【2014物理专题解析】2014全国高考物理真题分类汇编:磁场

合集下载

【高考真题】2014年全国统一高考物理试卷(新课标ⅰ)(含答案)

【高考真题】2014年全国统一高考物理试卷(新课标ⅰ)(含答案)

2014年全国统一高考物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分,在每题给出的四个选项中,第14-18题只有一项符合题目要求,第19-21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.(6分)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15.(6分)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电导线和磁场方向的夹角无关D.将直导线从中折成直角,安培力的大小一定变为原来的一半16.(6分)如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力,铝板上方和下方的磁感应强度大小之比为()A.2 B.C.1 D.17.(6分)如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态,现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定时细线偏离竖直方向到某一角度(橡皮筋在弹性限度内)。

与稳定在竖直位置时相比,小球的高度()A.一定降低B.一定升高C.保持不变D.升高或降低由橡皮筋的劲度系数决定18.(6分)如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()A.B.C.D.19.(6分)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学家称为“行星冲日”,据报道,2014年各行星冲日时间分别为:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( )A .各地外行星每年都会出现冲日现象B .在2015年内一定会出现木星冲日C .天王星相邻两次冲日的时间间隔为土星的一半D .地外行星中,海王星相邻两次冲日的时间间隔最短20.(6分)如图,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO′的距离为L ,b 与转轴的距离为2L .木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等 B.b 一定比a 先开始滑动 C .ω=是b 开始滑动的临界角速度D .当ω=时,a 所受摩擦力的大小为kmg21.(6分)如图,在正电荷Q 的电场中有M 、N 、P 、F 四点,M 、N 、P 为直角三角形的三个顶点,F 为MN 的中点,∠M=30°,M 、N 、P 、F 四点处的电势分别用φM 、φN 、φP 、φF 表示,已知φM =φN 、φP =φF ,点电荷Q 在M 、N 、P 三点所在平面内,则( )A .点电荷Q 一定在MP 的连线上B .连接PF 的线段一定在同一等势面上C.将正试探电荷从P点搬运到N点,电场力做负功D.φP>φM三、非选择题:包括必考题和选考题两部分(一)必考题(共129分)22.(6分)某同学利用图甲所示实验装置及数字化信息系统获得了小车加速度a与钩码的质量m的对应关系图,如图乙所示,实验中小车(含发射器)的质量为200g,实验时选择了不可伸长的轻质细绳和轻定滑轮,小车的加速度由位移传感器及与之相连的计算机得到.回答下列问题:(1)根据该同学的结果,小车的加速度与钩码的质量成(填“线性”或“非线性”)关系;(2)由图乙可知,a﹣m图线不经过原点,可能的原因是;(3)若利用本实验来验证“小车质量不变的情况下,小车的加速度与作用力成正比”的结论,并直接以钩码所受重力mg作为小车受到的合外力,则实验中应采取的改进措施是,钩码的质量应满足的条件是.23.(9分)利用如图(a)所示电路,可以测量电源的电动势和内阻,所用的实验器材有:待测电源,电阻箱R(最大阻值999.9Ω),电阻R0(阻值为3.0Ω),电阻R1(阻值为3.0Ω),电流表(量程为200mA,内阻为R A=6.0Ω),开关S.实验步骤如下:①将电阻箱阻值调到最大,闭合开关S;②多次调节电阻箱,记下电流表的示数I和电阻箱相应的阻值R;③以为纵坐标,R为横坐标,作出﹣R图线(用直线拟合);④求出直线的斜率k和在纵轴上的截距b回答下列问题:(1)分别用E和r表示电源的电动势和内阻,则和R的关系式为;(2)实验得到的部分数据如下表所示,其中电阻R=3.0Ω时电流表的示数如图(b)所示,读出数据,完成下表.答:①,②./A﹣1(3)在图(c)的坐标纸上将所缺数据点补充完整并作图,根据图线求得斜率k=A﹣1Ω﹣1,截距b=A﹣1;(4)根据图线求得电源电动势E=V,内阻r=Ω.24.(12分)公路上行驶的两辆汽车之间应保持一定的安全距离。

09.磁场(2014年高考物理真题分类汇编)

09.磁场(2014年高考物理真题分类汇编)

09.磁场1.(2014年 安徽卷)18.“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞。

已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子的运动半径不变。

由此可判断所需的磁感应强度B 正比于AB .T CD .2T 【答案】A【解析】由于等离子体中带电粒子的平均动能与等离子体的温度T 成正比,即k E T ∝。

带电粒子在磁场中做圆周运动,洛仑磁力提供向心力:2v qvB m R =得mv B qR =。

而212k E mv =故可得:mvB qR ==又带电粒子的运动半径不变,所以B ∝∝A 正确。

2.(2014年 大纲卷)25.(20 分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向。

在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进人电场。

不计重力。

若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求:⑪电场强度大小与磁感应强度大小的比值; ⑫该粒子在电场中运动的时间。

25. 【答案】(1)201tan 2v θ (2)02tan d v θ【考点】带电粒子在电磁场中的运动、牛顿第二定律、 【解析】(1)如图粒子进入磁场后做匀速圆周运动,设磁感应强度大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0,由洛伦兹力公式及牛顿第二定律得:2000mv qv B R =由题给条件和几何关系可知:R 0=d设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v y 。

由牛顿定律及运动学公式得: x qE ma = x qE ma =x v at = 2xv d = 粒子在电场中做类平抛运动,如图所示tan y v v θ=联立得201tan 2E v B θ= (2)同理可得02tan d t v θ=3.(2014年 广东卷)36、(18分)如图25所示,足够大的平行挡板A 1、A 2竖直放置,间距6L 。

2014年普通高等学校招生全国统一考试理综物理试题(新课标Ⅰ,解析版)

2014年普通高等学校招生全国统一考试理综物理试题(新课标Ⅰ,解析版)

2014年高考新课标Ⅰ卷真题理综物理部分解析版14.D本题考察电磁感应现象中感应电流产生的条件,其中的选项C 把物理学史中科学家失败的做法也融入了进来,变相地考察了物理学史的知识。

15.B考察了安培力的大小与方向,安培力的大小与导线在磁场中的放置方式有密切的有关系:当垂直于磁场放置时受到的力最大,平行于磁场放置时不受安培力,即不平行也不垂直时介于最大和零之间;安培力的方向总是即垂直于磁场又垂直于导线,即,安培力的方向总是垂直于导线与磁场所决定的平面。

选项D 中将导线从中点折成直角,但不知折的方式如何,若折后导线仍在垂直于磁场的平面内,则力将变为原来的22倍;若折后导线另一部分平行于磁场,则力减小为原来的一半;若折后导线另一部分即不平行也不垂直于磁场,则力将介于这两者间。

如果导线开始时并不垂直于磁场,则情况更为复杂。

16.D考察带电粒子在磁场中运动的半径公式以及动能与动量的关系。

qB mv r =kmE mv p 2==由上面两式可得qr mE B k 2=已知动能为2倍关系,而r 也为2倍关系,所以2:2:=下上B B 。

17.A考察受力分析,牛顿运动定律,以及力的合成与分解。

设橡皮筋的伸长量为x,受力分析如图所示,由牛顿第二定律有ma kx =θsin (1)mg kx =θcos (2)小球稳定在竖直位置时,形变量为0x ,由平衡条件有mg kx =0 (3)对(2)(3)两式可知,θcos 0x x =而悬点与小球间的高度差分别为00x l +与()θcos 0x l + 可见()θcos 000x l x l +>+ 所以小球的高度一定升高。

θ18.C考察法拉第电磁感应定律。

cd间产生稳定的周期性变化的电压,则产生感应电流的磁场的变化是均匀的,根据题目所给信息知道,ab中电流的变化应该是均匀的。

只有C选项有此特点,因此选择C项。

19.BD考察角追及和万有引力定律。

由引力提供向心力可知22ωmr r Mm G= 相邻两次冲日的时间间隔XD t ωωπ-=2其中D ω表示的是地球的公转角速度,X ω表示的是行星的公转角速度。

2014年高考全国I卷物理试题及答案

2014年高考全国I卷物理试题及答案

2014年高考理综物理部分(全国卷)二、选择题:本题共8小题,每小题6分。

(14~18单选,19~21多选)14.在法拉第时代,下列验证“由磁产生电”设想的实验中.能观察到感应电流的是A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两瑞与相邻房间的电流表连接。

往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是A.安培力的方向可以不垂直于直导线B. 安培力的方向总是垂直于磁场方向C.安培力大小与通电直导线和磁场的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半16.如图,MN 为铝质薄金属板,铝板上方分别有垂直于图平面的匀强磁场(未画出)。

一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q点穿越铝板后到达PQ 的中点O 。

已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变。

不计重力,铝板上方和下方的磁感应强度大小之比为A .2B .2C .1D .错误!未找到引用源。

17.如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态。

现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。

与稳定在竖直位置时相比,小球的高度A .一定升高B .一定降低C .保持不变D .升高或降低由橡皮筋的劲度系数决定18.如图(a ),线圈ab 、cd 绕在同一软铁心上。

在ab 线圈中通以变化的电流,用示波器测得线圈cd 间电压如图(b )所示。

已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是 0 1 2 3 t i 0 1 2 3 t i i 0 1 2 3 t B i1 2 3 t 0 1 2 3 t U cd a b c d19.太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。

2014年全国统一高考物理试卷(新课标ⅰ)(含解析版)

2014年全国统一高考物理试卷(新课标ⅰ)(含解析版)

2014年全国统一高考物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分,在每题给出的四个选项中,第14-18题只有一项符合题目要求,第19-21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.(6分)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化2.(6分)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电导线和磁场方向的夹角无关D.将直导线从中折成直角,安培力的大小一定变为原来的一半3.(6分)如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力,铝板上方和下方的磁感应强度大小之比为()A.2B .C.1D .4.(6分)如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态,现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定时细线偏离竖直方向到某一角度(橡皮筋在弹性限度内)。

与稳定在竖直位置时相比,小球的高度()A.一定降低B.一定升高C.保持不变D.升高或降低由橡皮筋的劲度系数决定5.(6分)如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()A .B .C .D .6.(6分)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学家称为“行星冲日”,据报道,2014年各行星冲日时间分别为:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是()地球火星木星土星天王星海王星轨道半径(AU) 1.0 1.5 5.29.51930A.各地外行星每年都会出现冲日现象B.在2015年内一定会出现木星冲日C.天王星相邻两次冲日的时间间隔为土星的一半D.地外行星中,海王星相邻两次冲日的时间间隔最短7.(6分)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为L,b与转轴的距离为2L.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.a、b所受的摩擦力始终相等B.b一定比a先开始滑动C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为kmg8.(6分)如图,在正电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°,M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN、φP=φF,点电荷Q在M、N、P三点所在平面内,则()A.点电荷Q一定在MP的连线上B.连接PF的线段一定在同一等势面上C.将正试探电荷从P点搬运到N点,电场力做负功D.φP>φM三、非选择题:包括必考题和选考题两部分(一)必考题(共129分)9.(6分)某同学利用图甲所示实验装置及数字化信息系统获得了小车加速度a与钩码的质量m 的对应关系图,如图乙所示,实验中小车(含发射器)的质量为200g,实验时选择了不可伸长的轻质细绳和轻定滑轮,小车的加速度由位移传感器及与之相连的计算机得到.回答下列问题:(1)根据该同学的结果,小车的加速度与钩码的质量成(填“线性”或“非线性”)关系;(2)由图乙可知,a﹣m图线不经过原点,可能的原因是;(3)若利用本实验来验证“小车质量不变的情况下,小车的加速度与作用力成正比”的结论,并直接以钩码所受重力mg作为小车受到的合外力,则实验中应采取的改进措施是,钩码的质量应满足的条件是.10.(9分)利用如图(a)所示电路,可以测量电源的电动势和内阻,所用的实验器材有:待测电源,电阻箱R(最大阻值999.9Ω),电阻R0(阻值为3.0Ω),电阻R1(阻值为3.0Ω),电流表(量程为200mA,内阻为R A=6.0Ω),开关S.实验步骤如下:①将电阻箱阻值调到最大,闭合开关S;②多次调节电阻箱,记下电流表的示数I和电阻箱相应的阻值R;③以为纵坐标,R 为横坐标,作出﹣R图线(用直线拟合);④求出直线的斜率k和在纵轴上的截距b回答下列问题:(1)分别用E和r 表示电源的电动势和内阻,则和R 的关系式为;(2)实验得到的部分数据如下表所示,其中电阻R=3.0Ω时电流表的示数如图(b)所示,读出数据,完成下表.答:①,②.R/Ω 1.0 2.0 3.0 4.0 5.0 6.07.0I/A0.1430.125①0.1000.0910.0840.077/A﹣1 6.998.00②10.011.011.913.0(3)在图(c)的坐标纸上将所缺数据点补充完整并作图,根据图线求得斜率k=A﹣1Ω﹣1,截距b=A﹣1;(4)根据图线求得电源电动势E=V,内阻r=Ω.11.(12分)公路上行驶的两辆汽车之间应保持一定的安全距离。

(完整word版)2014高考新课标全国卷1:理综物理试题及答案(高清word),推荐文档

(完整word版)2014高考新课标全国卷1:理综物理试题及答案(高清word),推荐文档

2014年普通高等学校招生全国统一考试理科综合能力测试(物理)、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14〜18题只有一项符合题目要求,第19〜21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14、在法拉第时代,下列验证由磁产生电”设想的实验中,能观察到感应电流的是A •将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B •在一通电线圈旁放置一连有电流表的线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表相连。

往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D •绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15、关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是A •安培力的方向可以不垂直于直导线B •安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D .将直导线从中点折成直角,安培力的大小一定变为原来的一半16、如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点0。

已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变。

不计重力。

铝板上方和下方的磁感应强度大小之比为A. 2C. 117、如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态。

现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。

与稳定在竖直时位置相比,小球的高度A .一定升高B .一定降低C.保持不变D .升高或降低由橡皮筋的劲度系数决定18、如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间的电压如图(b)所示。

已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是19、太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。

2014年全国统一高考物理试卷(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考物理试卷(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分,在每题给出的四个选项中,第14-18题只有一项符合题目要求,第19-21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.(6分)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15.(6分)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电导线和磁场方向的夹角无关D.将直导线从中折成直角,安培力的大小一定变为原来的一半16.(6分)如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力,铝板上方和下方的磁感应强度大小之比为()A.2 B.C.1 D.17.(6分)如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态,现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定时细线偏离竖直方向到某一角度(橡皮筋在弹性限度内)。

与稳定在竖直位置时相比,小球的高度()A.一定降低B.一定升高C.保持不变D.升高或降低由橡皮筋的劲度系数决定18.(6分)如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()A.B.C .D .19.(6分)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学家称为“行星冲日”,据报道,2014年各行星冲日时间分别为:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是()A.各地外行星每年都会出现冲日现象B.在2015年内一定会出现木星冲日C.天王星相邻两次冲日的时间间隔为土星的一半D.地外行星中,海王星相邻两次冲日的时间间隔最短20.(6分)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为L,b与转轴的距离为2L.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.a、b所受的摩擦力始终相等B.b一定比a先开始滑动C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为kmg21.(6分)如图,在正电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°,M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN、φP=φF,点电荷Q在M、N、P三点所在平面内,则()A.点电荷Q一定在MP的连线上B.连接PF的线段一定在同一等势面上C.将正试探电荷从P点搬运到N点,电场力做负功D.φP>φM三、非选择题:包括必考题和选考题两部分(一)必考题(共129分)22.(6分)某同学利用图甲所示实验装置及数字化信息系统获得了小车加速度a 与钩码的质量m的对应关系图,如图乙所示,实验中小车(含发射器)的质量为200g,实验时选择了不可伸长的轻质细绳和轻定滑轮,小车的加速度由位移传感器及与之相连的计算机得到.回答下列问题:(1)根据该同学的结果,小车的加速度与钩码的质量成(填“线性”或“非线性”)关系;(2)由图乙可知,a﹣m图线不经过原点,可能的原因是;(3)若利用本实验来验证“小车质量不变的情况下,小车的加速度与作用力成正比”的结论,并直接以钩码所受重力mg作为小车受到的合外力,则实验中应采取的改进措施是,钩码的质量应满足的条件是.23.(9分)利用如图(a)所示电路,可以测量电源的电动势和内阻,所用的实验器材有:待测电源,电阻箱R(最大阻值999.9Ω),电阻R0(阻值为3.0Ω),电阻R1(阻值为3.0Ω),电流表(量程为200mA,内阻为R A=6.0Ω),开关S.实验步骤如下:①将电阻箱阻值调到最大,闭合开关S;②多次调节电阻箱,记下电流表的示数I和电阻箱相应的阻值R;③以为纵坐标,R为横坐标,作出﹣R图线(用直线拟合);④求出直线的斜率k和在纵轴上的截距b回答下列问题:(1)分别用E和r表示电源的电动势和内阻,则和R的关系式为;(2)实验得到的部分数据如下表所示,其中电阻R=3.0Ω时电流表的示数如图(b)所示,读出数据,完成下表.答:①,②./A﹣1(3)在图(c)的坐标纸上将所缺数据点补充完整并作图,根据图线求得斜率k=A﹣1Ω﹣1,截距b=A﹣1;(4)根据图线求得电源电动势E=V,内阻r=Ω.24.(12分)公路上行驶的两辆汽车之间应保持一定的安全距离。

2014年全国统一高考物理试卷(大纲卷)(答案解析版)

2014年全国统一高考物理试卷(大纲卷)(答案解析版)

2014年全国统一高考物理试卷(大纲卷)一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)一质点沿x轴做直线运动,其v﹣t图象如图所示.质点在t=0时位于x=5m处,开始沿x轴正向运动.当t=8s时,质点在x轴上的位置为( )A.x=3m B.x=8m C.x=9m D.x=14m【考点】1I:匀变速直线运动的图像.【专题】512:运动学中的图像专题.【分析】速度时间图象可读出速度的大小和方向,根据速度图象可分析物体的运动情况,确定何时物体离原点最远.图象的“面积”大小等于位移大小,图象在时间轴上方“面积”表示的位移为正,图象在时间轴下方“面积”表示的位移为负.【解答】解:图象的“面积”大小等于位移大小,图象在时间轴上方“面积”表示的位移为正,图象在时间轴下方“面积”表示的位移为负,故8s时位移为:s=,由于质点在t=0时位于x=5m处,故当t=8s时,质点在x轴上的位置为8m,故ACD错误,B正确。

故选:B。

【点评】本题抓住速度图象的“面积”等于位移是关键.能根据图象分析物体的运动情况,通过训练,培养基本的读图能力.2.(6分)地球表面附近某区域存在大小为150N/C、方向竖直向下的电场.一质量为1.00×l0﹣4kg、带电量为﹣1.00×10﹣7C的小球从静止释放,在电场区域内下落10.0m.对此过程,该小球的电势能和动能的改变量分别为(重力加速度大小取9.80m/s2,忽略空气阻力)( )A.﹣1.50×10﹣4J和9.95×10﹣3J B.1.50×10﹣4J和9.95×10﹣3JC.﹣1.50×10﹣4J和9.65×10﹣3J D.1.50×10﹣4J和9.65×10﹣3J【考点】6B:功能关系;AE:电势能与电场力做功.【专题】532:电场力与电势的性质专题.【分析】小球的电势能的改变量看电场力做功,动能的改变量取决于合外力做功,根据功的计算公式分别求出电场力做功和合外力做功,即可解答.【解答】解:小球带负电,电场力对小球做负功,为:W电=qEs=﹣1.00×10﹣7×150×10J=﹣1.50×10﹣4J,则小球的电势能增加量1.50×10﹣4J,即电势能的改变量为1.50×10﹣4J。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高考物理真题分类汇编:磁场15.[2014·新课标全国卷Ⅰ] 关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半15.B[解析] 本题考查安培力的大小和方向.安培力总是垂直于磁场与电流所决定的平面,因此,安培力总与磁场和电流垂直,A错误,B正确;安培力F=BIL sinθ,其中θ是电流方向与磁场方向的夹角,C错误;将直导线从中点折成直角,导线受到安培力的情况与直角导线在磁场中的放置情况有关,并不一定变为原来的一半,D错误.16.[2014·新课标全国卷Ⅰ] 如图所示,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为()A.2 B.2C.1 D.2 216.D[解析] 本题考查了带电粒子在磁场中的运动.根据q v B=m v2r有B1B2=r2r1〃v1v2,穿过铝板后粒子动能减半,则v1v2=2,穿过铝板后粒子运动半径减半,则r2r1=12,因此B1B2=22,D正确.18.[2014·山东卷] 如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab长为s,竖直边ad长为h.质量均为m、带电荷量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v0进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒子轨迹恰好相切,则v0等于()A.s22qEmh B.s2qEmhC.s42qEmh D.s4qEmh18.B[解析] 两个粒子都做类平抛运动.两个粒子在竖直方向上都做加速度大小相等的匀加速直线运动,因为竖直位移大小相等,所以它们的运动时间相等.两个粒子在水平方向上都做速度大小相等的匀速直线运动,因为运动时间相等,所以水平位移大小相等.综合判断,两个粒子运动到轨迹相切点的水平位移都为s 2,竖直位移都为h 2,由h 2=Eq 2m t 2,s 2=v 0t 得v 0=s 2Eq mh,选项B 正确. 20. [2014·新课标Ⅱ卷] 图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )A .电子与正电子的偏转方向一定不同B .电子与正电子在磁场中运动轨迹的半径一定相同C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D .粒子的动能越大,它在磁场中运动轨迹的半径越小20.AC [解析] 电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力的方向与其电性有关,由左手定则可知A 正确;由轨道公式R =m v Bq知 ,若电子与正电子与进入磁场时的速度不同,则其运动的轨迹半径也不相同,故B 错误.由R =m v Bq=2mE k Bq知,D 错误.因质子和正电子均带正电,且半径大小无法计算出,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,C 正确.9.[2014·江苏卷] 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k I H B d,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比9.CD [解析] 由于导电物质为电子,在霍尔元件中,电子是向上做定向移动的,根据左手定则可判断电子受到的洛伦兹力方向向后表面,故霍尔元件的后表面相当于电源的负极,霍尔元件前表面的电势应高于后表面,A 选项错误;若电源的正负极对调,则I H 与B 都反向,由左手定则可判断电子运动的方向不变,B 选项错误;由于电阻R 和R L 都是固定的,且R 和R L 并联,故I H =R L R +R LI ,则C 正确;因B 与I 成正比,I H 与I 成正比,则U H =k I H B d∝I 2,R L 又是定值电阻,所以D 正确.、18.[2014·安徽卷] “人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度B 正比于( ) A.T B .T C.T 3 D .T 218.A [解析] 本题是“信息题”:考查对题目新信息的理解能力和解决问题的能力.根据洛伦兹力提供向心力有q v B =m v 2r 解得带电粒子在磁场中做圆周运动的半径r =m v qB.由动能的定义式E k =12m v 2,可得r =2mE k qB,结合题目信息可得B ∝T ,选项A 正确。

16. [2014·北京卷] 带电粒子a 、b 在同一匀强磁场中做匀速圆周运动,它们的动量大小相等,a 运动的半径大于b 运动的半径.若a 、b 的电荷量分别为q a 、q b ,质量分别为m a 、m b ,周期分别为T a 、T b .则一定有( )A. q a <q bB. m a <m bC. T a <T bD. q a m a <q b m b16.A 本题考查带电粒子在磁场中的运动和动量定义.带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,即q v B =m v 2r,p =m v ,得p =qBr ,两粒子动量相等,则q a Br a =q b Br b ,已知r a >r b ,则q a <q b ,A 正确,其他条件未知,B 、C 、D 无法判定.25. [2014·全国卷] 如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求:(1 )电场强度大小与磁感应强度大小的比值;(2)该粒子在电场中运动的时间.25.[答案] (1)12v 0tan 2θ (2)2d v 0tan θ[解析] (1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛伦兹力公式及牛顿第二定律得q v 0B =m v 20R 0①由题给条件和几何关系可知R 0=d ②设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v x .由牛顿定律及运动学公式得Eq =ma x ③v x =a x t ④v x 2t =d ⑤ 由于粒子在电场中做类平抛运动(如图),有tan θ=v x v 0⑥ 联立①②③④⑤⑥式得E B =12v 0tan 2 θ⑦ (2)联立⑤⑥式得t =2d v 0tan θ⑧ 22.[2014·福建卷Ⅰ] 如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L 、宽为d 、高为h ,上下两面是绝缘板.前后两侧面M 、N 是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连.整个管道置于磁感应强度大小为B 、方向沿z 轴正方向的匀强磁场中.管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v 0沿x 轴正向流动,液体所受的摩擦阻力不变.(1)求开关闭合前,M 、N 两板间的电势差大小U 0;(2)求开关闭合前后,管道两端压强差的变化Δp ;(3)调整矩形管道的宽和高,但保持其他量和矩形管道的横截面积S =dh 不变,求电阻R 可获得的最大功率P m及相应的宽高比d h的值. 22.(1)Bd v 0 (2)Ld v 0B 2LhR +dρ (3)LS v 20B 24ρ LR ρ[解析] (1)设带电离子所带的电荷量为q ,当其所受的洛伦兹力与电场力平衡时,U 0保持恒定,有q v 0B =q U 0d① 得U 0=Bd v 0②(2)设开关闭合前后,管道两端压强差分别为p 1、p 2,液体所受的摩擦阻力均为f ,开关闭合后管道内液体受到的安培力为F 安,有p 1hd =f ③p 2hd =f +F 安④F 安=BId ⑥根据欧姆定律,有I =U 0R +r⑥ 两导体板间液体的电阻r =ρd Lh ⑦ 由②③④⑤⑥⑦式得Δp =Ld v 0B 2LhR +dρ⑧ (3)电阻R 获得的功率为P =I 2R ⑨ P =⎝ ⎛⎭⎪⎪⎫L v 0B LR d +ρh 2R ⑩当d h =LR ρ时,⑪ 电阻R 获得的最大功率P m =LS v 20B 24ρ.⑫ 36.[2014·广东卷] (18分)如图25 所示,足够大的平行挡板A 1、A 2竖直放置,间距6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN 为理想分界面,Ⅰ区的磁感应强度为B 0,方向垂直纸面向外. A 1、A 2上各有位置正对的小孔S 1、S 2,两孔与分界面MN 的距离均为L .质量为m 、电荷量为+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到MN 上的P 点,再进入Ⅱ区,P 点与A 1板的距离是L 的k 倍,不计重力,碰到挡板的粒子不予考虑.(1)若k =1,求匀强电场的电场强度E ;(2)若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式和Ⅱ区的磁感应强度B 与k 的关系式.36.(1)qB 20L 22md (2)v =(k 2+1)qB 0L 2m B =k 3-k B 0[解析] (1)粒子在电场中,由动能定理有qEd =12m v 2 -0 粒子在Ⅰ区洛伦兹力提供向心力q v B 0=m v 2r当k =1时,由几何关系得r =L解得E =qB 20L 22md. (2)由于2<k <3时,由题意可知粒子在Ⅱ区只能发生一次偏转,由几何关系可知(r -L )2+(kL )2=r 2解得r =k 2+12L 又q v B 0=m v 2r,则 v =(k 2+1)qB 0L 2m粒子在Ⅱ区洛伦兹力提供向心力,即q v B =m v 2r 1由对称性及几何关系可知kL (3-k )L =r r 1即r 1=(3-k )(k 2+1)2kL 联立上式解得B =k 3-k B 0. 11. [2014·四川卷] 如图所示,水平放置的不带电的平行金属板p 和b 相距h ,与图示电路相连,金属板厚度不计,忽略边缘效应.p 板上表面光滑,涂有绝缘层,其上O 点右侧相距h 处有小孔K ;b 板上有小孔T ,且O 、T 在同一条竖直线上,图示平面为竖直平面.质量为m 、电荷量为-q (q >0)的静止粒子被发射装置(图中未画出)从O 点发射,沿p 板上表面运动时间t 后到达K 孔,不与板碰撞地进入两板之间.粒子视为质点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g .(1)求发射装置对粒子做的功;(2)电路中的直流电源内阻为r ,开关S 接“1”位置时,进入板间的粒子落在b 板上的A 点,A 点与过K 孔竖直线的距离为l .此后将开关S 接“2”位置,求阻值为R 的电阻中的电流强度;(3)若选用恰当直流电源,电路中开关S 接“1”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B 只能在0~B m =()21+5m()21-2qt 范围内选取),使粒子恰好从b 板的T 孔飞出,求粒子飞出时速度方向与b 板板面的夹角的所有可能值(可用反三角函数表示).11.(1)mh 22t 2 (2)mh q (R +r )⎝⎛⎭⎫g -2h 3l 2t 2 (3)0<θ≤arcsin 25[解析] (1)设粒子在p 板上做匀速直线运动的速度为v 0,有h =v 0t ①设发射装置对粒子做的功为W ,由动能定理得W =12m v 20② 联立①②可得 W =mh 22t2③ (2)S 接“1”位置时,电源的电动势E 0与板间电势差U 有E 0=U ④板间产生匀强电场的场强为E ,粒子进入板间时有水平方向的速度v 0,在板间受到竖直方向的重力和电场力作用而做类平抛运动,设加速度为a ,运动时间为t 1,有U =Eh ⑤mg -qE =ma ⑥h =12at 21⑦ l =v 0t 1⑧S 接“2”位置,则在电阻R 上流过的电流I 满足I =E 0R +r⑨ 联立①④~⑨得I =mh q (R +r )⎝⎛⎭⎫g -2h 3l 2t 2⑩ (3)由题意知此时在板间运动的粒子重力与电场力平衡,当粒子从K 进入板间后立即进入磁场做匀速圆周运动,如图所示,粒子从D 点出磁场区域后沿DT 做匀速直线运动,DT 与b 板上表面的夹角为题目所求夹角θ,磁场的磁感应强度B 取最大值时的夹角θ为最大值θm ,设粒子做匀速圆周运动的半径为R ,有q v 0B =m v 0R ⑪过D 点作b 板的垂线与b 板的上表面交于G ,由几何关系有DG =h -R (1+cos θ)⑫TG =h +R sin θ⑬tan θ=sin θcos θ=DG TG⑭ 联立①⑪~⑭,将B =B m 代入,求得θm =arcsin 25⑮当B 逐渐减小,粒子做匀速圆周运动的半径为R 也随之变大,D 点向b 板靠近,DT 与b 板上表面的夹角θ也越变越小,当D 点无限接近于b 板上表面时,粒子离开磁场后在板间几乎沿着b 板上表面运动而从T 孔飞出板间区域,此时B m >B >0满足题目要求,夹角θ趋近θ0,即θ0=0⑯则题目所求为 0<θ≤arcsin 25⑰10.[2014·四川卷]在如图所示的竖直平面内,水平轨道CD 和倾斜轨道GH 与半径r =944m 的光滑圆弧轨道分别相切于D 点和G 点,GH 与水平面的夹角θ=37°.过G 点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B =1.25 T ;过D 点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E =1×104 N/C.小物体P 1质量m =2×10-3 kg 、电荷量q =+8×10-6 C ,受到水平向右的推力F =9.98×10-3 N 的作用,沿CD 向右做匀速直线运动,到达D 点后撤去推力.当P 1到达倾斜轨道底端G 点时,不带电的小物体P 2在GH 顶端静止释放,经过时间t =0.1 s 与P 1相遇.P 1与P 2与轨道CD 、GH 间的动摩擦因数均为μ=0.5,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,物体电荷量保持不变,不计空气阻力.求:(1)小物体P 1(2)倾斜轨道GH 的长度s .10.(1)4 m/s (2)0.56 m[解析] (1)设小物体P 1在匀强磁场中运动的速度为v ,受到向上的洛伦兹力为F 1,受到的摩擦力为f ,则F 1=q v B ①f =μ(mg -F 1)②由题意,水平方向合力为零F -f =0③联立①②③式,代入数据解得v =4 m/s ④(2)设P 1在G 点的速度大小为v G ,由于洛伦兹力不做功,根据动能定理qEr sin θ-mgr (1-cos θ)=12m v 2G -12m v 2⑤ P 1在GH 上运动,受到重力、电场力和摩擦力的作用,设加速度为a 1,根据牛顿第二定律qE cos θ-mg sin θ-μ(mg cos θ+qE sin θ)=ma 1⑥P 1与P 2在GH 上相遇时,设P 1在GH 上运动的距离为s 1,则s 1=v G t +12a 1t 2⑦ 设P 2质量为m 2,在GH 上运动的加速度为a 2,则m 2g sin θ-μm 2g cos θ=m 2a 2⑧P 1与P 2在GH 上相遇时,设P 2在GH 上运动的距离为s 2,则s 2=12a 2t 2⑨ 联立⑤~⑨式,代入数据得s =s 1+s 2⑩s =0.56 m ⑪12. [2014·天津卷] 同步加速器在粒子物理研究中有重要的应用,其基本原理简化为如图所示的模型.M 、N 为两块中心开有小孔的平行金属板.质量为m 、电荷量为+q 的粒子A (不计重力)从M 板小孔飘入板间,初速度可视为零.每当A 进入板间,两板的电势差变为U ,粒子得到加速,当A 离开N 板时,两板的电荷量均立即变为零.两板外部存在垂直纸面向里的匀强磁场,A 在磁场作用下做半径为R 的圆周运动,R 远大于板间距离.A 经电场多次加速,动能不断增大,为使R 保持不变,磁场必须相应地变化.不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应.求:(1)A 运动第1周时磁场的磁感应强度B1的大小;.(2)在A 运动第n 周的时间内电场力做功的平均功率P n ;(3)若有一个质量也为m 、电荷量为+kq (k 为大于1的整数)的粒子B (不计重力)与A 同时从M 板小孔飘入板间,A 、B 初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变.下图中虚线、实线分别表示A 、B 的运动轨迹.在B 的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A 、B 的运动轨迹,并经推导说明理由.A B C D12.(1)1R 2mU q (2)qU πR nqU 2m(3)A 图,理由略 [解析] (1)设A 经电场第1次加速后速度为v 1,由动能定理得qU =12m v 21-0① A 在磁场中做匀速圆周运动,所受洛伦兹力充当向心力q v 1B 1=m v 21R② 由①②得B 1=1R 2mU q③(2)设A 经n 次加速后的速度为v n ,由动能定理得nqU =12m v 2n-0④ 设A 做第n 次圆周运动的周期为T n ,有T n =2πR v n⑤ 设在A 运动第n 周的时间内电场力做功为W n ,则W n =qU ⑥在该段时间内电场力做功的平均功率为P n =W n T n⑦ 由④⑤⑥⑦解得P n =qU πR nqU 2m⑧ (3)A 图能定性地反映A 、B 运动的轨迹.A 经过n 次加速后,设其对应的磁感应强度为B n ,A 、B 的周期分别为T n 、T ′,综合②、⑤式并分别应用A 、B 的数据得T n =2πm qB nT ′=2πm kqB n =T n k由上可知,T n 是T ′的k 倍,所以A 每绕行1周,B 就绕行k 周.由于电场只在A 通过时存在,故B 仅在与A 同时进入电场时才被加速.经n 次加速后,A 、B 的速度分别为v n 和v ′n ,考虑到④式v n =2nqU m v ′n =2nkqU m=k v n 由题设条件并考虑到⑤式,对A 有T n v n =2πR设B 的轨迹半径为R ′,有T ′v ′n =2πR ′比较上述两式得R ′=R k上式表明,运动过程中B 的轨迹半径始终不变.由以上分析可知,两粒子运动的轨道如图A 所示.25. [2014·浙江卷] 离子推进器是太空飞行器常用的动力系统.某种推进器设计的简化原理如图1所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出. Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R 2处的C 点持续射出一定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推进器工作时,向Ⅰ区注入稀薄的氙气.电子使氙气电离的最小速率为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞)第25题图1(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断Ⅰ区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);第25题图2(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系. 25.[答案] v 2M2L (2)垂直纸面向外 (3)v 0≤v ≤3eBR 4 m(4)v max =3eBR4m (2-sin α)[解析] 本题考查带电粒子在电场和磁场中的运动等知识和分析综合及应用数学解决物理问题的能力.(1)由动能定理得12M v 2M =eU ①U =M v 2M 2e②a =eE M =e U ML =v 2M2L③(2)垂直纸面向外④(3)设电子运动的最大半径为r 2r =32R .⑤eB v =m v 2r⑥所以有v 0≤v <3eBR4m⑦要使⑦式有解,磁感应强度B >4m v 03eR .⑧(4)如图所示,OA =R -r ,OC =R2,AC =r根据几何关系得r =3R4(2-sin α)⑨由⑥⑨式得v max =3eBR4m (2-sin α).8. (16分)[2014·重庆卷] 某电子天平原理如题8图所示,E 形磁铁的两侧为N 极,中心为S 极,两极间的磁感应强度大小均为B ,磁极宽度均为L ,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C 、D 与外电路连接,当质量为m 的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I 可确定重物的质量,已知线圈匝数为n ,线圈电阻为R ,重力加速度为g .问题8图(1)线圈向下运动过程中,线圈中感应电流是从C 端还是从D 端流出? (2)供电电流I 是从C 端还是D 端流入?求重物质量与电流的关系. (3)若线圈消耗的最大功率为P ,该电子天平能称量的最大质量是多少? 8.[答案] (1)从C 端流出 (2)从D 端流入 2nBILg(3)2nBL gP R本题借助安培力来考查力的平衡,同时借助力的平衡来考查受力平衡的临界状态. [解析] (1)感应电流从C 端流出.(2)设线圈受到的安培力为F A ,外加电流从D 端流入. 由F A =mg 和F A =2nBIL 得m =2nBL gI(3)设称量最大质量为 m 0. 由m =2nBL g I 和P =I 2R得m 0=2nBLgP R9. (18分)[2014·重庆卷] 如题9图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .题9图(1)求电场强度的大小和方向.(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.9.[答案] (1)E =mg q ,方向竖直向上 (2) (9-62)qBh m (3)可能的速度有三个:0.68qBhm ,0.545qBh m ,0.52qBhm本题考查了带电粒子在复合场、组合场中的运动.[解析] (1)设电场强度大小为E . 由题意有mg =qE得E =mgq,方向竖直向上.(2)如答题9图1所示,设粒子不从NS 边飞出的入射速度最小值为v min ,对应的粒子在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ.由r =m v qB有r 1=m v min qB ,r 2=12r 1由(r 1+r 2)sin φ=r 2r 1+r 1cos φ=h v min =(9-62)qBhm(3)如答题9图2所示,设粒子入射速度为v ,粒子在上、下方区域的运动半径分别为r 1和r 2,粒子第一次通过KL 时距离K 点为x .由题意有3nx =1.8h (n =1,2,3…)32x ≥(9-62)h 2x =r 21-(h -r 1)2得r 1=⎝⎛⎭⎫1+0.36n 2h2,n <3.5即n =1时,v =0.68qBhm ;n =2时,v =0.545qBhm ;n =3时,v =0.52qBhm14.[2014·江苏卷] 某装置用磁场控制带电粒子的运动,工作原理如图所示.装置的长为L ,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B 、方向与纸面垂直且相反,两磁场的间距为d .装置右端有一收集板,M 、N 、P 为板上的三点,M 位于轴线OO ′上,N 、P 分别位于下方磁场的上、下边界上.在纸面内,质量为m 、电荷量为-q 的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P 点.改变粒子入射速度的大小,可以控制粒子到达收集板上的位置.不计粒子的重力.(1)求磁场区域的宽度h ;(2)欲使粒子到达收集板的位置从P 点移到N 点,求粒子入射速度的最小变化量Δv ; (3)欲使粒子到达M 点,求粒子入射速度大小的可能值. 14.[答案] (1)⎝⎛⎭⎫23L -3d ⎝⎛⎭⎫1-32 (2)qB m ⎝⎛⎭⎫L 6-34d (3)qB m ⎝⎛⎭⎫L n +1-3d ⎝⎛⎭⎫1≤n <3L 3d -1,n 取整数 [解析] (1)设粒子在磁场中的轨道半径为r 根据题意 L =3r sin 30°+3d cos 30° 且h =r (1-cos 30°)解得 h =⎝⎛⎭⎫23L -3d ⎝⎛⎭⎫1-32.(2)设改变入射速度后粒子在磁场中的轨道半径为r ′ m v 2r =q v B ,m v ′2r ′=q v ′B , 由题意知 3r sin 30°=4r ′sin 30° 解得Δv =v -v ′=qB m ⎝⎛⎭⎫L 6-34d . (3)设粒子经过上方磁场n 次由题意知 L =(2n +2)d cos 30°+(2n +2)r n sin 30° 且 m v 2nr n =q v n B ,解得 v n =qB m ⎝⎛⎭⎫L n +1-3d⎝⎛⎭⎫1≤n <3L 3d -1,n 取整数24.(20分)[2014·山东卷] 如图甲所示,间距为d 、垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示.t =0时刻,一质量为m 、带电荷量为+q 的粒子(不计重力),以初速度v 0.由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当B 0和T B 取某些特定值时,可使t =0时刻入射的粒子经Δt 时间恰能垂直打在P 板上(不考虑粒子反弹).上述m 、q 、d 、v 0为已知量.图甲 图乙(1)若Δt =12T B ,求B 0;(2)若Δt =32T B ,求粒子在磁场中运动时加速度的大小;(3)若B 0=4m v 0qd ,为使粒子仍能垂直打在P 板上,求T B .24.[答案] (1)m v 0qd (2)3v 20d (3)⎝⎛⎭⎫π2+arcsin 14d 2v 0[解析] (1)设粒子做圆周运动的半径为R 1,由牛顿第二定律得q v 0B 0=m v 20R 1①据题意由几何关系得R 1=d ②联立①②式得B 0=m v 0qd③(2)设粒子做圆周运动的半径为R 2,加速度大小为a ,由圆周运动公式得a =v 20R 2④ 据题意由几何关系得3R 2=d ⑤联立④⑤式得a =3v 20d⑥(3)设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得T =2πR v 0⑦由牛顿第二定律得q v 0B 0=m v 20R⑧由题意知B 0=4m v 0qd,代入⑧式得d =4R ⑨粒子运动轨迹如图所示,O 1、O 2为圆心,O 1O 2连接与水平方向的夹角为θ,在每个T B内,只有A 、B 两个位置才有可能垂直击中P 板,且均要求0<θ<π2,由题意可知π2+θ2πT =T B2⑩设经历完整T B 的个数为n (n =0,1,2,3……)若在A 点击中P 板,据题意由几何关系得R +2(R +R sin θ)n =d ⑪ 当n =0时,无解⑫当n =1时,联立⑨⑪式得θ=π6(或sin θ=12)⑬联立⑦⑨⑩⑬式得T B =πd3v 0⑭ 当n ≥2时,不满足0<θ<90°的要求⑮ 若在B 点击中P 板,据题意由几何关系得R +2R sin θ+2(R +R sin θ)n =d ⑯当n =0时,无解⑰当n =1时,联立⑨⑯式得θ=arcsin 14(或sin θ=14)⑱联立⑦⑨⑩⑱式得T B =⎝⎛⎭⎫π2+arcsin 14d 2v 0⑲当n ≥2时,不满足0<θ<90°的要求.⑳。

相关文档
最新文档