重量.有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24 头牛,那么6天吃完牧草,如果放牧21头牛,那么8天吃完牧草,假设每头牛吃草的量是相等的.(1)如果放牧16头牛,几天可以吃完牧草(2)要使牧草永远吃不完,最多可放多少头牛解答:1)草的生长速度:(21 乂 8-24 X 6) + (8-6衿12(原有草量:21X8-12X8=72.16 头牛可吃:72+(16-12)=18()2)要使牧草永远吃不完,那么每天吃的份数不能多于草每天的生长份数所以最多只能放12头牛有1克,2克,4克,8克,16克重的祛码5枚,假设只能在一边放祛码,问用这些祛码可以称出多少种不同的重量答案与解析:解析:31种单个的祛码可以称出5种不同的重量;两个祛码可以称出5X4 + 2=10;三个祛码可以称出不同重量也是10种;四个祛码可以称出不同重量是5种;五个祛码可以称出1种;那么一共可以称出:5+10+10+5+1=31种A、B两景点相距10千米,一艘观光游船从A景点出发抵达B景点后立即返回,共用3小时.第一小时比第三小时多行8千米,那么水速为每小时多少千米【答案】8【解析】第一小时比第三小时多行,所以去的时候顺水,回的时候逆水.如果第一小时之内尚未到达B景点,那么第三小时行驶路程少于2千米,那么第二小时显然不可能行驶多于8千米的路程,所以第一小时肯定已经到达B景点.这样,后两个小时每小时的路程相同, 所以第三小时行驶〔10+10-8〕+3邙米,即逆水速度为4千米每小时;第一小时行了4+8=12千米,逆水行2千米需要半小时,所以第一小时的前半小时顺水行了10千米,顺水速度为20千米/时,所以水速为(20-4) +2=8米/时.。
小学四年级数学上期思维训练题数学测试题

四年级数学上期思维训练(一)——找规律巧填数例1:(1) 先找规律,再填数。
1,2,4,7,11,16,(),29,()(2) 2,4,8,16,(),(),()练习:(1)1,5,11,19,29,(),55(2) 81,64,49,36,(),16,(),4,1例2:先找出规律,在括号里填数。
(1) 23,4,20,6,17,8,(),(),11,12(2) 1,1,2,3,5,8,13,(),34,55练习:(1)21,2,19,5,17,8,(),()(2) 2,9,6,10,18,11,54,(),(),13,486(3) 1,3,3,9,27,()(4) 1,3,6,8,16,18,(),(),76,78例3:下面每个括号里的两个数都是按定的规律组合的,在□里填上适当的数。
(100,96)(97,88)(91,75)(79,口)练习:(1)(2,3),(5,7),(7,10),(10,口)(2) (100,50),(86,43),(64,32),(□,21)例4:先计算第一题,再找出规律,并根据规律直接写得数。
12345679X9=12345679X18=12345679X27=12345679X81=练习:(1)1X1=11X11=111X111=1111X1111=11111X11111=111111X111111=例5:观察下面的一组算式,找出规律,再在方框里填出适当的数。
(1)9X1+2=11 (2)9X12+3=111(3)9X123+4=1111(4)9X1234+5= (5)9X12345+6=(6)9X()+()=1111111(7)()X( )+()=11111111(8)()X( )+()=111111111练习:先观察算式,找出规律,再填数。
(1)21X9=189 (2)321X9=2889(3)4321X9=38889 (4)()X9=488889(5)()X9=5()9(6)()X9=68888889例6:先观察算式,找出规律,然后填数。
小学四年级上册思维训练题大全(附答案)

姓名:班级:1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A 地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?姓名:班级:1、有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?2、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?3、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.4、甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?5、今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?姓名:班级:1、师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?2、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.3、. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?4、. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?5、. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?姓名:班级:1、. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,2、甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?3、一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?4、. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?5、. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?小学数学应用题综合训练(03)21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A 中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?小学数学应用题综合训练(04)31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.2238、张老师对小军说我9年前的岁数和你6年后的岁数相等,7年前我的年龄是你的年龄的6倍,小军和张老师今年的年龄是多少?6=15年15÷(6-1)=3 3×1=3岁3×6=18岁小军:3 7=10岁张老师:18 7=25岁231、大小两桶油,重量比是7:3,如果从大桶取出12千克倒入小桶,则两桶油中的油正好相等。
四年级数学级上册思维训练题(全)

第一讲方阵问题(一)学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。
②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。
③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。
例1:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?分析:要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。
解:以10米为一段,公路全长可以分成900÷10=90(段)共需电线杆根数:90+1=91(根)练习与作业1.四年级同学参加广播体操比赛,要排列成每行11人,共11行的方阵。
这个方阵里有多少同学?2.用棋子排成一个6×6的正方形,共需用棋子多少枚?3.有1764棵树苗,准备在一块正方形的苗圃(实心方阵)里栽培。
这个正方形苗圃的每边要栽多少棵树苗?4.576人排成一个实心方阵,这个方阵每边多少人?5.棋子若干只,恰好可以排成每边6只的正方形,棋子的总数是多少?棋子最外层有多少?6.在大楼的正方形平顶四周装彩灯,四个角都装一盏,每边装25盏,四周共装彩灯多少盏?第二讲方阵问题(二)例3:某校五年级学生排成一个方阵,最外一层的人数为60人。
问方阵外层每边有多少人?这个方阵共有五年级学生多少人?分析:根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。
解:方阵最外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)答:方阵最外层每边有16人,此方阵中共有256人。
小学四年级上册思维训练题大全(附答案)

小学四年级上册思维训练题大全(附答案) 小学四年级数学思维训练题大全四年级数学思维训练题11.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵。
甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,求乙应在开始后第几天从A地转到B地?2.有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4.一个圆柱形内放有一个长方形铁块。
现打开水龙头往中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满。
已知的高为50厘米,长方体的高为20厘米,求长方体的底面面积和底面面积之比。
5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?四年级数学思维训练题21、有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?2、XXX上从家步行去学校,走完一半路程时,爸爸发现XXX的数学书丢在家里,随即骑车去给XXX送书,追上时,XXX还有3/10的路程未走完,XXX随即上了爸爸的车,由爸爸送往学校,这样XXX比独自步行提早5分钟到校。
小学四年级上册数学思维训练14题(附答案),能力培优 全国通用

小学四年级数学思维训练14题(附答案)1小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
【分析】要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。
解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。
总共用时(2+1)+(6+2)+2=13分钟。
2一张数学试卷,只有25道选择题。
做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分,若小明得了78分,那么他做对了多少题,做错多少题,没做多少题?答案与解析:答案:做对20道题,做错2题,没做的3题解析:78÷4=19余二,说明他至少做对了20道题,因为如果只做对19道题的话至多得76分。
那么他能做对21题吗?设他做对21题,其他全做错,得21×4-4=80分,大于78分。
所以他只能做对20道题,20×4=80,得了80分,实际上得了78分,所以还得做错两道,既然剩下5道题,错了2道,那么有3道题没做。
3“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
”答案:一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。
)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽。
四年级上册思维题50道

四年级上册思维题50道一、数与代数部分(20道)1. 一个数省略万位后面的尾数约是5万,这个数最大是多少?最小是多少?- 解析:- 省略万位后面的尾数约是5万,根据“四舍五入”法。
- 要使这个数最大,就是用“四舍”法,千位上最大是4,其它各位百位、十位、个位是最大的一位数9,所以这个数最大是54999。
- 要使这个数最小,就是用“五入”法,千位上最小是5,其它各位百位、十位、个位是最小的自然数0,所以这个数最小是45000。
2. 用1、3、5、7、9组成一个三位数乘两位数的乘法算式,乘积最大是多少?- 解析:- 要想让乘积最大,就要让两个因数尽量大。
- 高位数的数越大,因数的值就越大。
- 两个因数分别为93和751,计算可得公式。
3. 在□里填上合适的数字,使算式成立。
\(\begin{array}{r}\square2\square\\\times\ \ \ \ 7\\\hline\square4\square8\end{array}\)- 解析:- 因为积的个位是8,第二个因数是7,根据乘法口诀“四七二十八”,所以第一个因数的个位是4。
- 又因为积的百位是4,公式,向千位进1,要使得积的百位是4,那么第一个因数的百位只能是6,公式,符合积的百位是4。
- 所以这个算式是公式。
4. 一个数除以29,商是16,并且有最大的余数,余数是多少?这个数是多少?- 解析:- 在有余数的除法中,余数要比除数小,除数是29,所以最大余数是28。
- 根据被除数=商×除数 + 余数,这个数是公式。
5. 两个数相乘,如果一个因数增加3,积就增加51;如果另一个因数减少6,积就减少150,原来两个因数的积是多少?- 解析:- 一个因数增加3,积就增加51,那么另一个因数是公式。
- 另一个因数减少6,积就减少150,那么这个因数是公式。
- 原来两个因数的积是公式。
6. 把下面的数改写成用“亿”作单位的数,并保留两位小数。
四年级数学上册《思维训练题》带答案

四年级数学上册《思维训练题》带答案1、图书室有故事书98本,今天借出46本,还回25本。
现在图书室有故事书多少本?解:98-(46-25)=77本2、一件儿童上衣48.5元,一条长裤比上衣便宜9.8元,一条裙子又比长裤贵2.5元。
这条裙子多少钱?解:48.5-9.8+2.5=41.2元3、爸爸带小明去滑雪,乘缆车上山用了4分钟,缆车每分钟行200米。
滑雪下山用了20分钟,每分钟行70米。
滑雪比乘缆车多行多少米?解:20×70-4×200=600千米4、某县城到省城的公路长160千米。
一辆汽车走高速路的速度是80千米/时,走普通公路的速度是40千米/时。
从县城去省城走高速路比普通公路节省多少时间?解:160÷40-80÷40=2小时5、李伯伯家养了42只鸡,养鸭的只数是鸡的一半。
李伯伯家一共养鸡、鸭多少只?解:42+42÷2=63只6、大同乡中心小学在荒山上植树,2002年共植树356棵,2003年植树3次,每次植树140棵。
哪一年植的树多?多多少棵?解:140×3=420棵420-356=64棵2003年多。
7、书架上有两层书,共144本。
如果从下层取出8本放到上层去,两层书的本数就相同。
书架上、下层各有多少本书?解:上层:144÷2-8=64本下层:64+8+8=80本8、学校运来大米850千克,运了3车,还剩100千克。
平均每车运多少千克?解:(850-100)÷3=250千克9、王老师要批改48篇作文,已经批改了12篇。
如果每小时批改9篇,还要几小时能批改完?解:(48-12)÷9=4小时10、动物园里的一头大象每天吃180千克食物,一只熊猫2天吃72千克食物。
大象每天吃的食物是熊猫的几倍?解:180÷(72÷2)=511、学校组织植树,一共有25个小组,每个小组种了5棵树苗。
购买树苗花了1250元,每棵树苗多少钱?解:1250÷(25×5)=10元12、小林身高124厘米,是表妹身高的2倍,而舅舅身高是表妹的3倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲方阵问题(一)学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。
②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。
③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。
例1:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?分析:要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。
解:以10米为一段,公路全长可以分成900÷10=90(段)共需电线杆根数:90+1=91(根)练习与作业1.四年级同学参加广播体操比赛,要排列成每行11人,共11行的方阵。
这个方阵里有多少同学?2.用棋子排成一个6×6的正方形,共需用棋子多少枚?3.有1764棵树苗,准备在一块正方形的苗圃(实心方阵)里栽培。
这个正方形苗圃的每边要栽多少棵树苗?4.576人排成一个实心方阵,这个方阵每边多少人?5.棋子若干只,恰好可以排成每边6只的正方形,棋子的总数是多少?棋子最外层有多少?6.在大楼的正方形平顶四周装彩灯,四个角都装一盏,每边装25盏,四周共装彩灯多少盏?第二讲方阵问题(二)例3:某校五年级学生排成一个方阵,最外一层的人数为60人。
问方阵外层每边有多少人?这个方阵共有五年级学生多少人?分析:根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。
解:方阵最外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)答:方阵最外层每边有16人,此方阵中共有256人。
例4:晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?分析:方阵每向里面一层,每边的个数就减少2个。
知道最外面一层每边放14个,就可以求第二层及第三层每边个数。
知道各层每边的个数,就可以求出各层总数。
解:最外边一层棋子个数:(14-1)×4=52(个)第二层棋子个数:(14-2-1)×4=44(个)第三层棋子个数:(14-2×2-1)×4=36(个)摆这个方阵共用棋子:52+44+36=132(个)练习与作业1.有16个学生站在正方形场地的四周,四个角上都站1人,如果每边站的人数相等,那么每边站几个学生?2.有一个正方形池塘,四个角上都栽1棵树,如果每边栽6棵,四边一共栽多少棵树?3.有100个少先队员参加广播操比赛,十人一行,排成了一个正方形队。
这个正方形四周站了多少个少先队员?4.在一块正方形场地的四周竖电线杆,四个角上都竖1根,一共竖28根,正方形场地每边竖多少根电线杆?5.某会议室的天棚是正方形,准备在天棚四周每边安装8灯(包括四个角上都安装1盏),四周一共安装多少盏灯?第三讲巧求周长(一)我们已经会计算长方形和正方形的周长了,但对于一些不是长方形、正方形而是多边形的图形,怎样求它的周长呢?可以把求多边形的周长转化为求长方形和正方形的周长。
例1:如图13—1所示,求这个多边形的周长是多少厘米?分析:要求这个多边形的周长,也就是求线段AB+BC+CD+DE +EF+FA的和是多少,而在这六条线段中,只有AB和BC这两条线段的长度是已知的,其余四条线段的长度均是未知的.当然,这个多边形的周长还是可以求的.用一个大正方形把这个图形圈起来,如图13—2所示,这个大正方形是ABCG.把线段EF水平向上移动,移到CG边上,这样CD+EF的长度正好与AB的长度相等.同样把竖直方向上的DE边向左移动,移到AG边上,这样AF+DE的长度正好与BC边的长度相等.这样虽然CD、DE、EF、FA这四条线段的长度不知道,但这四条线段的长度和我们可以求出来,这样求这个多边形的周长就转化为求一个正方形的周长。
练习与作业1.下图的周长与长__厘米,宽__厘米的长方形周长相同,所以它的周长为__厘米(单位:厘米)。
2.下图的周长可以看成一个长由__个1厘米的小线段组成,宽由__个1厘米的小线段成的长方形的周长,所以它的周长是___厘米。
3.求下列各图形的周长(单位:厘米)。
①周长为__厘米。
②周长为___厘米(围成图形的小线段长l厘米)。
第四讲巧求周长(二)例2.把长2厘米宽1厘米的长方形一层、两层、三层地摆下去,摆完第十五层,这个图形的周长是多少厘米?分析:先观察图13—3,第一层有一个长方形,第二层有两个长方形,第三层有三个长方形……找到规律,第十五层有十五个长方形.同样,用一个大长方形把这个图形圈起来.因此求这个多边形的周长就转化为求一个长为2×15=30(厘米)、宽为1×15=15(厘米)的长方形周长。
解:(2×15+1×15)×2=45×2=90(厘米)答:这个图形的周长为90厘米。
练习与作业1.求下列各图形的周长(单位:厘米)。
①周长为多少厘米。
②周长为多少厘米(每条小线段长度都是1厘米)?2.用9个边长为2厘米的小正方形摆成下图形状,它的周长为多少厘米?4.街心公园有一块草坪(如下图),图上所标数字是线段的米数。
在草坪四周从某顶点开始每2米种一棵月季花,一共需种___棵。
第五讲逻辑推理初步在有些问题中,条件和结论中不出现任何数和数字,也不出现任何图形,因而,它既不是一个算术问题,也不是一个几何问题。
也有这样的题目,表面看来是一个算术或几何问题,但在解决它们的过程中却很少用到算术或几何知识。
所有这些问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,由此入手,进行有根有据的推理,做出正确的判断,最终找到问题的答案。
这类问题我们称它为逻辑推理。
例 1.一桩谋杀案中,两个嫌疑犯甲和乙。
另有四个证人正在受到讯问。
第一个证人说:“我只知道甲是无罪的。
”第二个证人说:“我只知道乙是无罪的。
”第三个证人说:“前面两个证词中至少有一个是真的。
”第四个证人说:“我可以肯定第三个证人的证词是假的。
”通过调查研究,已证实第四个证人说了实话,请你分析一下,凶手是谁?分析与解:题目中条件较多,且四个人的证词有真有假,在这种情况下,要善于抓住关键,由此入手进行有根有据的逐步推理。
本题的关键是:第四个人说了实话。
因为第四个人说了实话,所以第三个人的证词是伪证,也就是说“前两个证词中至少有一个是真的”是句假话。
由此可以断定,第一个和第二个证人都说了假话。
从而判断出甲和乙都是凶手。
练习与作业1.有甲、乙两同学,其中一个人有奇数根铅笔,一个人有偶数根铅笔。
如果再给甲原有的铅笔数,再给乙原有铅笔数的2倍,他们俩共有铅笔数为偶数。
那么,甲同学原有铅笔数是__。
2.有甲、乙、丙、丁、戊五位同学,其中丙同学比丁同学高,比戊同学矮;丁同学比乙同学高;戊同学比甲同学矮。
则最高的同学是__,最矮的同学是__。
3.有四种树的照片,它们是桃树、杏树、李树、梨树,生物老师将照片从1到4编了号,让同学们区分四种树,每人说出两个,学生回答如下;第一个学生:2号是桃树,3号是李树;第二个学生:1号是梨树,2号是杏树;第三个学生:2号是桃树,4号是梨树;第四个学生:4号是梨树d号是李树。
老师发现这四个同学都只说对了一半,那么,1号是__,2号是__,3号是__,4号是__。
第六讲枚举问题(一)电工买回一批日光灯,在灯座上逐一试一遍,结果全部日光灯都是好的。
像这样将事物一个一个全部列举出来的方法就是枚举法。
问题.小明有1个5分币,4个2分币,8个1分币,要拿出8分钱,你能找出几种拿法?分析为了不重复、不遗漏地找出所有可能的拿法,“找”就要按照一定的规则进行。
先找只拿一种硬币的拿法,有两种:①1+1+1+1+1+1+1+1=8(分);②2+2+2+2=8(分)。
再找拿两种不同硬币的拿法,有四种:①1+1+1+1+1+1+2=8(分);②1+1+1+1+2+2=8(分);③1+1+2+2+2=8(分);④1+1+1+5=8(分)。
最后找拿三种不同硬币的拿法,只有一种:①1+2+5=8(分)。
由此可见,共有7种不同的拿法。
在上面用枚举法寻找可能拿法的过程中,我们对全部拿法作了适当分类。
合理分类是枚举法解题中力求又快又省的技巧。
练习与作业1.用2、5、8三个数字可以组成几个不同的三位数?其中最大的三位数是什么?最小的三位数是什么?2.用0、l、3、6可以组成多少个四位数?3.有四张卡片分别写有数字0.l、2、3,从中取出2张卡片并排放在一起,可以组成多少个两位数?4.用两个1、一个2、一个3可以组成种种不同的四位数,这些四位数一共有多少个?5.在两位整数中,十位数字大于个位数字的共有几个?第七讲枚举问题(二)问题1.假设有A、B、C三个城市,从A到C必须经过B.已知从A到B可以坐汽车或坐火车到达,而从B到C则可以坐汽车或坐火车或坐飞机到达.问:从A到C可以有多少种不同的旅行方式?分析从A到C(A→C)可分两个阶段进行:第一阶段,从A到B (A→B);第二阶段,从B到C(B→C),按照第一阶段使用的交通工具不同可以分为两类:A→B B→C A→所以,从A到C共有2×3=6种不同的旅行方式。
上述解法中的图示叫做枝形图(图44—1),在解不太复杂的计数问题中很有用。
练习与作业1.有五顶不同的帽子,两件不同的上衣,三条不同的裤子,从中取出一顶帽子、一件上衣、一条裤子配成一套装束。
问:最多有多少种不同的装束?2.从甲地到乙地有2条不同的路可走,从乙地到丙地有4条不同的路可走。
问:从甲地到丙地有几条不同的路可走?3.从甲地到乙地可以坐飞机、火车、汽车,从乙地到两地可坐飞机、火车、汽车、轮船,某人从甲地经乙地到丙地共有几种走法?4.小英从家到学校有三条路可走,从学校到少年之家有四条路可走,小英从家经过学校到少年之家共有几种走法?5.有红、黄、绿、蓝、白五种颜色的铅笔,每两种颜色的铅笔为一组,最多可以配成不重复的几组?第八讲平均数问题(一)求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数……”。
平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数。
解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数。