运筹学01.02双变量线性规划问题的图解法

合集下载

线性规划(图解法)

线性规划(图解法)

D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10

第1.2节 线性规划问题的图解法

第1.2节 线性规划问题的图解法

x1 20 * x 2 100
* * z 1240
27
2 规划问题求解的几种可能结果
2)无穷多最优解
max z 12 x1 8 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x x2 40 1 3 3 3 x1 2 x2 260 x1 , x2 0
23
x2 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
工序 花瓶种类 占用材料 (盎司) 艺术加工 (小时) 储存空间 (一单位) 利润值 (元)
大花瓶
1/3x1+1/3x2=40 (60,40)
x1
22
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 图1 花瓶问题的图解法
图解法的基本步骤:
(4)确定最优解。最优解是可行域中使目标
函数值达到最优的点,当目标函数直线由原点 开始沿法线方向向右上方移动时,z 值开始增 大,一直移到目标函数直线与可行域相切时为 止,切点即为最优解。
18
图解法的基本步骤:
(3)作出目标函数。由于
z 是一个待求的目 标函数值,所以目标函数常用一组平行虚线表 示,离坐标原点越远的虚线表示的目标函数值 越大。

§1.2图解法

§1.2图解法
试用图解法分析,问题最优解随( 试用图解法分析,问题最优解随(-∞<c<∞)变化的情况 变化的情况
注:本问题有可行解,但无最优解。 本问题有可行解,但无最优解。
例4
max z = 3 x1 + x2
x1 − x 2 ≤ − 1 x1 + x 2 ≤ − 1 x , x ≥ 0 1 2
该问题的可行域是空的,即无可行解( 解 该问题的可行域是空的,即无可行解(
x2
x1-x2=-1
本问题只有唯一最优解。 注:本问题只有唯一最优解。
例1的最优生产方案为: 生产产品甲为2件, 的最优生产方案为: 生产产品甲为2 生产产品乙6 生产产品乙6件,最大利润为36万元。 最大利润为36万元 万元。
注: 问题的可行域是一个有界的凸多边形, 其边界由5条直线所围成: 其边界由 条直线所围成: 条直线所围成

该线性规划问题的可行域见图1 该线性规划问题的可行域见图1-1。
x2 8
Q1(0,6)
Q2(2,6)
图1-1 图解法解题过程 x1=4 2 x 2 = 12 3x1+5x2=z=36
6
4 Q 2
Q3(4,3)
3x1+2x2=18
Q4(4,0)
0
Q0(0,0)
2
4
6
8
x1 3x1+5x2=z=20
1 3 , 10 10
如图: 解 该问题的可行域 Q 如图
x2 x1+x2=5 6x1+2x2=21 -x1+x2=0
A(11/4,9/4)
B(21/6,0) 3x 1 + x 2 = z =0 3x 1 + x 2 = z =6

第1章 2 线性规划问题的图解法

第1章 2 线性规划问题的图解法

其中c 令 Z=2x1+3x2=c, 其中c为任选的一个常 数 , 在图中画出直线 2x1+3x2=c, 即对应着一 组可行的生产结果, 组可行的生产结果,使两种产品的总利润达到 c。 。 这样的直线有无数条, 且相互平行, 这样的直线有无数条 , 且相互平行 , 称 只要画两条 这样的直线为目标函数等值线。只要画两条 目标函数等值线 等值线, 目标函数等值线,如令 x2 c=0和c=6,可看出目 = 和 ,可看出目
x2
4x1 ≤ 16 C D
| 1 | 2 | 3 | 4
4 x2 ≤ 16
最优解 (4, 2)
x1 + 2x2 ≤ 8
| 6 | 7 | 8 | 9
A
0
E
| 5
x1
图解法求解步骤
由全部约束条件作图求出可行域; 由全部约束条件作图求出可行域; 作目标函数等值线,确定使目标函数 作目标函数等值线, 最优的移动方向; 最优的移动方向; 平移目标函数的等值线,找出最优点, 平移目标函数的等值线,找出最优点, 算出最优值。 算出最优值。
练习1答案
max z=x1+3x2 s.t. x1+ x2≤6 -x1+2x2≤8 x1 ≥0, x2≥0
x2 6
最优解(4/3,14/3)
4
可行域
-8 0
目标函数等值线
6
x1
练习2 某公司由于生产需要,共需要A, 练习 :某公司由于生产需要,共需要 , B两种原料至少 两种原料至少350吨(A,B两种材料有 两种原料至少 吨 , 两种材料有 一定替代性),其中A原料至少购进 ),其中 原料至少购进125 一定替代性),其中 原料至少购进 但由于A, 两种原料的规格不同 两种原料的规格不同, 吨。但由于 ,B两种原料的规格不同, 各自所需的加工时间也是不同的, 各自所需的加工时间也是不同的,加工每 原料需要2个小时 吨A原料需要 个小时,加工每吨 原料需 原料需要 个小时,加工每吨B原料需 小时, 个加工小时。 要1小时,而公司总共有 小时 而公司总共有600个加工小时。 个加工小时 又知道每吨A原料的价格为 万元,每吨B 原料的价格为2万元 又知道每吨 原料的价格为 万元,每吨 原料的价格为3万元 万元, 原料的价格为 万元,试问在满足生产需 要的前提下,在公司加工能力的范围内, 要的前提下,在公司加工能力的范围内, 如何购买A, 两种原料 两种原料, 如何购买 ,B两种原料,使得购进成本 最低? 最低?

线性规划问题的图解法

线性规划问题的图解法
bm 0 1 am ,m 1 amn m
j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域

运筹学线性规划问题与图解法

运筹学线性规划问题与图解法

线性规划问题的基本特征
❖ 决策变量:向量(x1… xn)T 代表一个具体的 方案,一般有xi非负
❖ 约束条件:线性等式或不等式 ❖ 目标函数:Z=ƒ(x1 … xn) 线性式,求Z极大
(Max)或极小(Min)
线性规划问题的一般形式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 ……… am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
Ai
❖ 配料问题:每单位原料i含vitamin如下:
原料 A B C 每单位成本
1
4 10
2
2
6 12
5
3
1 71
6
4
2 53
8
每单位添
加剂中维生 素最低含量
12 14 8
求:最低成本的原料混合方案
解:设每单位添加剂中原料i的用量为 xi (i =1,2,3,4)
minZ= 2x1 + 5x2 +6x3+8x4 4x1 + 6x2 + x3+2x4 12 x1 + x2 +7x3+5x4 14 2x2 + x3+3x4 8 xi 0 (i =1,…,4)
x1+x2+x3 ≤9
+0s1 +0s2
-x’1+x2+x’3- x”3 + s1=9
-x1-2x2+x3 ≥2

线性规划问题的图解法

线性规划问题的图解法

20 40
.
即B点坐标为20 ,40,代入目标函数可得最优值Smax 50 20 30 40 2 200 .
线性规划问题的图解法
例2

1. 求可行域(如图7 - 2所示)
(1)建立直角坐标系Ox1x2 . (2)满足条件 x1 x2 2 的所有点均落在直线 x2 2 x1 的右下半平面内; (3)满足条件 x1 x2 2 的所有点均落在直线 x2 2 x1 的右上半平面内. 由约束条件可知,无界区域ABCD是其可行域 .
3 截距最大的点即为最优解,其对应的S值就是最优值 .因此,我们可以把过原点且斜率 5的直
3 线作为参照直线,然后在可行域里进行平移,直到找到最优解 .
显然,斜率为 5的直线在可行域里平移时过B点的纵截距最大,求B点的坐标,联立 3
方程
x2 x2
Hale Waihona Puke 80 2x1 40,解得
x1 x2
图7-2
线性规划问题的图解法
2. 求最优解 把目标函数 S x1 2x2 中的S看作参数,当S 0时,目标函数S x1 2x2是一条过原点 的直线,在坐标系内画出这样的直线(用虚线表示),然后再将该直线向可行域内平移 . 在平移
时,7-2中B点是满足该约束条件的S最小值,其坐标为2 ,0,于是得到该线性规划问题的最
于是从约束条件知,由l1 ,l2 ,l3以及x1轴围成的区域 ABCD是该线性规划问题的可行域,如图7-1所示 .
图7-1
线性规划问题的图解法
2.求最优解 可行域的点满足约束条件,但并非使得目标函数 max S 50x1 30x2 取得最大值的解, 且该目标函数对应的图象也是一条直线,其斜率为 5,可行域里能使该直线与y轴的纵

1.2线性规划问题的图解法及几何意义

1.2线性规划问题的图解法及几何意义

2

可行域
1
Z增大方向
-1
0
1

2
3 x1
图解法(总结三个特点)
从图解法可以看出一般情况下: 从图解法可以看出一般情况下: (1)具有两个变量的线性规划问题的可行域是凸多边形。 具有两个变量的线性规划问题的可行域是凸多边形。 凸多边形 顶点得到 (2)若线性规划存在最优解,它一定在可行域的某个顶点得到。 若线性规划存在最优解,它一定在可行域的某个顶点得到。 (3)若在两个顶点上同时得到最优解,则在这两点的连线上的任 若在两个顶点上同时得到最优解, 意一点都是最优解; 意一点都是最优解; 虽然图解法只能求解包含两个变量的问题,作为算法, 虽然图解法只能求解包含两个变量的问题,作为算法,没有 太大价值,但是上述结论却非常有意义。它将搜索最优解的范围 太大价值,但是上述结论却非常有意义。 从可行域的无穷多个点缩小到有限几个顶点。 从可行域的无穷多个点缩小到有限几个顶点。这就开启了人们的 思路。 思路。而后面我们要介绍的求解多维线性规划的单纯形法就是在 此结论的基础上推广得到的。 此结论的基础上推广得到的。
无可行域的情况将会出现, 这时不存在可行解, 时 , 无可行域的情况将会出现 , 这时不存在可行解 , 即 该线性规划问题无解。 该线性规划问题无解。
无有限最优解(可行域无界,目标值不收敛) 无有限最优解(可行域无界,目标值不收敛):
线性规划问题的可行域无界, 线性规划问题的可行域无界 , 是指最大化问题中的目标 函数值可以无限增大, 函数值可以无限增大 , 或最小化问题中的目标函数值可 以无限减少。 以无限减少。
1.2 线性规划问题的图解法 及几何意义
如何求解线性规划模型是本章讨论的中心问题。 如何求解线性规划模型是本章讨论的中心问题。首先介绍 只有两个决策变量的线性规划的图解法, 只有两个决策变量的线性规划的图解法,该方法能够对线性规 划的解法从几何直观上给我们以启迪。 划的解法从几何直观上给我们以启迪。 对于两个决策变量的每一组取值, 对于两个决策变量的每一组取值,都可以看作平面直角坐标 系中一个点的坐标,因此, 系中一个点的坐标,因此,我们可以把满足约束条件的点在平 面直角坐标系中表示出来。 面直角坐标系中表示出来。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
max z = 50 x1 + 100 x2 s. t. x1 + x2 ≤ 300 2 x1 + x2 ≤ 400 x2 ≤ 250 x1 , x2 ≥ 0
2011-3-10
2
运筹学
解:
Operations Research
最优解为(50,250)T ,最优值为27500. ▎
解:设公司购进小麦和 玉米的数量分别为 x1吨, x2吨,
min z = 2 x1 + 3 x2 s. t. x1 + x2 ≥ 350 x1 ≥ 125 2 x1 + x2 ≤ 600 x1 , x2 ≥ 0
2011-3-10
8
运筹学
Operations Research
2011-3-10
7
运筹学
Operations Research
例5 饲料公司为生产某种混合饲料,共需购进小麦和玉米 至少350吨,其中小麦不少于125吨.小麦和玉米的市场价 格分别为2万元/吨,3万元/吨.因原料的规格不同,加工 一吨小麦和一吨玉米的工时分别为2小时,1小时;而公司 因人手所限,仅有600个加工小时可供使用.试为该公司制 定一个最佳的原料购进方案.
运筹学
Operations Research
§1.2 双变量线性规划问题的图解法 1.2
2011-3-10
1
运筹学
Operations Research
图解法的基本思想:
在坐标平面x1Ox2上画出可行域K , 根据目标函数 直线和 K的关系,直接从图上找出最优解和最优值.
例1利用图解法求解线性规划问题
2011-3-10
3
运筹学
Operations Research
例2利用图解法求解线性规划问题 max z = x1 + 2 x 2 s. t. x1 + 2 x 2 ≤ 6 3 x1 + 2 x 2 ≤ 12 x2 ≤ 2 x1 , x 2 ≥ 0
解:有无穷多个最优解, 最优值为6. ▎
5
运筹学
Operations Research
例4利用图解法求解线性规划问题 max z = 3 x1 − 2 x 2 s. t. x1 + x 2 ≤ 1 2 x1 + 3 x 2 ≥ 6 x1 , x 2 ≥ 0
解:不可行(当然没有 最优解).▎
2011-3-10
6
运筹学
T 图解法(略): 最优解为(250,100) .
故公司应购进小麦和玉 米的数量分别为 250吨, 吨. ▎ 100
2011-3-10
9
运筹学
Operations Research
§1.2
over
2011-3-10
10
结论:
Operations ResearchLeabharlann 1.线性规划问题的解的情况:
不可行(无最优解) 有唯一最优解 可行 有无穷多最优解 无上界(无最优解)
2.线性规划问题的可行域均为凸集,可能有界或无界. 推论 线性规划问题的任两个可行解的连线段上的点均为 可行解. 3.若线性规划问题有最优解,则必可从可行域的顶点中 找到一个. 4.线性规划问题的任两个最优解的连线段上的点均为最 优解.
2011-3-10
4
运筹学
Operations Research
例3利用图解法求解线性规划问题
max z = x1 + x 2 s. t. x1 + 2 x 2 ≥ 2 − x1 + x 2 ≤ 1 x1 , x 2 ≥ 0
解:目标函数无上界, 当然没有最优解.▎
2011-3-10
相关文档
最新文档