线性规划习题答案

合集下载

高中数学简单线性规划复习题及答案(最全面)

高中数学简单线性规划复习题及答案(最全面)

简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。

16991-运筹学-习题答案选01_线性规划和单纯形法

16991-运筹学-习题答案选01_线性规划和单纯形法

运筹学教程(胡运权主编,清华第4版)部分习题答案(第一章)1.1(1)无穷多解:α (6/5, 1/5) + (1- α) (3/2, 0),α∈ [0,1]。

(2)无可行解;(3)x* = (10,6),z* = 16;(4)最优解无界。

1.2(1)max z’ = 3x1 - 4x2 + 2x3 - 5x’4 + 5x’’4s.t. –4x1 + x2 – 2x3 + x’4– x’’4 = 2x1 + x2 – x3 + 2x’4– 2x’’4 + x5 = 14–2x1 + 3x2 + x3 – x’4+ x’’4– x6 = 2x1, x2, x3, x’4, x’’4, x5, x6 ≥ 0(2)max z’ = 2x’1 + 2x2 – 3x’3 + 3x’’3s.t. x’1 + x2 + x’3 – x’’3 = 42x’1 + x2 – x’3 + x’’3 + x4 = 6x’1, x2, x’3, x’’3, x4, ≥ 01.3(1)基解:(0, 16/3, -7/6, 0, 0, 0);(0, 10, 0, -7, 0, 0);(0, 3, 0, 0, 7/2, 0),是基可行解,z = 3,是最优解;(7/4, -4, 0, 0, 0, 21/4);(0, 16/3, -7/6, 0, 0, 0);(0, 0, -5/2, 8, 0, 0);(1, 0, -1/2, 0, 0, 3);(0, 0, 0, 3, 5, 0),是基可行解,z = 0;(5/4, 0, 0, -2, 0, 15/4);(3/4, 0, 0, 0, 2, 9/4),是基可行解,z = 9/4;(0, 0, 3/2, 0, 8, 0),是基可行解,z = 3,是最优解。

(2)基解:(-4, 11/2, 0, 0);(2/5, 0, 11/5, 0),是基可行解,z = 43/5;(-1/3, 0, 0, 11/6);(0, 1/2, 2, 0),是基可行解,z = 5,是最优解;(0, -1/2, 0, 2);(0, 0, 1, 1),是基可行解,z = 5,是最优解;最优解:α (0, 1/2, 2, 0) + (1- α) (0, 0, 1, 1),α∈ [0,1]。

管理运筹学课后习题答案

管理运筹学课后习题答案

管理运筹学课后习题答案管理运筹学课后习题答案一、线性规划线性规划是管理运筹学中的一种重要方法,它通过建立数学模型,寻找最优解来解决实际问题。

下面我们来讨论一些常见的线性规划习题。

1. 一家工厂生产两种产品A和B,每单位产品A需要3小时的加工时间和2小时的装配时间,每单位产品B需要2小时的加工时间和4小时的装配时间。

工厂每天有8小时的加工时间和10小时的装配时间。

已知产品A的利润为300元,产品B的利润为400元。

如何安排生产,使得利润最大化?解答:设生产产品A的数量为x,生产产品B的数量为y。

根据题目中的条件,可以得到以下线性规划模型:目标函数:max 300x + 400y约束条件:3x + 2y ≤ 82x + 4y ≤ 10x, y ≥ 0通过求解上述线性规划模型,可以得到最优解,即生产4个产品A和1个产品B时,利润最大化,为2000元。

2. 一家超市有两种品牌的洗衣液,品牌A和品牌B。

品牌A每瓶售价20元,每瓶利润为5元;品牌B每瓶售价25元,每瓶利润为7元。

超市每天销售洗衣液的总利润不能超过100元,并且每天至少要销售10瓶洗衣液。

如何安排销售,使得利润最大化?解答:设销售品牌A的瓶数为x,销售品牌B的瓶数为y。

根据题目中的条件,可以得到以下线性规划模型:目标函数:max 5x + 7y约束条件:20x + 25y ≤ 100x + y ≥ 10x, y ≥ 0通过求解上述线性规划模型,可以得到最优解,即销售5瓶品牌A和5瓶品牌B时,利润最大化,为60元。

二、排队论排队论是管理运筹学中研究排队系统的一种方法,它通过数学模型和概率统计来分析和优化排队系统。

下面我们来讨论一些常见的排队论习题。

1. 一家银行有两个窗口,每个窗口的服务时间服从指数分布,平均服务时间分别为3分钟和4分钟。

顾客到达的间隔时间也服从指数分布,平均间隔时间为2分钟。

如果顾客到达时,两个窗口都有空闲,顾客会随机选择一个窗口进行服务。

线性规划练习题

线性规划练习题

作业1.第7题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.02.第8题下列不满足线性规划问题的典式要求的是()。

A. 线性规划模型必须是标准形B. 基必须是单位矩阵。

C. 基变量可以出现在目标函数中D. 非基变量可以出现在目标函数中。

A.AB.BC.CD.D答案:C标准答案:C您的答案:题目分数:1.0此题得分:0.03.第13题A.AB.BC.CD.D答案:B标准答案:B 您的答案:题目分数:1.0 此题得分:0.04.第14题A.AB.BC.CD.D答案:D标准答案:D 您的答案:题目分数:1.0此题得分:0.05.第15题A.AB.BC.CD.D答案:A标准答案:A 您的答案:题目分数:1.0 此题得分:0.06.第16题A.AB.BC.CD.D答案:B标准答案:B 您的答案:题目分数:1.0 此题得分:0.07.第17题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0此题得分:0.08.第18题若用二阶段法求没有可行解的线性规划问题,则在最后一张单纯表上()。

A. 人工变量的检验数没有正数B. 人工变量的检验数没有负数C. 非基变量中有人工变量D. 基变量中有人工变量A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.09.第19题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.010.第20题若目标函数求极小值的线性规划问题没有最优解,则在最后一张单纯表上()。

A. 对应非基变量的列上的系数没有正数B. 基变量的取值有负数C. 检验数没有负数D. 检验数为负的非基变量对应的列上的系数没有正数A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.011.第21题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.012.第26题A.AB.BC.CD.D答案:B标准答案:B您的答案:题目分数:1.0 此题得分:0.013.第28题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0 此题得分:0.014.第33题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.015.第34题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.016.第35题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.017.第36题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0此题得分:0.018.第46题检验有无迂回时,必须对()进行。

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。

通常代特殊点(0,0)。

(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。

2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。

二、填空题1. 线性规划问题的基本假设是______。

答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。

答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。

解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。

具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。

第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。

2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。

二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。

答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。

管理运筹学后习题参考答案汇总

管理运筹学后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

s.t.解:标准化s.t .列出单纯形表4 12b0 2 [8]2/80 8 68/64 1 241/41/8 1/8] /8(1/4/(1/813/265/4 /4 3/4(13/2/(1/4-1/23/21/22 2 80 6 -22 1-12-52故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

线性规划问题(含答案)

线性规划问题(含答案)

线性规划问题1、已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的取值范围是________.[]57-,2、已知实数x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,033,042y x y x y x 则y x z 2+=的最大值为 .83、若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是___57a <≤4、如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为_____32 5. 已知x 、y R ∈,|1|20y x y x x ≥-⎧⎪≤-+⎨⎪≥⎩, 则目标函数y x S -=2的最大值是 . 25 6. 设⎪⎩⎪⎨⎧≥+-≤+-≤-+,033,042,022y x y x y x 则函数z =x 2+y 2取得最大值时,x +y =___________.答案: 511 7.实数,x y 满足430352501x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,函数z kx y =+的最大值为12,最小值为3,则实数k 为 28. 已知变量x 、y 满足条件6200x y x y x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,若目标函数z ax y =+ (其中0a >),仅在(4,2)处取得最大值,则a 的取值范围是 _ a>19. 已知A (3,3),O 为原点,点,002303),(y y x y x y x P ⎪⎪⎩⎪⎪⎨⎧≥≥+-≤-的坐标满足是 ,此时点P 的坐标是 . 15.)3,1(;310. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是______.[1.8,6]; 11. 已知平面区域:M 11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,记M 关于直线y x =对称的区域为N ,点(,)P x y 满足平面区域N ,若已知OX 轴上的正向单位向量为i ,则向量OP 在向量i 上的投影的取值范围为_____________.1[1,]2-12. 设x 、y 满足条件310x y y x y +⎧⎪-⎨⎪⎩≤≤≥,则22(1)z x y =++的最小值 4 .13.若x 、y 满足,⎩⎨⎧≥+-≤+-220y x y x 则目标函数)(log 21y x C +=的最大值为 .-214、已知,M N 是11106x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所围成的区域内的不同..两点,则||MN15. 已知:点P 满足:⎪⎩⎪⎨⎧≥-≤+≤+-.01,2553,034x y x y x 及A (2,0),则||·cos ∠AOP (O 为坐标原点)的最大值是 5 .16.D 是⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+14032102y x y x y x 表示的平面区域,则D 中的点),(y x P 到直线10=+y x 距离的最大值是___217.某人上午7时,乘摩托艇以匀速v 海里/时(4≤v ≤20)从A 港出发到距50海里的B 港去,然后乘汽车以w 千米/时(30≤w ≤100)自B 港向距300千米的C 市驶去,应该在同一天下午4至9点到达C 市.设汽车、摩托艇所需的时间分别是,x y 小时.(1)写出,x y 所满足的条件,并在所给的平面直角坐标系内,作出表示,x y 范围的图形;(2)如果已知所需的经费1003(5)2(8)p x y =+-+-(元),那么,v w 分别是多少时走得最经济?此时需花费多少元?解:(1) 由题意得:v =y 50,w =x 300,4≤v ≤20,30≤w ≤100, ∴3≤x ≤10,25≤y ≤225.① 由于汽车、摩托艇所要的时间和x +y 应在9至14小时之间,即9≤x +y ≤14,② 因此满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界).(2) 因为p =100+3(5-x )+2(8-y ),所以3x +2y =131-p ,设131-p =k ,那么当k 最大时,p 最小,在图中通过阴影部分区域且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当y =4时,p 最小,此时x =10,v =12.5,w =30,p 的最小值为93元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一P .361. 一个毛纺厂用羊毛和兔毛生产A,B,C 三种混纺毛料,生产1单位产品需要的原料如下表所示.三种产品的单位利润分别是4,1,5.每月可购进的原料限额为羊毛8000单位,兔毛3000单位,问此毛纺厂应如何安排生产能获得最大利润?解:设生产A,B,C 三种产品的量分别是123,,x x x ,则模型为123123123123max 4538000..243000,,0z x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎨⎪≥⎩2. 某饲料厂生产的一种饲料由6种配料混合配成.每种配料中所含营养成分A,B 以及单位配料购入价由下表所示.每单位饲料中至少含9单位的A,19单位的B.问饲料厂如何配方,使得饲料成本最低且满足要求?解:设每单位饲料中每种配料所需的量为()1,2,3,4,5,6i x i =,则有1234561345623456123456min 3530605027122229..33219,,,,,0z x x x x x x x x x x x s t x x x x x x x x x x x =+++++++++≥⎧⎪++++≥⎨⎪≥⎩4. 某产品的一个完整单位包括四个A 零件和三个B 零件.这两种零件(A 和B)由两种不同的原料制成,而这两种原料可利用的数量分别是100单位和200单位.三个车间进行生产,而每个车间制造零件的方法各不相同.下表中给出每个生产班组的原料耗用量和每一种零件的产量.目标是要确定每一个车间的生产班组数使得产品的配套数达到最大.解:设每个车间的生产组数分别为123,,x x x ,则可生产()()123123768594min ,43x x x x x x y ++++⎧⎫=⎨⎬⎩⎭个单位产品,则线性规划如下:123123123123123max 853*********..76845943,,0yx x x x x x s t x x x y x x x yx x x ++≤⎧⎪++≤⎪⎪++≥⎨⎪++≥⎪⎪≥⎩6. 设123,,,A A A 三地各有某种纺织原料90,30,70吨,需要调运给12345,,,,B B B B B 五地,后者各需要80,10,30,50,20吨.从()1,2,3i A i =到(1,2,3,4,5)j B j =的路程(千米)如下表所示.现要求设计一个调拨方案,使得总运输吨公里数最少.解: 设从()1,2,3i A i =运往()1,2,3,4,5j B j =的运量为ij x ,则线性规划模型为如下形式,其中ij c 表示从i A 到j B 的运价。

5311111213141521222324253132333435112131122232132333142434152535min 90307080..103050200,1,2,3;1,2,3,4,5ij ijj i ij z c x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x i j ===⎧++++=⎪++++=⎪⎪++++=⎪++=⎪⎪++=⎨⎪++=⎪⎪++=++=≥==⎩∑∑⎪⎪⎪10. 某昼夜服务的公交线路每天各时间区段内所需司机和售票员数如下表设司机和售票员分别在各时间区段一开始上班,并连续工作8小时,问至少配多少名司机和售票员?解:设各个时间段(1,2,3,4,5,6)i i =开始上班的人数为i x 人,则123456162132435465123456min 607060..502030,,,,,0z x x x x x x x x x x x x s t x x x x x x x x x x x x =++++++≥⎧⎪+≥⎪⎪+≥⎪+≥⎨⎪+≥⎪⎪+≥⎪≥⎩且为整数13. 今运到两批木板,需要锯成两种规格的木料,其中一种木料长为2米,另一种木料长为1.25米,第一批木板共有50块,每块长为6.5米;第二批木板共有200块,每块长为4米。

6.5米长的木板可用下列方式锯开: (1) 2米长的三段;(2) 2米长的两段,1.25米长的一段;(3) 2米长的一段,1.25米长的三段; (4) 1.25米长的四段.4米长的一块木板可用下列方式锯开: (1) 2米长的两端;(2) 2米长的一段,1.25米长的一段; (3) 1.25米长的三段.两段两米和一段1.25米长的木料组成一套,应如何锯开这两批木板可使取得的木料的套数最多.解:设6.5米长的木板用各种方法锯开的木料分别为()11,2,3,4i x i =根,4米长的木板用各种方法锯开的木料为()21,2,3j x j =。

则可以生产的套数为111213212212131422233232min ,3432x x x x x y x x x x x ++++⎧⎫=++++⎨⎬⎩⎭线性规划问题为4113211112132122121314222312max 50200..3222343,0,1,2,3,4;1,2,3i i j j i j yx x s t x x x x x y x x x x x yx x i j ==⎧≤⎪⎪⎪≤⎪⎪⎪++++≥⎨⎪++++≥⎪⎪≥==⎪⎪⎪⎩∑∑且为整数19. 试将下列线性规划问题化为标准型,并用向量形式给出.(1) 12312312123123min 232246..322,0,z x x x x x x x x s t x x x x x x =--++≥⎧⎪+≤⎪⎨-+≥⎪⎪≥⎩无限制 (2)123412341234241231234max 324424326..10,,0z x x x x x x x x x x x x s t x x x x x x x x x =-+-++-+≥⎧⎪+-+≤⎪⎪-=-⎨⎪+-=⎪⎪≥⎩无约束, 解:(1)令()''''''33333,0x x x x x =-≥,则原规划转化为'''1233'''12334125'''12336'''1233456min 2332246..3222,,,,,,0z x x x x x x x x x x x x s t x x x x x x x x x x x x =--+⎧++--=⎪++=⎪⎨-+--=⎪⎪≥⎩ 记221110041100010,631220012A b --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦()()'''12334561233000,,,,,,,TC X x x x x x x x =--=则向量形式为min ..0z CXAX b s t X ==⎧⎨≥⎩(2) 令''''''111222,x x x x x x =-=-,则标准型为''''''112234''''''1122345''''''1122346'''224''''''11223''''''11223456min 332244243326..10,,,,,,,0z x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x x x x =--++-⎧-+--+-=⎪-+--++=⎪⎪-++=⎨⎪-+--=⎪⎪≥⎩ 记 111142104331121016,001101001111110000A b ----⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥---⎣⎦⎣⎦()()''''"1122345633221400,,,,,,,,,TC X x x x x x x x x =---=则向量形式为min ..0z CXAX b s t X ==⎧⎨≥⎩20. 试用图解法求下列线性规划问题的解。

(1)12121212min 152533..2,0z x x x x s t x x x x =++≥⎧⎪+≥⎨⎪≥⎩解: 最优解为3122T⎛⎫⎪⎝⎭,,最优值=35。

21. 已知线性规划问题()()()()12131242512345max 35 1210 2.. 4 3,,,,0 4z x x x x x x x s t x x x x x x x =++=⎧⎪++=⎪⎨+=⎪⎪≥⎩ 下表中所列的解均满足约束条件(1)~(3),试指出表中哪些解是可行解,哪些是基本解,哪些是基本可行解?解:10100512010,10000014A b ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(a ) ()24300Tx =满足约束条件,且()123,,p p p 线性无关,并且0i x ≥,故为基本可行解。

(b ) 30x <,故不是可行解,但()135,,p p p 线性无关,故为基本解。

(c ) 有四个正分量,所以不是基本可行解,但是是可行解。

23. 用单纯形法解下列线性规划问题。

(1) 123412342342341234min 233 623..64,,,0z x x x x x x x x x x x s t x x x x x x x =-+-+++≤⎧⎪-++≤⎪⎨-+-≤⎪⎪≥⎩解:化为标准型为123412345234623471234567min 233623..64,,,,,,0z x x x x x x x x x x x x x s t x x x x x x x x x x x =-+-++++=⎧⎪-+++=⎪⎨-+-+=⎪⎪≥所以最优解()0,1,0,5,0,0,10Tx =,最优值=-17 (12)12312312123max 532=3 ..24,,0 z x x x x x x s t x x x x x =++++⎧⎪-=⎨⎪≥⎩解:化为标准型为如下形式,其中M 为任意大的正数:12341231241234min 5323..24,,,0z x x x Mx x x x s t x x x x x x x =---+++=⎧⎪-+=⎨⎪≥⎩单纯形表如下因为人工变量在上表中都处于非基变量的位置,所以原问题中最优解存在,为()2,0,1,0T,最优值=5.25. 下表为求某个极小值线性规划问题的初始单纯形表以及迭代后的表格,45,x x 为松弛变量,试求表中a,b,c,d,e,f,g,h,i,j,k,l 的值以及各变量下表m,n,s,t 的值。

相关文档
最新文档