带电粒子在磁场中的运动习题含答案
高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析

高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a2.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=. r 2=R tanβ=R 由得(3)粒子的轨道半径r 3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr 32+2×π(2r 3)2−r 32=9.0×10-4m 2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.3.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos d R a R L ≥+= ;min 0(632)3L T v π= 【解析】 【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则012qv B m v R =由几何关系:222113()()2L L R R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα0023sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得23L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得() min6323L Tvπ+=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.4.如图,圆心为O、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
带电粒子在匀强磁场中的运动练习题及答案解析

1.电子在匀强磁场中做匀速圆周运动.下列说法正确的是( ) A .速率越大,周期越大 B .速率越小,周期越大 C .速度方向与磁场方向平行 D .速度方向与磁场方向垂直解析:选D.由带电粒子在匀强磁场中做匀速圆周运动的周期公式T =2πmqB可知T 与v 无关,故A 、B 均错;当v 与B 平行时,粒子不受洛伦兹力作用,故粒子不可能做圆周运动,只有v ⊥B 时,粒子才受到与v 和B 都垂直的洛伦兹力,故C 错、D 对.2.(2011年厦门高二检测)1998年发射的“月球勘探者号”空间探测器,运用最新科技手段对月球进行近距离勘探,在研究月球磁场分布方面取得了新的成果.月球上的磁场极其微弱,探测器通过测量电子在月球磁场中的轨迹来推算磁场强弱的分布,图3-6-19中是探测器通过月球A 、B 、C 、D 四个位置时,电子运动的轨迹照片.设电子速率相同,且与磁场方向垂直,其中磁场最强的位置是( )图3-6-19解析:选A.由粒子轨道半径公式r =mvqB可知,磁场越强的地方,电子运动的轨道半径越小. 3.图3-6-20如图3-6-20所示,a 和b 带电荷量相同,以相同动能从A 点射入磁场,在匀强磁场中做圆周运动的半径r a =2r b ,则可知(重力不计)( ) A .两粒子都带正电,质量比m a /m b =4 B .两粒子都带负电,质量比m a /m b =4 C .两粒子都带正电,质量比m a /m b =1/4D.两粒子都带负电,质量比m a/m b=1/4解析:选B.由于q a=q b、E k a=E k b,动能E k=12mv2和粒子旋转半径r=mvqB,可得m=r2q2B22E k,可见m与半径r的平方成正比,故m a∶m b=4∶1,再根据左手定则判知粒子应带负电,故B 正确.4.(2009年高考广东单科卷)图3-6-21是质谱议的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是( )图3-6-21A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小解析:选ABC.因同位素原子的化学性质完全相同,无法用化学方法进行分析,故质谱仪就成为同位素分析的重要工具,A正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B正确.再由qE=qvB有v=E/B,C正确.在匀强磁场B0中R=mvqB,所以qm=vBR,D错误.5.图3-6-22如图3-6-22所示,在x轴上方有匀强电场,场强为E,在x轴下方有匀强磁场,磁感应强度为B,方向如图所示.在x轴上有一点M,离O点距离为L,现有一带电荷量为+q、质量为m 的粒子,从静止开始释放后能经过M 点,如果此粒子放在y 轴上,其坐标应满足什么关系(重力不计) 解析:由于此粒子从静止开始释放,又不计重力,要能经过M 点,其起始位置只能在匀强电场区域,其具体过程如下:先在电场中由y 轴向下做加速运动,进入匀强磁场中运动半个圆周再进入电场做减速运动,速度为零后又回头进入磁场,其轨迹如图所示(没有画出电场和磁场方向),故有:L =2nR (n =1,2,3,…)①又因在电场中,粒子进入磁场时的速度为v , 则有:qE ·y =12mv 2②在磁场中,又有:Bqv =mv 2R③由①②③得y =B 2qL 28n 2mE(n =1,2,3……).答案:见解析一、选择题1.(2011年杭州十四中高二检测)一个带电粒子以初速度v 0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域.设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图3-6-23中的虚线所示.在下图所示的几种情况中,可能出现的是( )图3-6-23解析:选、C 选项中粒子在电场中向下偏转,所以粒子带正电,再进入磁场后,A 图中粒子应逆时针转,正确;C 图中粒子应顺时针转,错误.同理可以判断B 错、D 对. 2.如图3-6-24所示,一电子以与磁场方向垂图3-6-24直的速度v 从P 处沿PQ 方向进入长为d 、宽为h 的匀强磁场区域,从N 处离开磁场,若电子质量为m ,带电荷量为e ,磁感应强度为B ,则( ) A .电子在磁场中运动的时间t =d /v B .电子在磁场中运动的时间t =h /v C .洛伦兹力对电子做的功为Bevh D .电子在N 处的速度大小也是v解析:选D.洛伦兹力不做功,所以电子在N 处速度大小也为v ,D 正确、C 错,电子在磁场中的运动时间t =弧长v ≠d v ≠hv,A 、B 均错.3.图3-6-25在图3-6-25中,水平导线中有电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( ) A .沿路径a 运动,轨迹是圆 B .沿路径a 运动,轨迹半径越来越大 C .沿路径a 运动,轨迹半径越来越小 D .沿路径b 运动,轨迹半径越来越小解析:选B.电流下方的磁场方向垂直纸面向外,且越向下B 越小,由左手定则知电子沿a 路径运动,由r =mvqB知,轨迹半径越来越大.4.图3-6-26一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图3-6-26所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定( ) A .粒子从a 到b ,带正电 B .粒子从a 到b ,带负电 C .粒子从b 到a ,带正电 D .粒子从b 到a ,带负电解析:选C.垂直于磁场方向射入匀强磁场的带电粒子受洛伦兹力作用,使粒子做匀速圆周运动,半径R =mv /qB .由于带电粒子使沿途的空气电离,粒子的能量减小,磁感应强度B 、带电荷量不变.又据E k =12mv 2知,v 在减小,故R 减小,可判定粒子从b 向a 运动;另据左手定则,可判定粒子带正电,C 选项正确. 5.如图3-6-27是图3-6-27某离子速度选择器的原理示意图,在一半径R =10 cm 的圆柱形筒内有B =1×10-4T 的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔a 、b 分别作为入射孔和出射孔.现有一束比荷为qm=2×1011C/kg 的正离子,以不同角度α入射,最后有不同速度的离子束射出.其中入射角α=30°,且不经碰撞而直接从出射孔射出的离子的速度v 大小是( )A .4×105m/s B .2×105m/s C .4×106 m/s D .2×106m/s答案:C 6.图3-6-28如图3-6-28所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子从S 点沿SP方向同时射入磁场.其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,设二粒子从S到a、b所需时间分别为t1和t2,则t1∶t2为(重力不计)( ) A.1∶3 B.4∶3C.1∶1 D.3∶2解析:选D.如图所示,可求出从a点射出的粒子对应的圆心角为90°.从b点射出的粒子对应的圆心角为60°.由t=α2πT,可得:t1∶t2=90°∶60°=3∶2,故D正确.7.图3-6-29目前世界上正研究的一种新型发电机叫磁流体发电机,如图3-6-29表示它的发电原理:将一束等离子体(即高温下电离的气体,含有大量带正电和带负电的微粒,而从整体来说呈中性)沿图所示方向喷射入磁场,磁场中有两块金属板A、B,这时金属板上就聚集了电荷.在磁极配置如图中所示的情况下,下列说法正确的是( )A.A板带正电B.有电流从b经用电器流向aC.金属板A、B间的电场方向向下D.等离子体发生偏转的原因是离子所受洛伦兹力大于所受静电力解析:选BD.等离子体射入磁场后,由左手定则知正离子受到向下的洛伦兹力向B板偏转,故B板带正电,B板电势高,电流方向从b流向a,电场的方向由B板指向A板,A、C错误,B正确;当Bvq>Eq时离子发生偏转,故D正确.8.带正电粒子(不计重力)以水平向右的初速度v0,先通过匀强电场E,后通过匀强磁场B,如图3-6-30甲所示,电场和磁场对该粒子做功为W1.若把该电场和磁场正交叠加,如图乙所示,再让该带电粒子仍以水平向右的初速度v0(v0<EB)穿过叠加场区,在这个过程中电场和磁场对粒子做功为W 2,则( )图3-6-30A .W 1<W 2B .W 1=W 2C .W 1>W 2D .无法判断解析:选C.电场力做的功W =Eqy ,其中y 为粒子沿电场方向偏转的位移,因图乙中洛伦兹力方向向上,故图乙中粒子向下偏转的位移y 较小,W 1>W 2,故C 正确.9.(2011年洛阳高二检测)MN 板两侧都是磁感强度为B 的匀强磁场,方向如图3-6-31所示,带电粒子从a 位置以垂直磁场方向的速度开始运动,依次通过小孔b 、c 、d ,已知ab =bc =cd ,粒子从a 运动到d 的时间为t ,则粒子的比荷为( )图3-6-31解析:选A.粒子从a 运动到d 依次经过小孔b 、c 、d ,经历的时间t 为3个T 2,由t =3×T2和T =2πmBq.可得:q m =3πtB,故A 正确.二、计算题10.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m .求: (1)质子最初进入D 形盒的动能多大 (2)质子经回旋加速器最后得到的动能多大 (3)交流电源的频率是什么解析:(1)粒子在电场中加速,由动能定理得:eU =E k -0,解得E k =eU .(2)粒子在回旋加速器的磁场中绕行的最大半径为R ,由牛顿第二定律得:evB =m v 2R①质子的最大动能:E km =12mv 2②解①②式得:E km =e 2B 2R 22m.(3)f =1T =eB 2πm.答案:(1)eU (2)e 2B 2R 22m (3)eB2πm11.(2011年长春市高二检测)质量为m 、电荷量为q 的带负电粒子自静止开始释放,经M 、N 板间的电场加速后,从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L ,如图3-6-32所示.已知M 、N 两板间的电压为U ,粒子的重力不计.求:匀强磁场的磁感应强度B .图3-6-32解析:作粒子经电场和磁场中的轨迹图,如图所示.设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12mv 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:qvB =m v 2r②由几何关系得:r 2=(r -L )2+d 2③ 联立求解①②③式得:磁感应强度B =2L L 2+d 22mUq.答案:2L L 2+d 22mUq12.图3-6-33如图3-6-33所示,有界匀强磁场的磁感应强度B =2×10-3T ;磁场右边是宽度L = m 、场强E =40 V/m 、方向向左的匀强电场.一带电粒子电荷量q =-×10-19C ,质量m =×10-27kg ,以v =4×104m/s 的速度沿OO ′垂直射入磁场,在磁场中偏转后进入右侧的电场,最后从电场右边界射出.(不计重力)求: (1)大致画出带电粒子的运动轨迹; (2)带电粒子在磁场中运动的轨道半径; (3)带电粒子飞出电场时的动能E k . 解析:(1)轨迹如图(2)带电粒子在磁场中运动时,由牛顿运动定律,有qvB =m v 2RR =mv qB=错误! m = m(3)E k =EqL +12mv 2=40××10-19× J+12××10-27×(4×104)2 J =×10-18J.答案:(1)轨迹见解析图 (2) m (3)×10-18J。
物理带电粒子在磁场中的运动题20套(带答案)

物理带电粒子在磁场中的运动题20套(带答案)一、带电粒子在磁场中的运动专项训练1.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb(3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
4T t =m t =2t2111v ev B m R =T =122R mv Be=ππ 联立解得:t Bbπ=(3)临界态1:正电子恰好越过分界线ef ,需满足 轨迹半径R 1=3d1ev B =m 211v R11U ev B ed=⑪ 联立解得:2213U d B b =临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1 有(R 2﹣14d )2+9d 2=22R 2Bev =m 222v RBe 2v =2U e d 联立解得:2221458B d bU =解得:U 的范围是:3B 2d 2b <U <221458B d b2.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.10.1R m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径3.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
磁场及带电粒子在磁场中的运动典型题目(含答案)

.第 9 讲磁场及带电粒子在磁场中的运动2(2018·山东省历城高三下学期模拟 )如图所示,用绝缘细线悬挂一一、选择题 (本题共 8 小题,其中 1~ 4 题为单选, 5~8 题为多选 )个导线框,导线框是由两同心半圆弧导线和在同一条水平直线上的1. (2018·山东省潍坊市高三下学期一模 ) 如图所示,导体棒ab 用直导线 EF、 GH 连接而成的闭合回路,导线框中通有图示方向的电绝缘细线水平悬挂,通有由 a 到 b 的电流。
ab 正下方放一圆形线流,处于静止状态。
在半圆弧导线的圆心处沿垂直于导线框平面的圈,线圈通过导线,开关与直流电源连接。
开关闭合瞬间,导体棒方向放置一根长直导线 O。
当 O 中通以垂直纸面方向向里的电流时ab 将 ( B )( D )A.向外摆动A.长直导线 O 产生的磁场方向沿着电流方向看为逆时针方向B.向里摆动B.半圆弧导线 ECH 受安培力大于半圆弧导线 FDG 受安培力C.保持静止,细线上张力变大C. EF所受的安培力方向垂直纸面向外D.保持静止,细线上张力变小D.从上往下看,导线框将顺时针转动[解析 ] 开关闭合瞬间,圆形线圈的电流顺时针方向,根据右手螺旋定则可知导体棒 ab 的磁场方向竖直向下,根据左手定则可知导体棒ab 将向里摆动,[解析 ] 当直导线 O 中通以垂直纸面方向向里的电流时,由安培定则可判断出故 B 正确, ACD 错误;故选 B。
O 产生的磁场方向为顺时针方向,选项 A 错误;磁感线是以 O 为长直导线圆心的同心圆,半圆弧导线与磁感线平行不受安培力,选项 B 错误;由左手定则可判断出直导线EF 所受的安培力方向垂直纸面向里,选项 C 错误;GH 所受的安培力方向垂直纸面向外,从上往下看,导线框将顺时针转动,选项 D 正确;故选D。
3 (2018·河南省郑州市高三下学期模拟 )如图所示,在边长为L 的正方形 ABCD 阴影区域内存在垂直纸面的匀强磁场,一质量为m、电荷量为 q(q<0) 的带电粒子以大小为v0的速度沿纸面垂直AB 边射入正方形,若粒子从AB 边上任意点垂直射入,都只能从 C 点射出磁场,不计粒子的重力影响。
带电粒子在有界磁场中的运动 经典练习(含答案详解)

带电粒子在有界磁场中的运动图38101.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场方向射入磁场中,并从B 点射出.∠AOB =120°,如图3810所示,则该带电粒子在磁场中运动的时间为( )A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D解析 从AB 弧所对圆心角θ=60°,知t =16 T =πm 3qB.但题中已知条件不够,没有此选项,另想办法找规律表示t .由匀速圆周运动t =ABv 0,从题图分析有R =3r ,则:AB =R ·θ=3r ×π3=33πr ,则t =AB v 0=3πr 3v 0.D 正确. 带电粒子在复合场中的运动图38112.一正电荷q 在匀强磁场中,以速度v 沿x 正方向进入垂直纸面向里的匀强磁场中,磁感应强度为B ,如图3811所示,为了使电荷能做直线运动,则必须加一个电场进去,不计重力,此电场的场强应该是( )A .沿y 轴正方向,大小为Bv qB .沿y 轴负方向,大小为BvC .沿y 轴正方向,大小为v BD .沿y 轴负方向,大小为Bv q答案 B解析 要使电荷能做直线运动,必须用电场力抵消洛伦兹力,本题正电荷受洛伦兹力的方向沿y 轴正方向,故电场力必须沿y 轴负方向且qE =Bqv ,即E =Bv .带电粒子在组合场中的运动图38123.如图3812所示,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场.不计粒子重力.求:(1)电场强度的大小E ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从进入电场到离开磁场经历的总时间t .答案 见解析解析 粒子的运动轨迹如右图所示(1)设粒子在电场中运动的时间为t 1则有2h =v 0t 1,h =12at 21根据牛顿第二定律得Eq =ma求得E =mv 202qh.(2)设粒子进入磁场时速度为v ,在电场中,由动能定理得Eqh =12mv 2-12mv 20又Bqv =m v 2r, 解得r =2mv 0Bq(3)粒子在电场中运动的时间t 1=2h v 0粒子在磁场中运动的周期T =2πr v =2πm Bq设粒子在磁场中运动的时间为t 2,t 2=38T ,求得t =t 1+t 2=2h v 0+3πm 4Bq.(时间:60分钟)题组一 带电粒子在匀强磁场中的匀速圆周运动1.(2014·临沂高二检测)运动电荷进入磁场(无其他场)中,可能做的运动是( )A .匀速圆周运动B .平抛运动C .自由落体运动D .匀速直线运动答案 AD解析 若运动电荷平行磁场方向进入磁场,则电荷做匀速直线运动,若运动电荷垂直磁场方向进入磁场,则电荷做匀速圆周运动,A 、D 正确;由于电荷的质量不计,故电荷不可能做平抛运动或自由落体运动.B 、C 错误.图38132.如图3813所示,带负电的粒子以速度v 从粒子源P 处射出,若图中匀强磁场范围足够大(方向垂直纸面),则带电粒子的可能轨迹是( )A .aB .bC .cD .d答案 BD解析 粒子的出射方向必定与它的运动轨迹相切,故轨迹a 、c 均不可能,正确答案为B 、D.图38143.(2013·孝感高二检测)如图3814所示,在x >0,y >0的空间有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有四个质量及电荷量均相同的带电粒子,由x 轴上的P 点以不同的初速度平行于y 轴射入此磁场,其出射方向如图所示,不计重力的影响,则( )A .初速度最大的粒子是沿①方向射出的粒子B .初速度最大的粒子是沿②方向射出的粒子C .在磁场中运动时间最长的是沿③方向射出的粒子D .在磁场中运动时间最长的是沿④方向射出的粒子答案 AD解析 显然图中四条圆弧中①对应的半径最大,由半径公式R =mv Bq可知,质量和电荷量相同的带电粒子在同一个磁场中做匀速圆周运动的速度越大,半径越大,A 对B 错;根据周期公式T =2πm Bq 知,当圆弧对应的圆心角为θ时,带电粒子在磁场中运动的时间为t =θm Bq,圆心角越大则运动时间越长,圆心均在x 轴上,由半径大小关系可知④的圆心角为π,且最大,故在磁场中运动时间最长的是沿④方向射出的粒子,D 对C 错.图38154.利用如图3815所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q 、具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A .粒子带正电B .射出粒子的最大速度为qB L +3d 2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大答案 BC解析 由左手定则可判断粒子带负电,故A 错误;由题意知:粒子的最大半径r max =L +3d 2、粒子的最小半径r min =L 2,根据r =mv qB,可得v max =qB L +3d 2m 、v min =qBL 2m,则v max -v min =3qBd 2m ,故可知B 、C 正确,D 错误.图38165.如图3816所示,左右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电荷量为q 的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.2+2Bqd mC.2-2Bqdm D.2Bqd 2m答案 BC解析 粒子射入磁场后做匀速圆周运动,由r =mv 0qB知,粒子的入射速度v 0越大,r 越大,当粒子的径迹和边界QQ ′相切时,粒子刚好不从QQ ′射出,此时其入射速度v 0应为最大.若粒子带正电,其运动轨迹如图(a)所示(此时圆心为O 点),容易看出R 1sin 45°+d=R 1,将R 1=mv 0qB 代入上式得v 0=2+2Bqd m,B 项正确.若粒子带负电,其运动轨迹如图(b)所示(此时圆心为O ′点),容易看出R 2+R 2cos 45°=d ,将R 2=mv 0qB代入上式得v 0=2-2Bqdm ,C 项正确.图38176.如图3817所示的矩形abcd 范围内有垂直纸面向外的磁感应强度为B 的匀强磁场,且ab 长度为L ,现有比荷为q m的正电离子在a 处沿ab 方向射入磁场,求离子通过磁场后的横向偏移y (设离子刚好从C 点飞出).答案 mv Bq -mv Bq 2-L 2解析 离子作匀速圆周运动从a →c ,易知圆心在图中的O 处,即a 、c 两处速度垂线的交点处.横向偏移y =aO -dO =R -R 2-L 2由Bqv =mv 2R ,得R =mv Bq ,故有y =mv Bq -mv Bq 2-L 2图38187.如图3818所示,分布在半径为r 的圆形区域内的匀强磁场,磁感应强度为B ,方向垂直纸面向里.电量为q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆的半径AO 方向射入磁场,离开磁场时速度方向偏转了60°角.(不计粒子的重力)求:(1)粒子做圆周运动的半径.(2 )粒子的入射速度.答案 (1)3r (2)3Bqr m解析 (1)设带电粒子在匀强磁场中做匀速圆周运动半径为R ,如图所示,∠OO ′A = 30°,由图可知,圆运动的半径R =O ′A =3r(2)根据牛顿运动定律,有:Bqv =m v 2R有:R =mv Bq故粒子的入射速度v =3Bqr m .题组二 带电粒子的运动在科技中的应用图38198.如图3819所示是粒子速度选择器的原理图,如果粒子所具有的速率v =E /B ,那么( )A .带正电粒子必须沿ab 方向从左侧进入场区,才能沿直线通过B .带负电粒子必须沿ba 方向从右侧进入场区,才能沿直线通过C .不论粒子电性如何,沿ab 方向从左侧进入场区,都能沿直线通过D .不论粒子电性如何,沿ba 方向从右侧进入场区,都能沿直线通过答案 AC解析 按四个选项要求让粒子进入,洛伦兹力与电场力等大反向抵消了的就能沿直线匀速通过磁场.图38209.如图3820所示是磁流体发电机原理示意图.A、B极板间的磁场方向垂直于纸面向里.等离子束从左向右进入板间.下述正确的是( )A.A板电势高于B板,负载R中电流向上B.B板电势高于A板,负载R中电流向上C.A板电势高于B板,负载R中电流向下D.B板电势高于A板,负载R中电流向下答案 C解析等离子束指的是含有大量正、负离子,整体呈中性的离子流,进入磁场后,正离子受到向上的洛伦兹力向A板偏,负离子受到向下的洛伦兹力向B板偏.这样正离子聚集在A 板,而负离子聚集在B板,A板电势高于B板,电流方向从A→R→B.图382110.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图3821所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为( ) A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正答案 A解析血液中的粒子在磁场的作用下会在a,b之间形成电势差,当电场给粒子的力与洛伦兹力大小相等时达到稳定状态(与速度选择器原理相似),血流速度v=EB≈1.3 m/s,又由左手定则可得a 为正极,b 为负极,故选A.图382211.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图3822,离子源S 产生的各种不同正离子束(速度可看作为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P 上,设离子在P 上的位置到入口处S 1的距离为x ,可以判断( )A .若离子束是同位素,则x 越小,离子质量越大B .若离子束是同位素,则x 越小,离子质量越小C .只要x 相同,则离子质量一定相同D .x 越大,则离子的比荷一定越大答案 B解析 由qU =12mv 2 ① qvB =mv 2r ② 解得r =1B2mU q ,又x =2r 故选B.题组三 带电粒子在复合场中的运动图382312.如图3823所示,匀强磁场的方向垂直纸面向里,匀强电场的方向竖直向下,有一正离子恰能以速率v 沿直线从左向右水平飞越此区域.下列说法正确的是( )A .若一电子以速率v 从右向左飞入,则该电子也沿直线运动B .若一电子以速率v 从右向左飞入,则该电子将向上偏转C .若一电子以速率v 从右向左飞入,则该电子将向下偏转D .若一电子以速率v 从左向右飞入,则该电子也沿直线运动答案 BD解析 若电子从右向左飞入,静电力向上,洛伦兹力也向上,所以电子上偏,选项B 正确,A 、C 错误;若电子从左向右飞入,静电力向上,洛伦兹力向下.由题意,对正电荷有qE =Bqv ,会发现q 被约去,说明等号的成立与q 无关,包括q 的大小和正负,所以一旦满足了E =Bv ,对任意不计重力的带电粒子都有静电力大小等于洛伦兹力大小,显然对于电子两者也相等,所以电子从左向右飞入时,将做匀速直线运动,选项D 正确.图382413.一个带电微粒在如图3824所示的正交匀强电场和匀强磁场中的竖直平面内做匀速圆周运动,求:(1)该带电微粒的电性?(2)该带电微粒的旋转方向?(3)若已知圆的半径为r ,电场强度的大小为E ,磁感应强度的大小为B ,重力加速度为g ,则线速度为多少?答案 (1)负电荷 (2)逆时针 (3)gBr E解析 (1)带电粒子在重力场、匀强电场和匀强磁场中做匀速圆周运动,可知,带电粒子受到的重力和电场力是一对平衡力,重力竖直向下,所以电场力竖直向上,与电场方向相反,故可知带电粒子带负电荷.(2)磁场方向向外,洛伦兹力的方向始终指向圆心,由左手定则可判断粒子的旋转方向为逆时针(四指所指的方向与带负电的粒子的运动方向相反).(3)由粒子做匀速圆周运动,得知电场力和重力大小相等,得:mg =qE ①带电粒子在洛伦兹力的作用下做匀速圆周运动的半径为: r =mv qB② ①②联立得:v =gBr E题组四 带电粒子在电场和磁场组合场中的运动图382514.如图3825所示,在x 轴上方有垂直于xy 平面向里的匀强磁场,磁感应强度为B .在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m ,电荷量为-q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与点O 的距离为L ,求此粒子射出的速度v 和运动的总路程s .(重力不计)答案 qBL 4m πL 2+qB 2L 216mE解析 由题意知第3次经过x 轴的运动如图所示由几何关系:L =4R设粒子初速度为v ,则有:qvB =m v 2R可得:v =qBL 4m; 设粒子进入电场作减速运动的最大路程为L ′,加速度为a ,则有:v 2=2aL ′qE =ma则电场中的路程:L ′=qB 2L 216mE粒子运动的总路程:s =2πR +2L ′=πL 2+qB 2L 216mE15.如图3826所示,平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成60°角射入磁场,最后从y 轴负半轴上的P 点与y 轴正方向成60°角射出磁场,不计粒子重力,求:图3826(1)粒子在磁场中运动的轨道半径R ;(2)匀强电场的场强大小E .答案 (1)2mv 0qB (2)3-3v 0B 2解析 (1)因为粒子在电场中做类平抛运动,设粒子过N 点时的速度为v ,把速度v 分解如图甲所示甲根据平抛运动的速度关系,粒子在N 点进入磁场时的速度v =v x cos 60°=v 0cos 60°=2v 0. 如图乙所示,乙分别过N 、P 点作速度方向的垂线,相交于Q 点,则Q 是粒子在磁场中做匀速圆周运动的圆心根据牛顿第二定律qvB =mv 2R所以R =mv qB, 代入v =2v 0得粒子的轨道半径R =2mv 0qB(2)粒子在电场中做类平抛运动,设加速度为a,运动时间为t由牛顿第二定律:qE=ma①设沿电场方向的分速度为v y=at②粒子在电场中x轴方向做匀速运动,由图根据粒子在磁场中的运动轨迹可以得出:粒子在x轴方向的位移:R sin 30°+R cos 30°=v0t③又v y=v0tan 60°④由①②③④可以解得E=3-3v0B2.。
带电粒子在电磁场中的运动(含答案)

带电粒子在电磁场中的运动1、回旋加速器是加速带电粒子的装置,其主体部分是两个D 形金属盒,两金属盒处在垂直于盒底的匀强磁场中,与高频交流电源相连接后,使粒子每次经过两盒间的狭缝时都能得到加速,如图所示。
现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是A.仅减小磁场的磁感应强度B.仅减小狭缝间的距离C.仅增大高频交流电压D.仅增大金属盒的半径2、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S 0A=S 0C,则下列相关说法中正确的是A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S 0的带电粒子的速率等于D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶23、为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计。
该装置由绝缘材料制成,长、宽、高分别为a 、b 、c,左右两端开口。
在垂直于上下底面方向加磁感应强度大小为B 的匀强磁场,在前后两个内侧面分别固定有金属板作为电极。
污水充满管口从左向右流经该装置时,接在M 、N 两端间的电压表将显示两个电极间的电压U 。
若用Q 表示污水流量(单位时间内排出的污水体积),下列说法中正确的是A.N 端的电势比M 端的高B.若污水中正、负离子数相同,则前后表面的电势差为零C.电压表的示数U 跟a 和b 都成正比,跟c 无关D.电压表的示数U 跟污水的流量Q 成正比 4、如图(甲)所示,两块水平放置的平行金属板,板长L=1.4m,板距d=30cm 。
两板间有B=1.25T,垂直于纸面向里的匀强磁场。
在两板上加如图(乙)所示的脉冲电压。
在t=0时,质量m=2×10-15kg ,电量为q=1×10-10C 的正离子,以速度为4×103m/s 从两板中间水平射入。
试求:粒子在板间做什么运动?画出其轨迹。
5、如图所示,足够大的平行挡板A 1、A 2竖直放置,间距6L 。
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在磁场中的运动 练习题1. 如图所示,一个带正电荷的物块m 由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( )A .D′点一定在D 点左侧B .D′点一定与D 点重合C .D″点一定在D 点右侧 D .D″点一定与D 点重合2. 一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中.现给圆环向右初速度v 0,A .B .C .D .子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,其中a 静止,b 向右做匀速运动,c 向左匀速运动,比较它们的重力Ga 、Gb 、Gc 的大小关系,正确的是( )A .Ga 最大B .Gb 最大C .Gc 最大D .Gb 最小5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。
现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ∆21B. t ∆2C. t ∆31D. t ∆36. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个点.现有一电子从P点沿PQ方向射出,不计电子的重力,则. ( )A.若电子从P点出发恰好经原点O第一次射出磁场分界线,则电子运动的路程一Lπ定为2B.若电子从P点出发经原点O到达Q点,则电子运动的路程一定为LπC.若电子从P点出发经原点O到达Q点,则电子运动的路程可能为2LπD.若电子从P点出发经原点O到达Q点,则n Lπ(n为任意正整数)都有可能是电子运动的路程7. 如图,一束电子(电量为e)以速度v 0垂直射入磁感应强度为B,宽为d的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,求:(1)电子的质量是多少?(2)穿过磁场的时间是多少?(3)若改变初速度,使电子刚好不能从A边射出,则此时速度v是多少8. 点S为电子源,它只在下图所示的纸面上360°范围内发射速率相同、质量为m、电荷量为e的电子,MN是一块足够大的竖直挡板,与S的水平距离OS=L。
挡板左侧有垂直纸面向里的匀强磁场,磁感应强度为B,求:(1)要使S发射的电子能够到达挡板,则发射电子的速度至少为多大?(2)若电子发射的速度为eBL/m,则挡板被击中的范围有多大9. 空间分布着有理想边界的匀强电场和匀强磁场。
左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向外。
一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程.求:(1)中间磁场区域的宽度d;(2)带电粒子从O点开始运动到第一次回到O点所用时间t。
10. 在xoy平面内y>0的区域中存在垂直于纸面向外的匀强磁场,磁感应强度大小为B0,在y<0的区域也存在垂直于纸面向外的匀强磁场(图中未画出),一带正电的粒子从y轴上的P点垂直于磁场入射,速度方向与y轴正向成45°。
粒子第一次进入y<0的区域时速度方向与x轴正向成135°,再次在y>0的区域运动时轨迹恰与y轴相切。
已知OP的距离为a2,粒子的重力不计。
求:?(1)y<0的区域内磁场的磁感应强度大小;?(2)粒子第2n(n∈N*)次通过x轴时离O点的距离。
(本问只需写出结果)11. 图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里,图中右边有一边长为a的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里,假设一系列电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射人金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域,不计重力。
(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量;(2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3/4a ,求离子乙的质量;(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。
12. 如图所示,在边长为L 的等边三角形ACD 区域内,存在磁感应强度为B 、方向垂直纸面向外的匀强磁场。
现有一束质量为m 、电荷量为+q 的带电粒子,以某一速度从AC 边中点P 、平行于CD 边垂直磁场射入,粒子的重力可忽略不计。
(1)若粒子进入磁场时的速度大小为v0,求粒子在磁场中运动的轨道半径;(2)若粒子能从AC 边飞出磁场,求粒子在磁场中运动的时间;?(3)为使粒子能CD 边飞出磁场,粒子进入磁场时的速度大小应满足什么条件 13. 如图所示,在半径为qBmv R 0的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度B ,圆形区域右侧有一竖直感光板,从圆弧顶点P 以速率v0的带正电粒子平行于纸面进入磁场,已知粒子的质量为m ,电量为q ,粒子重力不计.(1)若粒子对准圆心射入,求它在磁场中运动的时间; (2)若粒子对准圆心射入,且速率为03v ,求它打到感光板上时速度的垂直分量;(3)若粒子以速度v 0从P 点以任意角入射,试证明它离开磁场后均垂直打在感光板上.参考答案:1. 【答案】BC 【解析】仅在重力场中时,物块由A 点至D 点的过程中,由动能定理得mgh -μmgs1cosα-μmgs2=0,即h -μs1cosα-μs2=0,由题意知A 点距水平面的高度h 、物块与斜面及水平面间的动摩擦因数μ、斜面倾角α、斜面长度s1为定值,所以s2与重力的大小无关,而在ABC 所在空间加竖直向下的匀强电场后,相当于把重力增大了,s2不变,D′点一定与D 点重合,B 项正确;在ABC 所在空间加水平向里的匀强磁场后,洛伦兹力垂直于接触面向上,正压力变小,摩擦力变小,重力做的功不变,所以D″点一定在D 点右侧,C 项正确.2. 【答案】ACD .【解析】由左手定则可知圆环所受洛伦兹力F 洛=qvB 的方向竖直向上,细杆对圆环的支持力FN ,圆环所受滑动摩擦力f=μFN ,圆环所受重力G=mg 方向竖直向下, 当qvB=mg 时,FN=0,故f=0,故圆环做匀速直线运动,故A 正确. 当qvB <mg 时,细杆对圆环的支持力FN 方向竖直向上,FN=mg-qvB ,故f >0,物体作减速运动,随速度v 的减小FN 逐渐增大,故滑动摩擦力f 逐渐增大,故物体的加速度a=f/m 逐渐增大,即物体作加速度逐渐增大的变减速运动,故C 正确,而B 错误.当qvB >mg 时,细杆对圆环的支持力FN 方向竖直向下,FN=qvB-mg ,故f >0,物体作减速运动,随速度v 的减小FN 逐渐减小,故滑动摩擦力f 逐渐减小,故物体的加速度a=f/m 逐渐减小,即物体作加速度逐渐减小的变减速运动,当qvB=mg 时,FN=0,故f=0,故圆环做匀速直线运动,故D 正确.3. 设粒子的质量为m ,带电量为q ,粒子射入电磁场时的速度为v0,则粒子沿直线通过场区时: Bqv0=Eq …①撤去磁场后,在电场力的作用下,从c 点射出场区,所以粒子应带正电荷;在此过程中,粒子做类平抛运动,设粒子的加速度a ,穿越电场所用时间为t ,则有:Eq=ma …② L=(1/2)at2…③ L=v0t …④撤去电场后,在洛仑兹力的作用下,粒子做圆周运动,洛仑兹力提供向心力:r v mB qv 20= …⑤ 由以上各式解得:r=L /2粒子做圆运动的轨迹如图,粒子将从a 点射出.故选:C .4. 【答案】CD 【解析】 a 球受力平衡,有Ga=qE ①重力和电场力等值、反向、共线,故电场力向上,由于电场强度向下,故球带负电; b 球受力平衡,有Gb+qvB=qE ② c 球受力平衡,有Gc=qvB+qE ③ 解得Gc >Ga >Gb 故选CD . 5. 【解析】:设有界圆磁场的半径为R ,带电粒子的做匀速圆周运动的半径为r ,OC 与OB 成600角,所以∠AO1C=60°,带电粒子做匀速圆周运动,从C 点穿出,画出轨迹,找到圆心O1,中,即,带电粒子在磁场中飞行时间,现将带电粒子的速度变为v/3,则带电粒子的运动半径,设带电粒子的圆心角为,则,故,运动时间,所以,选项B 正确。
6. 【解析】:若电子从P 点出发恰好经原点O 第一次射出磁场分界线,则有运动轨迹如图所示, 由几何关系知:半径R =L ,则微粒运动的路程为圆周的1/4,即为2Lπ,A 正确;若电子从P 点出发经原点O 到达Q 点,运动轨迹可能如图所示,因此则微粒运动的路程可能为πL ,也可能为2πL ,BD 错误C 正确; 7. 【解析】:(1)设电子在磁场中运动轨道半径为r ,电子的质量是m ,由几何关系得:r=dlsin30° =2d ①? 电子在磁场中运动Bev0=,r=②?由①②得:m=?(2)电子运动轨迹圆心角θ=30°周期T=穿过磁场的时间t====?(3)电子刚好不能从A边射出电子轨道半径为r'=d?由Bev=,得:V==8. 【解析】:(1)从S发射电子速度方向竖直向上,并且轨道半径恰好等于时,是能够达到挡板的最小发射速度。
如图,(2)如图,,所以击中挡板上边界的电子,发射角应为与水平成30°角斜向上,电子在磁场中恰好运动半圆周到达挡板上边界。