人教版六年级下册比例的应用
比和比例的应用(课件)-六年级下册数学人教版

3. (阳江市江城区)被减数、减数与差的和是100,差与减数的比是 1∶4,差是( 10 ),减数是( 40 ),被减数是( 50 )。
4. (佛山市三水区)小明看一本故事书,已看的页数与未看页数的比是 3∶5,未看的有40页,这本书共有( 64 )页,已看( 24 )页。 5. (潮州市湘桥区)如图是一张地图上的比例尺,将它转换为数值比 例尺是( 1∶3000000 )。在这张地图上量得两地之间的距离为8.5 厘米,则两地之间的实际距离是( 255 )千米。
2. (深圳市福田区)《庄子·天下篇》中“一尺之棰,日取其半,万世 不竭”的意思是∶一尺长的木棒,第一天截取它长度的一半,以后每天 都截取它前一天的一半,那么将永远也截取不完。如果按照这种截取方 法,那么第3天截取的木棒长度与原来的木棒总长度的比是( D )。
A. 1∶2 C. 1∶6
B. 1∶3 D. 1∶8
x=35 答∶这些A4纸实际可用35天。
跟踪训练 1. 北京到济南高速公路距离大约为430 km,北京到天津大约为120 km。一辆汽车从北京出发开往济南,当行驶到天津时用了1.5小时。按 照这个速度,北京到济南全程需要多少小时?(用比例解) 解∶设北京到济南全程需要x小时。 120∶1.5=430∶x
解∶设小芳6分钟能做x道题。 x∶6=25∶2
2x=6×25 x=75
2. 一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如 果改用边长是4分米的方砖,需用多少块?(用比例解) 解∶设需要x块。 4×4x=9×96
x=54
3. (济南市市中区)公园里有一个花坛,面积是100平方米,其中的 30%种月季,剩下的面积按3∶4的比分别种玫瑰与牡丹,种玫瑰的面积 是多少平方米? 100×(1-30%)×3+34=30(平方米)
六年级下册数学讲义-第四单元——比例:比例的应用人教版(含答案)

比例的应用【知识梳理】1.比例尺。
(1)意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或实际距离图上距离=比例尺 (2)分类:①按表现形式分,可以分为数值比例尺和线段比例尺;② 按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。
(3)已知图上距离和实际距离,求比例尺的方法。
先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成前项是1或后项是1的比,得出比例尺。
(4)已知比例尺和图上距离,求实际距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出实际距离,也可以利用“实际距离=图上距离÷比例尺”直接列式计算。
(5)已知比例尺和实际距离,求图上距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出图上距离,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
(6)应用比例尺画图。
①确定比例尺;②根据比例尺求出图上距离;③画图;④ 标出所画图的名称和比例尺。
要点提示:①比例尺是一个比,表示两个同类量间的倍比关系,不能带单位名称。
②图上距离一般用厘米作单位,实际距离一般用米或千米作单位,计算比例尺时一定要先统一单位。
③为了计算方便,一般把比例尺写成前项或后项是1的形式。
2.图形的放大与缩小。
(1)特点:形状相同,大小不同。
(2)将图形放大或缩小的方法。
一看,看原图形各边占几格;二算,按已知比计算出放大图或缩小图的各边占几格;三画,按计算出的边长画出原图形的放大图或缩小图。
要点提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。
3.用比例解决问题。
根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,再根据正、反比例关系列出相应的比例并求解。
要点提示:用正、反比例解决问题的关键是确定成什么比例关系。
【诊断自测】1.填空。
(1)在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
人教版数学六年级下册第21课比例尺的应用教学设计(推荐3篇)

人教版数学六年级下册第21课比例尺的应用教学设计(推荐3篇)人教版数学六年级下册第21课比例尺的应用教学设计【第1篇】一、引入。
开门见山,揭示课题:比例尺师:看到这个课题,你想提出什么问题?二、探究。
学习任务一:把实际距离画在纸上师:我们先来研究“为什么要学习比例尺?”。
由现场听课的部分老师来自山东菏泽引出“菏泽到北京大约600千米”,提出学习任务1:你能在纸上画出这段距离吗?学生尝试画图,师选择有代表性的作品,准备全班交流。
让学生借助实物投影,讲解自己是怎样在纸上画出600千米的。
随着学生的讲解,教师逐次进行板书(有序排列,一列是“图上距离”,另一列是“实际距离”):图上距离 实际距离6厘米 600千米3厘米 600千米10厘米 600千米引导学生比较它们的相同点和不同点相同点:都是把实际距离缩小了不同点:缩小的比例不同。
师:在画图上,需要把实际距离按一定的比缩小,再画在纸上。
这时,就要确定图上距离和实际距离的比。
这个比就是比例尺。
归纳:一幅图,图上距离与实际距离的比,叫做这幅图的比例尺。
学习任务二:求比例尺师:以6厘米这幅图为例,怎样求这幅图的比例尺呢?1.学生独立尝试,小组交流,然后全班交流。
2.先统一单位,再化简成前项是1的比。
3.让学生独立求出另两幅图的比例尺,巩固求比例尺的方法。
学习任务三:两种比例尺表示方法的互化出示地图,有数值比例尺和线段比例尺讨论1:如何将线段比例尺转化成数值比例尺?强调线段比例尺上的最后一个数据带上单位。
讨论2.如何将数值比例尺转化成线段比例尺?全班交流。
三、练习。
1.认识“放大比例尺”2.分层练习人教版数学六年级下册第21课比例尺的应用教学设计【第2篇】教学资料:《义务教育课程标准实验教科书数学》(人教版)六年级下册第47、48页,练习八第1—3题。
设计理念:数学程标准指出,“数学课程不仅仅要思考数学自身的特点,更就遵循学生学习数学的心理规律”。
学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能构成。
人教版六年级下册数学第四单元比例应用题

人教版六年级下册数学第四单元比例应用题1.妈妈买6千克苹果用了30元。
买8千克这种苹果需要多少钱?(用比例解答)2.在一幅比例尺是1:500000的地图上,量得南宁地铁1号线的长度大约是6.4cm。
实际长度大约是多少千米?3.一辆普通自行车的前齿轮有48个齿,如果前齿轮转动21圈,则后齿轮同时转动72圈。
这辆自行车的后齿轮有多少个齿?4.在比例尺为1:6000000的地图上,量得甲乙两地相距7.5厘米,甲乙两车同时从两地相向开出。
三小时后相遇,已知甲乙两车的速度比是2:3,甲乙两车速度各是多少?5.在一幅地图上用2厘米的线段表示实际距离600千米,这幅地图的比例尺是多少?一条长480千米的高速公路,在这幅地图上是多少厘米?6.一个工程队做一项工程,6天完成了它的310。
照这样的工作效率,剩下的任务还需要多少天才能完成?(用比例解)7.甲乙两班共有学生105人,如果两个班各转走3名学生,则甲乙两班的人数比是4:5,两个班原来各有多少人?(用比例解)8.在一幅比例尺是1:5000的地图上,量得一块长方形的长是3厘米,宽是2.4厘米.这块地的面积是多少公顷?9.在一幅比例尺是1:2000000的地图上,量得甲、乙两地间的距离是8厘米,甲、乙两地实际相距多少千米?如果在另一幅地图上量得甲、乙两地间的距离是10厘米,则另一幅地图的比例尺是多少?10.某工程队铺设一段下水道,原计划每天铺设20米,15天完成。
实际每天多了5米,实际多少天完成了任务?(用比例解)11.运输公司的一辆汽车从甲地往乙地运送物资,原计划每小时行75千米,4小时到达。
现在情况有所变化,需要3小时到达,每小时要行多少千米?(用比例解)12.小明和小英住在同一个小区。
小明家上个月用电102度,电费是61.2元。
小英家上个月用电85度,小英家上个月的电费是多少元?(用比例知识解答)13.小明的卧室面积是12平方米,给这个房间铺地板用去720元,他爸爸、妈妈的卧室面积是15平方米,要用多少元?(用比例解)14.小明买4支圆珠笔用了6元。
比例应用题(专项训练)数学六年级下册人教版

比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。
实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。
【详解】解:设实际每天修x千米。
(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。
【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。
典例分析二.如图,学校大门在孔子雕像的正东方240米处。
1号教学楼在孔子雕像北偏东45°的200米处。
(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。
(2)在图纸上画出学校大门和1号教学楼的位置。
【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。
(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。
【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。
(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。
典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。
人教版六年级下学期数学 比例的应用 完整版例题+答案解析

比例的应用★知识概要1、比例尺1)数字比例尺:图上距离与实际距离的比。
前项是图上距离,后项是实际距离。
前项和后项的单位相同。
只能表示距离的比。
2)线段比例尺可以直观看出图上一厘米代表的实际距离。
2、正比例和反比例的应用:在实际问题中,两个呈比例的量,可以用比例的知识来解决。
1)两个成正比的量:比值相等列出比例方程。
2)两个成反比的量:乘积相等列出方程。
★精讲精练例1、(1)、化简。
20kg:10g = ___2000___: ____1____6 m : 120 cm = ___5___:____1____5cm: 250km=____1____:____500000____(2)、将线段比例尺化为数字比例尺0 20 40 60km1:2000000演练1、(1)、化简。
20km:15cm = ___4000____: ____3____6 cm : 150 m = ___1____:____2500____5cm: 24km=____1____:____480000____(2)、将线段比例尺化为数字比例尺0 30 60 90km1:3000000例2、(1)填表(2)一幅地图的比例尺为1 : 20000000,小芳在地图上量得广州到上海的 某条线路全长为7.5厘米。
那么广州到上海的这条线路实际距离是多少千米?实际距离:7.5x200=1500(千米)演练2、比例尺 图上距离 实际距离1:2000000 5cm 100km 15:17.5cm 5mm 1:7500002cm 15km(2)一幅地图的比例尺为 1 : 5000000,小新在地图上量得北京到上海的铁 路长度是29厘米。
一辆高速动车从北京南站出发,经过5小时到达 上海,这辆高速动车的时速是多少?实际距离:29÷50000001=145000000(厘米)=1450(千米) 速度:1450÷5=290(千米/小时)1599m30cm1:3000000例3、(1)学校篮球场平面图的比例尺为1 : 250,工程师在平面图上量得篮球场的长为11.2厘米,宽为6厘米。
人教版六年级下册数学第四单元比例应用题训练(含答案)

人教版六年级下册数学第四单元比例应用题训练1.在比例尺为1:15000000 的地图上,量得两地间的距离为18 cm。
甲、乙两列动车同时从两地相对开出,6 小时后相遇。
已知甲、乙两列动车的速度比为11:9,两车相遇时,甲车相驶了多少千米?2.在比例尺是20:1的图纸上,量得一个零件的长是2cm。
这个零件的实际长是多少毫米?3.在比例尺是的地图上,量得扬州到北京的距离为12cm。
如果一列火车以每小时160 km的速度于上午8时从扬州火车站开出,那么下午几时几分这列火车可到达北京?4.身高1.8m的李华在公园里观赏一尊雕像时,想知道雕像的高度。
他灵机一动,站到雕像旁边拍了一张合影,然后量得照片上的他高3 cm,雕像高8 cm。
雕像的实际高度是多少米?5.一幅地图,图上4 cm表示实际距离32km。
如果实际距离是144 km,图上距离是多少厘米?(用两种方法解答)6.淘淘早上8时从家出发,平均每小时骑行30 km,下午4:30到了目的地,中间休息3小时,如果将淘淘的骑行距离在比例尺1:300000的图上表示出来,图上距离应该是多少厘米?7.王大爷种了一块直角三角形的菜地,两条直角边共长10.8 m,它们的长度比是5:4。
将这块菜地用1:200的比例尺画在图上,这块菜地的图上面积是多少平方厘米?8.某工厂要加工1296个零件,前5天已经加工了240个。
照这样计算,余下的还需要多少天才能完成?(用解比例的方法解答)9.一杯糖水中放了20 g糖和400 g水。
(1)如果想用600g水调出一杯甜度相同的糖水,应放多少克糖?(2)如果想用600 g糖调出一杯甜度相同的糖水,应加多少克水?10.小刚在教学楼前测得自己的身高与影子的长度比为5:4,这时教学楼的影子长12米,教学楼的高度是多少米?11.在比例尺是1:1000 的地图上量得甲、乙两地相距4厘米。
如果画在比例尺是1:8000的地图上,应该画多长?12.学校给一间边长为6米的正方形教室铺地,需要地砖288块。
人教版数学六年级下册用比例解决问题教学设计(精推3篇)

人教版数学六年级下册用比例解决问题教学设计(精推3篇)〖人教版数学六年级下册用比例解决问题教学设计第【1】篇〗教学设计教学目标1、使学生理解什么叫解比例,掌握解比例的方法,会解比例。
2、使学生能应用解比例的知识解决生活中的数学。
3、使学生感悟数学知识的魅力,感受到数学就在我们身边。
学情分析学生掌握比例的基本性质的基础上学习解比例。
重点难点掌握解比例的方法。
教学过程活动1【导入】导入新课1、上节课我们学习了一些比例的知识,谁能说说我们都学了比例的哪些知识(什么叫比例,比例的基本性质,应用比例的基本性质可以做什么.)2、好,下面我们就用比例的知识来解决一个问题,出示:6:2=( ):3你是怎样想的你的依据是什么师:如果我们知道比例中的任何三项就可以求出比例中的另外一个未知项。
这就是我们今天要研究的内容——解比例(板书课题)。
请同学们打开书第42页,阅读理解第一自然段,什么叫解比例。
(指名回答,并要求学生在书上标注,同时板书意义。
)教学意图:一是唤起学生对已有知识经验的回忆,索取对本节课相关的知识点;二是搭建从已知走向未知的桥梁,为学习新知提供合适的空间。
活动2【讲授】新授内容教学例2:师:有谁知道法国巴黎标志性建筑是什么哪些同学去过那你们知道它大概有多高师:老师告诉你们这座塔的高度是320米,在北京的“世界公园”里有一座埃菲尔铁塔的模型,它的高度与原塔的高度的比是1:10,同学们想知道这座模型的高是多少米吗出示例 2.那我们就用比例的知识来解决这个问题.(1)学生读题,理解题目里的条件和问题。
(2)学生试做,师生共评,指名板演。
分析:题目中的1:10你是怎样理解的(模型:实物=1:10)列比例需要四项,未知的项要怎样(设未知数X) 怎样用我们学过的知识解比例(先试做再小组交流,然后我们求同存异,总结出你们的方法。
指名板演,老师规范格式,对比方法。
两种方法:利用比例的基本性质改写成等积式;利用求比值方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:比例的应用
【教学目标】
1.使学生能正确判应用题中涉及的量成什么比例关系。
进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,
2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3.培养学生的判断分析推理能力。
【教学重点】使学生能正确判断应用题中的数量之间存在什么样的比例关系。
并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
【教学难点】学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。
【教学过程】
一、复习
1.什么叫比?比例?比和比例有什么区别?
2.什么叫解比例?怎样解比例,根据什么?
3.什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
4.什么叫比例尺?关系式是什么?
二、创设情境引入内容
1.出示例5:“画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?”
学生回答后引出求水费的实际问题。
问题:你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。
引入:“这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。
”
出示以下问题让学生思考和讨论:
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
明确:因为水价一定,所以水费和用水的吨数成正比例。
也就是说,两家的水费和用水的吨数的比值是相等的。
演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。
让学生检验所求的未知数x是否合乎题意。
检验的方法是把求出的数代入原等式(即方程),看等式是否
成立。
把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
问题:“王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?”要求学生应用比例的知识解答,然后交流。
通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。
2.出示例题6的场景。
同样先让学生用已学过的方法解答,然后学习用比例的知识解答。
师:“想一想,如果改变题目的条件和问题该怎样解答?”
出示以下问题让学生思考和讨论:
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。
让学生演示解题过程,集体修正。
3.完成“做一做”,
直接让学生用比例的知识解答
问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。
总结应用比例知识解答问题的步骤:
(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。
(2)依据正比例或反比例意义列出方程。
(3)解方程(求解后检验),写答。