类MIPS单周期处理器

合集下载

微机原理实验类MIPS单周期微处理器设计

微机原理实验类MIPS单周期微处理器设计

微机原理实验类MIPS单周期微处理器设计MIPS单周期微处理器设计是一种常见的计算机体系结构,采用简化指令集和单个时钟周期执行指令的方式。

下面将详细介绍MIPS单周期微处理器的设计。

1.指令集架构MIPS单周期微处理器采用五个基本的指令类型,包括加载/存储指令、算术逻辑指令、跳转指令、分支指令和数据传输指令。

这些指令类型可以通过相应的操作码和寄存器编号来确定具体的指令操作。

2.寄存器文件MIPS单周期微处理器使用了32个通用寄存器,每个寄存器的位宽为32位。

其中,除了$0寄存器始终为零,其他的寄存器可用于存储数据和进行运算。

3.控制单元控制单元是MIPS单周期微处理器的核心部分,负责解码指令,生成相应的控制信号,控制数据通路的各个部件以正确执行指令。

控制单元包括指令寄存器、程序计数器、指令解码器等。

4.数据通路MIPS单周期微处理器的数据通路由多个组成部分组成,包括寄存器文件、算术逻辑单元(ALU)、数据存储器(DM)等。

数据通路用于执行指令的各个操作步骤,如指令的读取、寄存器操作、运算和数据存储。

5.指令执行过程MIPS单周期微处理器的指令执行过程包括指令的取指、指令解码、操作数的读取、指令执行和结果的写回等步骤。

在每个时钟周期中,通过控制信号控制数据通路的各个部件,按照指令的操作要求完成相应的操作。

总体而言,MIPS单周期微处理器设计简洁高效,适用于大多数应用场景。

然而,由于单周期处理器的指令执行时间较长,且不支持流水线技术,所以在一些对性能要求较高的应用中可能会受到限制。

综上所述,MIPS单周期微处理器设计是一种常用的计算机体系结构,通过合理的指令集架构、寄存器文件、控制单元和数据通路的设计,实现了对指令的有效执行和数据操作。

该设计具有一定的优势和限制,需要根据实际需求进行选用和改进。

华中科技大学HUST类MIPS单周期微处理器设计实验报告

华中科技大学HUST类MIPS单周期微处理器设计实验报告

类MIPS单周期微处理器设计实验报告专业:班级:学号:姓名:一、微处理器各模块设计各模块的框图结构如上图所示。

由图可知,该处理器包含指令存储器、数据存储器、寄存器组、ALU单元、符号数扩张、控制器、ALU控制译码以及多路复用器等。

图中还忽略了一个单元:时钟信号产生器,而且以上各个部件必须在时钟信号的控制下协调工作。

1.指令存储器的设计指令寄存器为ROM类型的存储器,为单一输出指令的存储器。

因此其对外的接口为clk、存储器地址输入信号(指令指针)以及数据输出信号(指令)。

(1)在IP wizard 中配置ROM,分配128个字的存储空间,字长为32位宽。

(2)选择输入具有地址寄存功能,只有当时钟上升沿有效时,才进行数据的输出。

(3)配置ROM内存空间的初始化COE文件。

最后单击Generate按钮生成IROM模块。

2.数据存储器的设计数据存储器为RAM类型的存储器,并且需要独立的读写控制信号。

因此其对外的接口输入信号为clk、we、datain、addr;输出信号为dataout。

数据存储器基本建立过程同ROM的建立。

3.寄存器组设计寄存器组是指令操作的主要对象,MIPS中一共有32个32位寄存器。

在指令的操作过程中需要区分Rs、Rt、Rd的地址和数据,并且Rd的数据只有在寄存器写信号有效时才能写入,因此该模块的输入为clk、RegWriteAddr、RegWriteData、RegWriteEn、RsAddr、RtAddr、reset;输出信号为RsData、RtData。

由于$0一直输出0,因此当RsAddr、RtAddr为0时,RsData以及RtData 必须输出0,否则输出相应地址寄存器的值。

另外,当RegWriteEn有效时,数据应该写入RegWriteAddr寄存器。

并且每次复位时所有寄存器都清零。

代码如下:module regFile(input clk,input reset,input [31:0] regWriteData,input [4:0] regWriteAddr,input regWriteEn,output [31:0] RsData,output [31:0] RtData,input [4:0] RsAddr,input [4:0] RtAddr);reg[31:0] regs[0:31];assign RsData = (RsAddr == 5'b0)?32'b0:regs[RsAddr];assign RtData = (RtAddr == 5'b0)?32'b0:regs[RtAddr];integer i;always @(posedge clk)beginif(!reset)beginif(regWriteEn==1)beginregs[regWriteAddr]=regWriteData;endendelsebeginfor(i=0;i<31;i=i+1)regs[i]=0;regs[31]=32'hffffffff;endendendmodule4.ALU设计在这个简单的MIPS指令集中,微处理器支持add、sub、and、or、slt运算指令,需要利用ALU单元实现运算,同时数据存储指令sw、lw也需要ALU单元计算存储器地址,条件跳转指令beq需要ALU来比较两个寄存器是否相等。

mips计算机运算器的组成与功能

mips计算机运算器的组成与功能

mips计算机运算器的组成与功能下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!MIPS计算机运算器的组成与功能一、引言MIPS(Microprocessor without Interlocked Pipeline Stages)计算机运算器是一种常用的计算机处理器架构,它由多个组件组成并具有丰富的功能。

MIPS单周期CPU实验报告

MIPS单周期CPU实验报告

MIPS单周期CPU实验报告一、实验目的本实验旨在设计一个基于MIPS指令集架构的单周期CPU,具体包括CPU的指令集设计、流水线的划分与控制信号设计等。

通过本实验,可以深入理解计算机组成原理中的CPU设计原理,加深对计算机体系结构的理解。

二、实验原理MIPS(Microprocessor without Interlocked Pipeline Stages)是一种精简指令集(RISC)架构的处理器设计,大大简化了指令系统的复杂性,有利于提高执行效率。

MIPS指令集由R、I、J三种格式的指令组成,主要包括算术逻辑运算指令、存储器访问指令、分支跳转指令等。

在单周期CPU设计中,每个指令的执行时间相同,每个时钟周期只执行一个指令。

单周期CPU的主要部件包括指令内存(IM)、数据存储器(DM)、寄存器文件(RF)、运算单元(ALU)、控制器等。

指令执行过程主要分为取指、译码、执行、访存、写回等阶段。

三、实验步骤1.设计CPU指令集:根据MIPS指令集的格式和功能,设计符合需求的指令集,包括算术逻辑运算指令、存储器访问指令、分支跳转指令等。

2.划分CPU流水线:将CPU的执行过程划分为取指、译码、执行、访存、写回等阶段,确定每个阶段的功能和控制信号。

3.设计控制器:根据CPU的流水线划分和指令集设计,设计控制器实现各个阶段的控制信号生成和时序控制。

4.集成测试:进行集成测试,验证CPU的指令执行功能和正确性,调试并优化设计。

5.性能评估:通过性能评估指标,如CPI(平均时钟周期数)、吞吐量等,评估CPU的性能优劣,进一步优化设计。

四、实验结果在实验中,成功设计了一个基于MIPS指令集架构的单周期CPU。

通过集成测试,验证了CPU的指令执行功能和正确性,实现了取指、译码、执行、访存、写回等阶段的正常工作。

同时,通过性能评估指标的测量,得到了CPU的性能参数,如CPI、吞吐量等。

通过性能评估,发现了CPU的性能瓶颈,并进行了相应的优化,提高了CPU的性能表现。

3(5)-CPU子系统-MIPS-3-单周期-1-2-目标指令与数据通路

3(5)-CPU子系统-MIPS-3-单周期-1-2-目标指令与数据通路
√ 时间效率高,时钟的宽度由单步最长时间决定。 √ 不同的时钟周期之间,部件可共享,冗余降低。
5/17
2、指令的基本数据通路
【基本思路】面向指令功能,逐步扩展、融合
分析三类指令的格式和功能 选择功能部件,确定部件之间的连接通路 整合冗余的部件连线
取指令→

R型→ I型→ J型→
通路整合→

通路整合
zero
ALU
We Re
addr RD
WD
MUX
MUX
clock
17/17
$rs≠$rt: PCJ型 跳转
j address
(PC+4)[31:28] ∪(address<<2)
立即数寻址 伪直接寻址
3/17
※CPU执行1条指令的步骤:
①取指令 根据PC,从存储器中取出指令,然后PC +4。 ②取操作数 根据指令中操作数字段,选择读取寄存器\存储器或立 即数,送ALU(运算器)。 ③分析指令 将指令中的操作码送控制器,分析指令的功能,产生 相应的控制信号。
④执行指令 ALU根据控制器产生的控制信号完成指令规定的操作, 并保存结果、修改PC。
4/17
※根据指令执行的所需时钟周期数
① 单周期CPU: 指令固定在1个时钟周期内完成。
√ 时间效率低,时钟宽度由单指令最长时间决定。 √ 在指令周期内,功能部件不能共享,冗余度大;
② 多周期CPU: 指令分散在多个时钟周期内完成。
$rs-$rt→$rd $rs and $rt→$rd
R直接寻址
4
or rd, rs, rt
$rs or $rt→$rd
5
addi rt, rs, imm $rs+E(imm) →$rt

Logisim完成MIPS单周期处理器开发实验报告

Logisim完成MIPS单周期处理器开发实验报告

Logisim完成MIPS单周期处理器开发实验报告Project3Logisim完成单周期处理器开发实验报告⼀.总体设计⼆.模块定义(1)IFU(2)GPR(3)ALU(4)EXT(5)DM(6)Controller四.控制器设计单周期真值表Func100000100010N/AOp000000000000001101100011000100001111add sub ori lw sw beq lui RegDst1100X X0 ALUSrc0011101 MemtoReg0001X X X RegWrite1111002 MemWrite0000100 nPC_sel0000010 ExtOp X X000X1ALUctr Add Subtract Or Add Add Subtract X五.测试要求16.测试程序lui$t0,0x0004#lui测试程序要实现:⽴即数0x0004加载⾄t0寄存器的⾼位lui$t1,0x0008#lui测试程序要实现:⽴即数0x0008加载⾄t1寄存器的⾼位ori$t3,$zero,0x00002000#ori测试程序要实现:zero寄存器中的内容与⽴即数0x00002000进⾏或运算,储存在t3寄存器中sw$t0,4($t3)#sw测试程序要实现:把t0寄存器中值(1Word),存储到t3的值再加上偏移量4,所指向的RAM中sw$t0,8($t3)#sw测试程序要实现:把t0寄存器中值(1Word),存储到t3的值再加上偏移量8,所指向的RAM中loop:add$t2,$t2,$t1#add测试程序要实现:t1寄存器中的值加上t2寄存器中的值后存到t2寄存器中lw$t4,4($t3)#lw测试程序要实现:把t3寄存器的值+4当作地址读取存储器中的值存⼊t4 lui$t5,0x0004#lui测试程序要实现:⽴即数0x0004加载⾄t5寄存器的⾼位sub$t7,$t6,$t5#sub测试程序要实现:t6寄存器中的值减去t5寄存器中的值后存到t7寄存器中add$t0,$t0,$t5#sub测试程序要实现:t0寄存器中的值减去t5寄存器中的值后存到t0寄存器中add$t6,$t6,$t0#add 测试程序要实现:t6寄存器中的值加上t0后存到t6寄存器中beq$t0,$t1,loop#beq测试程序要实现:判断t0的值和t1的值是否相等,相等转loopadd$t0,$t0,$t5#add测试程序要实现:t0寄存器中的值加上t5后存到t0寄存器中lui$v0,0x0001#lui测试程序要实现:⽴即数0x0001加载⾄v0寄存器的⾼位lui$v1,0x0002#lui测试程序要实现:⽴即数0x0002加载⾄v1寄存器的⾼位add$v0,$v0,$v1#add测试程序要实现:v0寄存器中的值加上v1后存到v0寄存器中add$v1,$v0,$v1#add测试程序要实现:v0寄存器中的值加上v1后存到v1寄存器中ori$a0,$v0,0xffff#ori测试程序要实现:v0寄存器中的内容与⽴即数0xffff进⾏或运算,储存在a0寄存器中sub$a1,$a0,0x0000ffff#sub测试程序要实现:a0寄存器中的值减去⽴即数0x0000ffff后存到a1寄存器中loop2:sub$a2,$v1,$v0#sub测试程序要实现:v1寄存器中的值减去v0中的值后存到a2寄存器中add$a1,$a2,$a1#add测试程序要实现:a2寄存器中的值加上a1后存到a1寄存器中beq$a1,$v1,loop2#beq测试程序要实现:判断a1的值和v1的值是否相等,相等转loop2机器码:3c0800043c090008340b2000ad680004014950208d6c00043c0d000401cd7822010d402001c870201109fff9010d40203c0200013c03000200431020004318203444ffff3c010*******ffff008128220062302200c52820 10a3fffdMARS模拟结果:Logism:GPR:DM:六、问答18.对于Figure5、Figure6中的与或阵列来说,1个3输⼊与门最终转化为2个2输⼊与门,1个4输⼊与门最终转化为3个2输⼊与门,依次类推。

mips单周期cpu课程设计

mips单周期cpu课程设计

mips单周期cpu课程设计一、课程目标知识目标:1. 掌握MIPS单周期CPU的基本结构和工作原理;2. 了解指令集、指令执行过程和指令周期;3. 学会分析并设计简单的MIPS指令;4. 理解CPU性能指标,如时钟频率、吞吐率等。

技能目标:1. 能够运用硬件描述语言(如Verilog)进行单周期CPU的设计与仿真;2. 能够独立编写简单的MIPS汇编程序,并在单周期CPU上运行;3. 能够分析单周期CPU的性能,并进行优化;4. 培养学生的团队合作能力和问题解决能力。

情感态度价值观目标:1. 培养学生对计算机组成原理和硬件设计的兴趣,激发学生的创新意识;2. 增强学生的工程素养,使其认识到工程实践在计算机科学领域的重要性;3. 培养学生严谨、细致、负责任的科学态度,提高学生的自主学习能力。

本课程针对高中年级学生,课程性质为实践性较强的硬件课程。

结合学生特点,课程目标注重理论与实践相结合,通过设计单周期CPU,使学生深入理解计算机硬件原理,提高实践能力。

在教学要求上,注重培养学生的团队合作精神,提高学生分析和解决问题的能力,为后续计算机组成原理及相关课程打下坚实基础。

通过本课程的学习,学生将能够独立完成单周期CPU的设计与仿真,具备一定的硬件编程能力。

二、教学内容1. 引言:介绍CPU在计算机系统中的作用,引出MIPS单周期CPU的概念及其重要性。

相关教材章节:第一章 计算机系统概述2. MIPS单周期CPU基本结构:讲解CPU的基本组成部分,包括寄存器组、控制单元、算术逻辑单元(ALU)、数据通路等。

相关教材章节:第二章 计算机组成原理3. 指令集与指令执行:分析MIPS指令集特点,讲解指令执行过程和指令周期。

相关教材章节:第三章 指令系统4. 硬件描述语言与单周期CPU设计:介绍Verilog硬件描述语言,通过实例讲解如何使用Verilog设计单周期CPU。

相关教材章节:第四章 硬件描述语言与数字电路设计5. 单周期CPU仿真与优化:指导学生进行单周期CPU的仿真,分析性能瓶颈,探讨优化方案。

【最新】CPU实验——单周期MIPS处理器设计

【最新】CPU实验——单周期MIPS处理器设计

单周期MIPS处理器设计实验报告完成人:笪腾飞2012011263一、实验目的1、设计一个32位的单周期MIPS处理器,具备定时器、数码管等外设;2、编写一个编译器,可以将mips代码编译为二进制机器码;3、编写一个计算两个整数的最大公约数的汇编程序。

二、设计方案根据理论课所学的单周期MIPS处理器数据通路的知识,结合本次试验的具体要求,最终设计方案如下:1、系统时钟为了综合后能够在开发板上正确运行程序,我们决定采取50MHz的CPU时钟,因此编写了一个时钟分频模块,对开发板提供的100MHz时钟进行二分频,从而得到50MHz时钟。

2、PC产生模块原理图如下:如上图左半部分所示,多路选择器由一个always语句中的if…else if…else语句实现。

其中,将ALU中的加减法部分提取出来实现一个加法器,用于产生PC+4和ConBA两个PC来源。

将I型指令中的16位立即数左移两位后再符号位j m扩展成32位地址,与PC+4相加得到分支地址ConBA 。

将跳转指令中的26位目标地址左移两位后,与当前PC的高四位拼接得到跳转地址JT。

将第一个操作数寄存器中的值取出作为PC的一个输入,这是为了实现jr和jalr指令,从$Xp和$Ra寄存器中读取跳转地址。

ILLOP和XADR分别是发生中断和异常时的跳转地址。

下一指令地址的选择由PCSrc决定,而PCSrc是译码后由控制信号模块根据每条指令的操作码(opcode)和函数码(funct)产生。

3、译码模块原理图如上图右半部分所示,将PC作为ROM模块的地址输入,输出即为PC所对应的指令。

分别取出指令中的某些片段,得到$Rs,$Rt,$Rd,shamt,funct,16位立即数和26位跳转地址。

4、控制模块控制模块即控制信号产生模块,六位操作码OpCode,六位函数码[5:0] Funct,定时器中断信号irq和PC最高位PC31作为输入,输出为以下控制信号:(1) R型指令指示信号IsR,值为1表示当前指令为R型指令,否则非R型指令;(2) PC产生的选择信号[2:0] PCSrc,取值0,1,2,3,4及其它,分别选择下一指令不同的PC;(3) 目的寄存器选择信号[1:0]RegDst,被写入的寄存器有四种选择:$Rd,$Rt,$Ra,$Xp,分别由RegDst不同取值完成选择;(4) 写寄存器使能信号RegWr,值为1表示允许对寄存器进行写操作;(5) ALU第一个操作数选择信号ALUSrc1,值为1表示选择将移位量shamt 进行0扩展后作为输入,值为0表示将$Rs寄存器中的值作为输入;(6) ALU第一个操作数选择信号ALUSrc1,值为1表示选择将扩展后的32位立即数作为输入,值为0表示将$Rt寄存器中的值作为输入;(7) ALU运算控制信号[5:0] ALUFunc,作为ALU的输入选择不同的运算操作;(8) 有无符号数指示信号Sign,值为1表示有符号数,值为0表示无符号数;(9) 写存储器使能信号MemWr,值为1表示允许对存储器进行写操作;(10) 读存储器使能信号MemRd,值为1表示允许对存储器进行读操作;(11) 写寄存器值的选择信号[1:0] MemToReg,选择ALU结果,存储器读取结果和PC+4其中之一作为写入目的寄存器的值;(12) 符号位扩展指示信号EXTOp,值为1表示对16位立即数进行符号位扩展,值为0表示0扩展;(13) 立即数高位取指令指示信号LUOp,值为1表示当前指令为lui指令,选择将立即数载入高16位低位填0的32位立即数作为ALU输入,值为0表示将正常扩展后的32位立即数作为ALU输入;控制信号的具体产生过程此处略去,在控制信号说明文件中进行详述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的1.了解微处理器的基本结构。

2.掌握哈佛结构的计算机工作原理。

3.学会设计简单的微处理器。

4.了解软件控制硬件工作的基本原理。

二、实验任务利用HDL语言,基于Xilinx FPGA nexys4实验平台,设计一个能够执行以下MIPS指令集的单周期类MIPS处理器,要求完成所有支持指令的功能仿真,验证指令执行的正确性,要求编写汇编程序将本人学号的ASCII码存入RAM的连续内存区域。

(1)支持基本的算术逻辑运算如add,sub,and,or,slt,andi指令(2)支持基本的内存操作如lw,sw指令(3)支持基本的程序控制如beq,j指令三、实验过程1、建立工程在ISE 14.7软件中建立名为Lab1 的工程文件。

芯片系列选择Artix7,具体芯片型号选择XC7A100T,封装类型选择CSG324,速度信息选择-1。

2、分模块设计1)指令存储器ROM设计新建IP core Generator,命名为irom。

设定的指令存储器大小为128字,指令存储器模块在顶层模块中被调用。

输入为指令指针(PC)与时钟信号(clkin),输出为32位的机器指令,并将输出的机器指令送到后续的寄存器组模块、控制器模块、立即数符号扩展模块进行相应的处理。

然后制作COE文件。

先使用UltraEdit编辑代码,代码如下main:addi $2,$0,85sw $2,0($3)addi $2,$0,50sw $2,4($3)addi $2,$0,48sw $2,8($3)addi $2,$0,49sw $2,12($3)addi $2,$0,53 #sw $2,16($3)addi $2,$0,49 #sw $2,20($3)addi $2,$0,51 #sw $2,24($3)addi $2,$0,52 #sw $2,28($3)addi $2,$0,54 #sw $2,32($3)addi $2,$0,52 #sw $2,36($3)j main将其导入QtSpim中,选中机器码,加上前缀并将最后一行0x08100009修改为0x08000000,代码如下MEMORY_INITIALIZATION_RADIX=16;MEMORY_INITIALIZATION_VECTOR=20020055,ac620000,20020032,ac620004,20020030,ac620008,20020031,ac62000c,20020035,ac620010,20020031,ac620014,20020033,ac620018,20020034,ac62001c,20020036,ac620020,20020034,ac620024,08000000,保存为.coe文件,在ROM模块里调用。

2)数据存储器RAM设计新建IP core Generator,命名为dram。

数据存储器为RAM类型的存储器,并且需要独立的读写信号控制。

因此其对外的接口为clk、we、datain、addr;输出信号为dataout。

当时钟上升沿到来时,如果写信号(we)为真,根据addr 所表示的地址找到对应的存储单元,并将输入的数据(datain)写到对应的存储单元中;如果写信号为假,则根据addr所表示的地址,将对应存储单元的数据送到输出端(dataout)。

在本实验中调用ISE提供的IP核进行设计,设定的数据存储器大小为64字。

数据存储器模块在顶层模块中被调用。

输入的时钟信号来自于顶层模块的clkin,addr信号来自于ALU单元的输出端(对基地址与偏移量执行加操作),datain来自于寄存器组的第二个数据输出端(Rtdata),而控制信号we则来自于控制器对指令的译码。

输出数据dataout通过一个选择器(MUX3)决定是否写入到相应的寄存器。

初始化dram值:0x55555555,在以后的仿真过程中可以用于验证是否正确调用3)立即数符号扩展模块设计对于I型指令,将指令的低十六位作为立即数符号扩展模块的输入inst[15:0],如果十六位立即数的最高位(即符号位)为1,则在inst[15:15]前面补16个1,如果为0,则在前面补16个0。

然后将符号扩展之后的data[31:0]通过一个选择器(即MUX2)输送到ALU单元的第二个源操作数输入端(即input2)。

代码如下:module signext(input [15:0] inst,output [31:0] data);assign data=inst[15:15]?{16'hffff,inst}:{16'h0000,inst};endmodule4)寄存器组模块该模块的输入为clk、RegWriteData、RegWriteAddr、RegWriteEn、RsAddr、RtAddr和reset,输出信号为RsData和RtData。

由于$0一直输出0,因此当RsAddr、RtAddr为0时,RsData以及RtData必须输出0,否则输出相应地址寄存器数据。

另外,当RegWriteEn信号有效时,数据应该写入RegWriteAddr 寄存器,并且每次复位时所有寄存器都清零。

寄存器组模块在顶层模块中被调用。

clk信号来自于顶层模块的clkin,reset 信号来自于顶层模块的reset,RegWriteData来自于ALU单元的运算结果输出端或者是数据存储器的输出端(通过一个选择器MUX3进行选择),RegWriteAddr、RsAddr、RtAddr来自于指令的对应位,RegWriteEn来自于控制器对指令的译码。

输出信号Rsdata与Rtdata则分别来自于Rsaddr与Rtaddr 对应的寄存器。

代码如下:module regFile(input clk,input reset,input [31:0] regWriteData,input [4:0] regWriteAddr,input regWriteEn,output [31:0] RsData,output [31:0] RtData,input [4:0] RsAddr,input [4:0] RtAddr);reg[31:0] regs[0:31];assign RsData = (RsAddr == 5'b0)?32'b0:regs[RsAddr];assign RtData = (RtAddr == 5'b0)?32'b0:regs[RtAddr];integer i;always @(posedgeclk)beginif(!reset)beginif(regWriteEn==1)beginregs[regWriteAddr]=regWriteData;endendelsebeginfor(i=0;i<31;i=i+1)regs[i]=0;regs[31]=32'hffffffff;endendendmodule5)控制器模块控制器输入为指令的opCode字段,即操作码。

操作码经过主控制单元的译码,给ALUCtrl、Data Memory、Registers、Muxs等部件输出正确的控制信号。

该模块在顶层模块中被调用,输入的opcode来自于指令的前6位,而输出信号aluSrc、MemToReg、RegWrite、MemRead、MemWrite、branch、aluop 和jmp则是对6位opcode的译码。

代码如下:module ctr(input [5:0] opCode,output regDst,output aluSrc,output memToReg,output regWrite,output memRead,output memWrite,output branch,output [1:0] aluop,output jmp);regregDst;regaluSrc;regmemToReg;regregWrite;regmemRead;regmemWrite;reg branch;reg[1:0] aluop;regjmp;always @(opCode)begincase(opCode)6'b000010://jmpbeginregDst=0;aluSrc=0;memToReg=0; regWrite=0; memRead=0; memWrite=0; branch=0; aluop=2'b00; jmp=1;end6'b000000://R beginregDst=1; aluSrc=0; memToReg=0; regWrite=1; memRead=0; memWrite=0; branch=0; aluop=2'b10; jmp=0;end6'b100011://lw beginregDst=0; aluSrc=1; memToReg=1; regWrite=1; memRead=1; memWrite=0; branch=0; aluop=2'b00; jmp=0;end6'b101011://sw beginregDst=0;aluSrc=1; memToReg=0; regWrite=0; memRead=0; memWrite=1; branch=0;aluop=2'b00;jmp=0;end6'b000100://beq beginregDst=0;aluSrc=0; memToReg=0; regWrite=0; memRead=0; memWrite=0; branch=1;aluop=2'b01;jmp=0;end//6'b001100://andi 6'b001000://andi beginregDst=0;aluSrc=1; memToReg=0; regWrite=1;memRead=0;memWrite=0;branch=0;//aluop=2'b11;aluop=2'b00;jmp=0;enddefault:beginregDst=0;aluSrc=0;memToReg=0;regWrite=0;memRead=0;memWrite=0;branch=0;aluop=2'b00;jmp=0;endendcaseendendmodule6)运算器(ALU)模块微处理器支持的add、sub、and、or和slt运算指令,需要利用ALU单元实现运算,同时数据存储指令sw和lw也需要通过ALU单元计算存储器地址,条件跳转指令beq需要ALU来比较两个寄存器是否相等。

相关文档
最新文档