轴对称图形(一)
(人教版) 轴对称图形 教学PPT课件1

•
10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。
•
11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。
•
12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。洗牌,但是玩牌的是我们自己!
•
17、逆境是成长必经的过程,能勇于接受逆境的人,生命就会日渐的茁壮。
•
18、哪里有天才,我是把别人喝咖啡的功夫,都用在工作上的。——鲁迅
•
19、所谓天才,那就是假话,勤奋的工作才是实在的。——爱迪生
•
20、做一个决定,并不难,难的是付诸行动,并且坚持到底。
•
21、不要因为自己还年轻,用健康去换去金钱,等到老了,才明白金钱却换不来健康。
•
22、如果你不给自己烦恼,别人也永远不可能给你烦恼,烦恼都是自己内心制造的。
•
23、命运负责每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。
•
2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。
•
3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。
•
8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。
•
9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
《轴对称再认识(一)》轴对称和平移

对称变换在经济学中 的应用
在对称经济学中,对称原则被用来建 立经济模型,从而对经济现象进行分 析和研究。此外,在对称金融学中, 对称变换也被广泛应用于金融衍生品 定价和风险管理等领域。
对称变换的未来展望
随着科学技术的发展,对称变换将在 更多领域得到应用和发展。例如,在 人工智能领域,通过对称变换可以研 究深度学习和神经网络等算法的本质 和结构;在数据科学领域,通过对称 变换可以挖掘数据中的模式和规律; 在生物医学领域,通过对称变换可以 研究分子结构和生物大分子的性质等 。
对称变换在现代数学中的应用
01 02
对称变换在几何学中的应用
对称变换被广泛应用于几何学中,例如在平面几何、立体几何和解析 几何中,通过对称变换可以解决许多问题,如证明定理、求解方程等 。
对称变换在代数中的应用
对称变换也被广泛应用于代数中,例如在矩阵变换、群论和李代数中 ,通过对称变换可以研究问题的本质和结构。
平移和轴对称的关系
平移和轴对称都是图形的基本变换,它们之间存在密切 的关系。例如,可以通过平移将两个图形重合,也可以 通过轴对称将两个图形重合。
04
轴对称的实例
生活中的轴对称实例
建筑物
许多建筑物,如中国的故宫、 美国的自由女神像,都利用了 轴对称的设计,使建筑在视觉
上更具美感。
植物
自然界中许多植物也呈现出轴对 称的特点,如向日葵、睡莲等。
轴对称图形的特点
轴对称图形是左右或上下对称的,对称轴两侧的对应点到对称轴的距离相等 。
轴对称的判断,通过折叠或比较对应 部分来判断是否为轴对称图形。
常见的轴对称图形
正方形、长方形、等腰三角形、等边三角形、圆形、菱形等 。
轴对称的应用
轴对称课件(60张PPT)

轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。
简单的轴对称图形(1)

.0
B
EC
角平分线的性质: 角平分线上的点到角两边的
距离相等.
实践应用:菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
例2.(2005·四川自贡)如图,内宜高速公路AB 和自雅路AC在我市交于点A,在∠BAC内部有五 宝和正紫两个镇D、E,若要修一个大型农贸市 场F,使F到AB、AC的距离相等,且使FD=FE, 作出市场F的位置。
A
B
D
菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
练习:
1、如图(1)在三角形ABC中,AD垂直平分边BC,
AB=5,那么AC=__5__.
A
A
E
B
D
C
(1)
B
D
C
(2)
2、在图(2)中DE是BC的中垂线则图中相等的线段
有___B_E__=_C_E__、__B_D_=_C__D___.
华东师大版七年级(下)第10章第二节
简单的轴对称图形
菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
复习提问:
1、什么样的图形叫做轴对称图形?
答:把一个图形沿着某条直线对折,如果 对折的两部分是完全重合的,我们就称这 样的图形为轴对称图形,这条直线叫做这 个图形的对称轴。
菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
菜坝镇初级中学校数学组 第10章第二节 简单的轴对称图形
例1:△ABC中,BC=10,边BC的垂直平分线分别交AB、 BC于点E、D,BE=6,求△BCE的周长?
A 解: ∵DE是线段BC的中垂线
∴BE=EC
E
又∵BE=EC,且BE=6
∴EC=6
B
2.1画轴对称图形(一)

“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现, 有些遗憾。”
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
青 春 风 采
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
高考总分:
692分(含20分加分) 语文131分 数学145 分英语141分 文综 255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
北师版数学三年级下册--《轴对称(一)》作业

轴对称(一)【基础题】1.下列图形中,不是轴对称图形的有( )。
2.下面哪些图形是轴对称图形?在( )画“√”。
3.下列图形中的虚线是它的对称轴吗?是的画“○”,不是的画“△”。
4.判断下面的图形是不是轴对称图形。
是的画“△”,不是的画“□”。
【能力题】1.下列图形中哪些是轴对称图形?在轴对称图形下面画“○”。
2.认一认,选一选。
是轴对称图形的有___________________________________________________。
3.用对折的方法找出下列图形的对称轴。
4.下面哪些数、字母、汉字是轴对称图形?在( )里画“√”。
E( ) G( ) M( ) 由( )月( ) 日( ) ( ) ( )【提升题】1.判断:小鸟是轴对称图形。
()2.下面的图形中,有()个轴对称图形。
A.1 B.2 C.3 D.43.(运用对应法解决画出轴对称图形另一半的问题)在方格纸上画出轴对称图形的另一半。
4.(运用操作法解决画对称图形多条对称轴的问题)你能画出下面长方形所有的对称轴吗?5.请你用下面的正方形和圆画出符合要求的图形。
(1)画出的图形不是轴对称图形。
(2)画出的图形只有一条对称轴。
(3)画出的图形有四条对称轴。
答案与解析基础题1.略2.(√) (√) (√) ( ) ( ) (√) ( ) (√)3.○△○○○△4.略能力题1.略2.(2)(3)(4)(7)3.略4.E(√) M(√)由(√)日(√)(√)提升题1.×分析小鸟是一个物体,不是平面图形,所以只能说小鸟具有对称性。
提示物体左右或上下两边的形状和大小完全相同,只能说它具有对称性,并不能说是轴对称图形。
2. C分析平行四边形不是轴对称图形,因为无论怎样折,折痕两侧的图形都无法完全重合。
提示一个图形沿一条直线对折后,折痕两侧的图形能够完全重合,这样的图形才是轴对称图形。
3.思路分析:画轴对称图形另一半的关键是要找出已知图形各关键点的对称点。
简单的轴对称图形(一)课件

B E
CC
O A B D AAA
CE=CD
B
结论:
角是轴对称图形,角平分线所在 的直线就是它的对称轴。
那么角平分线 有什么性质呢?
核心问题:
(一)角是轴对称图形吗? (二)角平分线有什么性质?
A H E
O
实际体会角的轴对称D性和G 角C 的平分线上的 点的性质
F I B
角的平分线上的点到角的两边的距离相等
使角的两边重合。
O
B
B A
(1)在折痕(即角平分线)上任意取一点C;
(2) 过点C折OA边的垂线,得到新的折痕CD,
其中点D是折痕与OA的 交点, 即垂足;
(3) 将纸打开,
新的折痕与OB 的交点为E .
B E
CC
在上述的操作过
O AB D
BB
AA
程,你发现了哪些线段
相等?说说你的理由。
在折痕上另取一点, 再试一试。
△BCE的周长.
解:因为DE是线段BC的垂直平分线 所以EC=EB=6
所以△BCE的周长=EB+EC+BC=6+6+10=22
小结
1. 角是轴对称图形,角的平分线所在的直线是
它的对称轴。
2. 角的平分线上的点到这个角的两边的距离相等。 3. 垂直于一条线段并且平分它的直线叫这条
线段的垂直平分线(简称中垂线).
D为线段AB中垂线OC
上一点,
A
找出图中全等三角形以
及相等的线段.
C D
O
B
如图: 在小明折出的图形中,你能找出相等的线
段吗?说明理由。
C
A O
分析: 通过三角形全等说明: 因为OC是线段AB的对称轴(中垂线) 所以CO⊥AB 在△ AOC和△BOC中,CO=CO ∠B AOC=∠BOC=90°,AO=BO 所以 △AOC≌△BOC(SAS) 所以CA=CB
13.2 轴对称图形(第1课时)

练习2 若点P(2a+b,-3a)与点P′(8,b+2) 2 ,b= 4 ;若关于y 轴对 关于x 轴对称,则a = - 20 6 ,b=______. 称,则a =
2.运用变化规律作图
例 如图,四边形ABCD 的四个顶点的坐标分别为 A(-5,1),B(-2,1), y C C(-2,5),D(-5,4), D 分别画出与四边形ABCD 关 于x 轴和y 轴对称的图形. 1 A B x O 1
ቤተ መጻሕፍቲ ባይዱ用变化规律作图
解:点(x,y)关于y 轴对称的点的坐标为 (-x,y),因此四边形 y C′ C ABCD 的顶点A,B,C, D′ D D 关于y 轴对称的点分别 为: 1 A B B′ A′x A′( 5 , 1 ), O 1 B′( 2 , 1 ), C′( 2 , 5 ), D′( 5 , 4 ),
画法:(3)连接A′B′, B′C′,C′A′,得到的 △A′B′C′即为所求.
B
C A O A′ B′ l C′
知识点二:画轴对称图形:“先画点,再连线”
方法归纳:
1.几何图形都可以看作由点组成. 2.对于某些图形,只要画出图形中的 一些特殊点(如线段端点)的对称点, 连接这些对称点,就可以得到原图形 的轴对称图形.
八年级
上册
13.2 画轴对称图形
课件说明
1.本节课内容属于“图形的变化”领域,画轴对称图 形是继平移变换之后的又一种图形变换,是利用轴 对称变换设计图案的基础.它是研究几何问题、发 现几何结论的有效工具. 2.研究用坐标表示轴对称,从位置关系和数量关系的 角度来刻画轴对称.把坐标思想和图形变换的 思想联系起来,是学习函数和中心对称的基础.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案续页
重难点突破
(三)演示导学,动手操作。
“同学们想不想亲自动手制作这样的轴对称图形。请大家拿出一张长方形纸,先把长方形纸对折,在折好的一侧画一个你喜欢的图形,把它剪下,再把纸打开,你有什么发现?”引导学生观察得出:折痕两侧的图形完全重合。“和前面看到的图形有没有什么共同的特点?”从而引导学生概括出轴对称图形的概念和认识对称轴。
教案首页
课题
轴对称图形
授课时间
教学课时
授课教师
教学目标
感知现实世界中普遍存在的轴对称现象,体会轴对称图形特征,能够准确判断哪些图形是轴对称图形。
通过折纸、剪纸、画图、图形分类等操作活动,使学生能够准确找出轴对称图形的对称轴。
感受数学与生活息息相关,培养学生的学习兴趣和热爱生活的情感。
教学重难点
“初步认识轴对称图形的基本特征”就成为本节课的教学重点;
“掌握判断轴对称图形的方法”是本节课的难点。
学情分析
学习起点预测
学习困难预测
教具准备
课件
步骤
教学流程
课堂调控
导入
(一)创设情境,激发兴趣。
在这片美丽的花丛里,飞来了一只小蝴蝶和一只小蜻蜓。我们来听听它们说些什么呢?“我是最美的。”“我才是最美的。”原来它们在争论谁更美,而且争得不相上下。一朵小花听见了,就给它们出了个主意,“既然你们都认为自己很美,不如这样吧,我们来设计一个一人一半的图形,那样的图形才是最美的吧?(出示合成图形)并引出课题。
0123456789
(2)下面的字母,哪些是轴对称图形,它们各有几条对称轴?ABCBiblioteka EFGH备注板书设计
轴对称图形
如果一条图形沿着一条直线对折,两侧
的图形能够完全重合,这个图形就是轴对称
图形。
折痕所在的这条直线叫做对称轴。
教后反思
归因分析
改进措施
教学重难点突破
(二)指导观察、认识特点。
“生活中还有没有这样的图形呢?”“请同学们认真观察,看看这些图形有什么特点,把你的想法和小组里的成员说一说,然后向全班同学汇报。”引导学生观察脸谱、剪纸、旗子的图形特点,通过观察、思考和交流,在全班汇报时,有的学生可能会说,“这些图形都很美”,有的可能会说,“这些图形的两边分别对应相同。
批注
(本班学情)
教学拓展
综合练习、发展思维。
1、游戏:全体起立,每人做一个姿势,从正面看左右两边是对称的。再请三人上台表演。
2、抢答:观察周围哪些事物的形状是轴对称图形。
总结提升
什么叫轴对称图形?怎样判断轴对称图形?
什么叫对称轴? 怎样找出轴对称图形的对称轴?
课堂练习设计
(1)下面的数字,哪些是轴对称图形,它们各有几条对称轴?