线性规划练习题含答案

合集下载

线性规划题及答案

线性规划题及答案

线性规划题及答案线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性目标函数的最优解。

在实际应用中,线性规划可以用于解决各种决策问题,如生产计划、资源分配、投资组合等。

以下是一个线性规划问题的示例:问题描述:某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时的加工时间,产品B每件需要3小时的加工时间。

每天的加工时间总共有16个小时。

产品A的利润为100元/件,产品B的利润为150元/件。

工厂的目标是最大化每天的总利润。

解决步骤:1. 定义变量:设产品A的生产数量为x,产品B的生产数量为y。

2. 建立目标函数:目标函数是每天的总利润,即:Z = 100x + 150y。

3. 建立约束条件:a) 加工时间约束:2x + 3y ≤ 16,表示每天的加工时间不能超过16小时。

b) 非负约束:x ≥ 0,y ≥ 0,表示产品的生产数量不能为负数。

4. 求解最优解:将目标函数和约束条件带入线性规划模型,使用线性规划算法求解最优解。

最优解及分析:经过计算,得到最优解为x = 4,y = 4,此时总利润最大为100 * 4 + 150 * 4 = 1000元。

通过最优解的分析可知,工厂每天应生产4件产品A和4件产品B,才能达到每天最大利润1000元。

同时,由于加工时间约束,每天的加工时间不能超过16小时,这也是生产数量的限制条件。

此外,也可以通过灵敏度分析来了解生产数量的变化对最优解的影响。

例如,如果产品A的利润提高到120元/件,而产品B的利润保持不变,那么最优解会发生变化。

在这种情况下,最优解为x = 6,y = 2,总利润为120 * 6 + 150 * 2 = 960元。

这表明,产品A的利润提高会促使工厂增加产品A的生产数量,减少产品B 的生产数量,以获得更高的总利润。

总结:线性规划是一种重要的数学优化方法,可以用于解决各种实际问题。

通过建立目标函数和约束条件,可以将实际问题转化为数学模型,并通过线性规划算法求解最优解。

线性规划题及答案

线性规划题及答案

线性规划题及答案一、问题描述某公司生产两种产品A和B,每一个产品的生产需要消耗不同的资源,并且每一个产品的销售利润也不同。

公司希翼通过线性规划来确定生产计划,以最大化利润。

已知产品A每一个单位的生产需要消耗2个资源1和3个资源2,每一个单位的销售利润为10元;产品B每一个单位的生产需要消耗4个资源1和1个资源2,每一个单位的销售利润为15元。

公司目前有10个资源1和12个资源2可供使用。

二、数学建模1. 假设生产产品A的数量为x,生产产品B的数量为y。

2. 根据资源的消耗情况,可以得到以下约束条件:2x + 4y ≤ 10 (资源1的消耗)3x + y ≤ 12 (资源2的消耗)x ≥ 0, y ≥ 0 (生产数量为非负数)3. 目标是最大化利润,即最大化销售收入减去生产成本:最大化 Z = 10x + 15y三、线性规划求解1. 将目标函数和约束条件转化为标准形式:目标函数:最大化 Z = 10x + 15y约束条件:2x + 4y ≤ 103x + y ≤ 12x ≥ 0, y ≥ 02. 通过图形法求解线性规划问题:a. 绘制约束条件的图形:画出2x + 4y = 10和3x + y = 12的直线,并标出可行域。

b. 确定可行域内的顶点:可行域的顶点为(0, 0),(0, 2.5),(4, 0),(2, 3)。

c. 计算目标函数在每一个顶点处的值:分别计算Z = 10x + 15y在(0, 0),(0, 2.5),(4, 0),(2, 3)四个顶点处的值。

Z(0, 0) = 0Z(0, 2.5) = 37.5Z(4, 0) = 40Z(2, 3) = 80d. 比较所有顶点处的目标函数值,确定最优解:最优解为Z = 80,即在生产2个单位的产品A和3个单位的产品B时,可以获得最大利润80元。

四、结论根据线性规划的结果,公司在资源充足的情况下,应该生产2个单位的产品A和3个单位的产品B,以最大化利润。

《运筹学》_习题_线性规划部分练习题及_答案

《运筹学》_习题_线性规划部分练习题及_答案

一、思考题1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征?3. 建立一个实际问题的数学模型一般要几步?4. 两个变量的线性规划问题的图解法的一般步骤是什么?5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。

7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。

8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。

9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。

1. 线性规划问题的最优解一定在可行域的顶点达到。

2. 线性规划的可行解集是凸集。

3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。

5. 线性规划问题的每一个基本解对应可行域的一个顶点。

6. 如果一个线性规划问题有可行解,那么它必有最优解。

7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。

9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目 标函数值得到最快的减少。

10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

第二章 线性规划习题(附答案)

第二章 线性规划习题(附答案)
z
x1
x2
x3
x4
x5
x6
RHS
z
1
0
2
0
1/5
3/5
-1/5
27
x1
3
1
-1/3
0
1/3
-1/3
2
5
x3
4
0
1
1
-1/5
2/5
-4/5
3
由于增加决策变量 后求得的最优单纯形表为:
z
x1
x2
x3
x4
x5
x6
RHS
z
1
1/10
89/30
0
7/30
17/30
0
55/2
x6
3
1/2
-1/6
0
1/6
-1/6
习题
2-1判断下列说法是否正确:
(1)任何线性规划问题存在并具有惟一的对偶问题;
(2)对偶问题的对偶问题一定是原问题;
(3)根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;
(4)若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解;
(8)已知yi为线性规划的对偶问题的最优解,若yi>0,说明在最优生产计划中第i种资源已经完全耗尽;若yi=0,说明在最优生产计划中的第i种资源一定有剩余。
2-2将下述线性规划问题化成标准形式。
解:(1)令 ,增加松弛变量 ,剩余变量 ,则该问题的标准形式如下所示:
(2)令 , , ,增加松弛变量 ,则该问题的标准形式如下所示:
则可知,最优解变为 ,最优值变为27。
(3)先将原问题最优解变量值代入,因有

线性规划练习题含答案

线性规划练习题含答案

线性规划练习题含答案一、选择题1.已知不等式组2,1,0y x y kx x ≤-+⎧⎪≥+⎨⎪≥⎩所表示的平面区域为面积等于1的三角形,则实数k 的值为A .-1 BD .1 【答案】B【解析】略作出不等式组表示的可行域如右图所示阴影部分,由于AOB ∆的面积为2, AOC ∆的面积为1,所以当直线y=kx+1过点A (2,0),B (0,1故选B 。

2.定义()()max{,}a a b a b b a b ≥⎧⎪=⎨<⎪⎩,已知实数y x ,满足设{}m a x ,2z x y x y=+-,则z 的取值范围是 ( ) A【答案】D【解析】{},2,20max ,22,22,20x y x y x y x y x y z x y x y x y x y x y x y x y ++≥-+-≤⎧⎧=+-==⎨⎨-+<--->⎩⎩, 当z=x+y 时,对应的点落在直线x-2y=0z=2x-y 时,对应的点落在直线x-2y=0的右下3.若实数x ,y 满足⎪⎩⎪⎨⎧≤+≥≥,1234,0,0y x y x 则 )A .BCD【答案】DP(x,y)与点(-1,-3)连续的斜率,数形结3,,4PA k =应选D4.设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值等于 ( )A. 2B. 3C.5D. 9【答案】B【解析】解:因为设,x y ∈R 且满足满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩故其可行域为当直线Z=x+2y 过点(1,1)时,z=x+2y 取最小值3, 故选B5.若实数,满足条件则的最大值为( )(A ) (B ) (C ) (D ) 【答案】A【解析】作出如右图所示的可行域,当直线z=2x-y 过点A 时,Z 取得最大值.因为A(3,-3),所以Z max =23(3)9⨯--=,故选A.x y 0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩2x y -9303-6.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-120y x a y x y x ,若目标函数z=2x+6y 的最小值为2,则a =A .1B .2C .3D .4 【答案】A【解析】解:由已知条件可以得到可行域,,要是目标函数的最小值为2,则需要满足直线过x 2y 1+=与x+y=a 的交点时取得。

高考数学一轮复习《线性规划》复习练习题(含答案)

高考数学一轮复习《线性规划》复习练习题(含答案)

高考数学一轮复习《线性规划》复习练习题(含答案)一、单选题1.若x ,y 满足1010330x y x y x y +-⎧⎪--⎨⎪-+⎩,则4z x y =-的最小值为( )A .-6B .-5C .-4D .12.已知x ,y 满足不等式组240,3260,20,x y x y x y --≤⎧⎪--≤⎨⎪++≥⎩则23z x y =+的取值范围为( )A .32,5⎡⎫-+∞⎪⎢⎣⎭B .325,52⎡⎤--⎢⎥⎣⎦C .[)6,-+∞D .5,2⎡⎫-+∞⎪⎢⎣⎭3.设变量,x y 满足约束条件100240x y x y x y --≤⎧⎪+≥⎨⎪+-≥⎩,则2z x y =-的最大值为( )A .0B .32C .3D .44.已知实数,x y 满足2030330x y x y x y -+≥⎧⎪+-≤⎨⎪--≥⎩,则目标函数2z x y =+的最大值为( )A .112B .5C .52D .35.若实数x ,y 满足约束条件110x y x y x +≥⎧⎪-≤⎨⎪≥⎩,则2z x y =+的最小值是( )A .-1B .0C .1D .26.若,x y 满足约束条件310x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则2z x y =+的最小值为( )A .1B .2C .3D .47.不等式44x y +<表示的区域在直线440x y +-=的( ) A .左上方B .左下方C .右上方D .右下方8.已知实数x ,y 满足210,10,2,x y x y x -+≥⎧⎪+-≥⎨⎪<⎩,则z =2x -y 的最小值是( )A .5B .52C .0D .-19.若实数x ,y 满足约束条件23023020x y x y x ++≥⎧⎪--≤⎨⎪+≥⎩,则3z x y =-的最大值是( )A .6-B .2C .4D .610.已知动点(),P m n 在不等式组400x y x y y +≤⎧⎪-≥⎨⎪≥⎩ 表示的平面区域内部及其边界上运动,则35n z m -=-的最小值( ) A .4 B .13C .53D .311.甲、乙两艘轮船都要在某个泊位停靠6个小时,假定它们在一昼夜的时间中随机到达,若两船有一艘在停泊位时,另一艘船就必须等待,则这两艘轮船停靠泊位时都不需要等待的概率为( ) A .1116B .916C .716D .51612.若实数,x y 满足约束条件10210y x y x y ≤⎧⎪-≤⎨⎪++≥⎩,则z )A .1BCD二、填空题13.已知x ,y 满足约束条件1000x y x y y +-≤⎧⎪-≥⎨⎪≥⎩则2z x y =-的最大值为_________.14.已知x 、y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则21x y z x ++=+的最小值是__________.15.在等差数列{}n a 中,125024a a a ≤≥-≤,,,则4a 的取值范围是______. 16.若实数,x y 满足约束条件102310y x x x y ≥⎧⎪+≥⎨⎪+-≤⎩,则目标函数3z x y =+的取值范围是__________ .三、解答题17.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.(1)设投资人用x 万元、y 万元分别投资甲、乙两个项目,列出满足题意的不等关系式,并画出不等式组确定的平面区域图形;(2)求投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?18.若变量x ,y 满足约束条件240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩(1)画出不等式组表示的平面区域; (2)求目标函数z =y +x 的最大值和最小值.19.已知点(),P x y 在圆()2211x y +-=上运动,(1)求12y x --的取值范围; (2)求2x +y 的取值范围.20.已知圆C :222440x y x y +-+-=,直线l :30mx y m -+-=()m R ∈与圆C 相交于A 、B 两点.(1)已知点(,)x y 在圆C 上,求34x y +的取值范围: (2)若O 为坐标原点,且2AB OC =,求实数m 的值.21.已知命题p :0x ∃∈R ,()()2011(0)m x a a ++≤>,命题q :x ∀,y 满足+1002x y x y -≤⎧⎪≥⎨⎪≤⎩,m .(1)若q 为真命题,求m 的取值范围.(2)判断p ⌝是q 的必要非充分条件,求a 的范围22.2021年6月17日9时22分,我国“神舟十二号”载人飞船发射升空,展开为期三个月的空间站研究工作,某研究所计划利用“神舟十二号”飞船进行新产品搭载试验,计划搭载若干件新产品,A B 、要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查,搭载每件产品有关数据如表:(1)试用搭载,A B 产品的件数,x y 表示收益z (万元);(2)怎样分配,A B 产品的件数才能使本次搭载实验的利润最大,最大利润是多少?23.设函数(),()x f x e g x ax b ==+,其中, a b R ∈.(Ⅰ)若1,1a b ==-,当1x ≥时,求证:()()ln f x g x x ≥;(Ⅱ)若不等式()()f x g x ≥在[1,)+∞上恒成立,求()2223a e b -+的最小值.24.对于函数()f x 和()g x ,设集合(){}0,R A x f x x ==∈,(){}0,R B x g x x ==∈,若存在1x A ∈,2x B ∈,使得12(0)x x k k -≤≥,则称函数()f x 与()g x “具有性质()M k ”.(1)判断函数()sin f x x =与()cos g x x =是否“具有性质1()2M ”,并说明理由;(2)若函数1()22x f x x -=+-与2()(2)24g x x m x m =+--+“具有性质(2)M ”,求实数m 的最大值和最小值;(3)设0a >且1a ≠,1b >,若函数1()log x bf x a x=-+与()log x b g x a x=-+“具有性质(1)M ”,求1212x x -的取值范围。

线性规划问题(含答案)

线性规划问题(含答案)

线性规划问题1、已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的取值范围是________.[]57-,2、已知实数x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,033,042y x y x y x 则y x z 2+=的最大值为 .83、若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是___57a <≤4、如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为_____32 5. 已知x 、y R ∈,|1|20y x y x x ≥-⎧⎪≤-+⎨⎪≥⎩, 则目标函数y x S -=2的最大值是 . 25 6. 设⎪⎩⎪⎨⎧≥+-≤+-≤-+,033,042,022y x y x y x 则函数z =x 2+y 2取得最大值时,x +y =___________.答案: 511 7.实数,x y 满足430352501x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,函数z kx y =+的最大值为12,最小值为3,则实数k 为 28. 已知变量x 、y 满足条件6200x y x y x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,若目标函数z ax y =+ (其中0a >),仅在(4,2)处取得最大值,则a 的取值范围是 _ a>19. 已知A (3,3),O 为原点,点,002303),(y y x y x y x P ⎪⎪⎩⎪⎪⎨⎧≥≥+-≤-的坐标满足是 ,此时点P 的坐标是 . 15.)3,1(;310. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是______.[1.8,6]; 11. 已知平面区域:M 11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,记M 关于直线y x =对称的区域为N ,点(,)P x y 满足平面区域N ,若已知OX 轴上的正向单位向量为i ,则向量OP 在向量i 上的投影的取值范围为_____________.1[1,]2-12. 设x 、y 满足条件310x y y x y +⎧⎪-⎨⎪⎩≤≤≥,则22(1)z x y =++的最小值 4 .13.若x 、y 满足,⎩⎨⎧≥+-≤+-220y x y x 则目标函数)(log 21y x C +=的最大值为 .-214、已知,M N 是11106x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所围成的区域内的不同..两点,则||MN15. 已知:点P 满足:⎪⎩⎪⎨⎧≥-≤+≤+-.01,2553,034x y x y x 及A (2,0),则||·cos ∠AOP (O 为坐标原点)的最大值是 5 .16.D 是⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+14032102y x y x y x 表示的平面区域,则D 中的点),(y x P 到直线10=+y x 距离的最大值是___217.某人上午7时,乘摩托艇以匀速v 海里/时(4≤v ≤20)从A 港出发到距50海里的B 港去,然后乘汽车以w 千米/时(30≤w ≤100)自B 港向距300千米的C 市驶去,应该在同一天下午4至9点到达C 市.设汽车、摩托艇所需的时间分别是,x y 小时.(1)写出,x y 所满足的条件,并在所给的平面直角坐标系内,作出表示,x y 范围的图形;(2)如果已知所需的经费1003(5)2(8)p x y =+-+-(元),那么,v w 分别是多少时走得最经济?此时需花费多少元?解:(1) 由题意得:v =y 50,w =x 300,4≤v ≤20,30≤w ≤100, ∴3≤x ≤10,25≤y ≤225.① 由于汽车、摩托艇所要的时间和x +y 应在9至14小时之间,即9≤x +y ≤14,② 因此满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界).(2) 因为p =100+3(5-x )+2(8-y ),所以3x +2y =131-p ,设131-p =k ,那么当k 最大时,p 最小,在图中通过阴影部分区域且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当y =4时,p 最小,此时x =10,v =12.5,w =30,p 的最小值为93元.。

线性规划期末试题及答案

线性规划期末试题及答案

《线性规划》试题一.单项选择题(每小题2分,共20分)1.在有两个变量的线性规划问题中,若问题有唯一最优解,则( )A 、此最优解一定在可行域的一个顶点上达到。

B 、此最优解一定在可行域的内部达到。

C 、此最优解一定在可行域的一条直线段边界上达到。

D 、此时可行域只有一个点。

2.设有两个变量的线性规划模型的可行域的图如下,若目标函数只在点处达到最优值,则此目标函数可能就是( )A 、212x x z +=B 、2x z =C 、215x x z +=D 、218x x z +=3、若线性规划模型有可行解,则此线性规划( )基可行解必唯一。

基可行解有无穷多个。

基可行解个数必有限。

基可行解都就是最优解。

4.任何一个线性规划模型的可行解就是( )A. 一个无界集合。

B 、就是一个闭多面凸集。

C 、就是一个空集。

D 、就是一个无边界的集合5.设有下面线性规划问题有最优解,则( )..min ≥==X b AX t s CX f A. 此目标函数在可行域上必有下界 B 、此目标函数在可行域上必有上界 C 、 此目标函数在可行域上必有上界与下界 D 、此目标函数在可行域上必无下界 6.设有线性规划模型3213min x x x f ++=s 、t 、4,3,2,1,07436326213214321=≥=+=++=+++i x x x x x x x x x x i则( )就是一组对应于基的基变量A 、21,x xB 、321,,x x xC 、31,x xD 、432,,x x x 7.设有线性规划模型..max ≥==X b AX t s CX f则它的对偶线性规划的目标函数就是( )A 、CX g =maxB 、 Cb g =minC 、Ub g =minD 、CX g =max 8.设有两个对偶的线性规划问题的模型,下面说法正确的就是( )A 、一个模型有可行解且目标函数在可行集上无界,另一个模型有可行解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划练习题含答案(总7页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性规划练习题含答案一、选择题A .45- B .1 C .2 D .无法确定【答案】B 【解析】解:如图所示要是目标函数取得最小值的最优解有无穷多个,则令ax+y=0,并平移过点C 24(,)33,(可行域最左侧的点)的边界重合即可。

注意到a>0,只能与AC 重合,所以a=18.已知点集{}22(,)48160A x y x y x y =+--+≤,{}(,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N .若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是A. 1B. 2C. 22D. 4【答案】B 【解析】解:因为点集A 表示的为圆心为(2,4),半径为2的圆,而点集B 表示为绝对值函数表示的区域则利用数形结合思想,我们可以求解得到。

【题型】选择题9.在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为( )A . -5 B .1 C . 2 D . 3 【答案】D 【解析】解:当a<0时,不等式表示的平满区域如图中的M ,一个无限的角形区域,面积不可能为2,故只能a 0≥,此时不等式表示的区域为如图中的N ,区域为三角形区域,若这个三角形的面积为2,则AB=4,即点B (1,4),代入y=ax+1,得a=310.已知方程:220x ax b ++= (,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则22(3)z a b =++的取值范围为 A. B. 1(,4)2 C. (1,2) D. (1,4)【答案】B 【解析】解:2(,2)2222f (x)x ax 2b,f (0)0f (1)0,f (3)0b 0,a 2b 10,2a 2b 40a b z (a 3)b -1z 2解:设由图像可知,三者同时成立,求解得到由线性规划知识画出可行域,以为横轴,为纵轴,再以为目标,几何意义为区域内的点到(3,0)的距离的平方,当a=-1,b=0时,z 最大为4,当点到直线a+2b+1=02的距离为,最小为,由题目,不能去边界2=++><>>++<++>=++11.的取值范围是则满足约束条件变量122,012430,++=≤-+≥≥⎪⎩⎪⎨⎧x y s y x x y x y x ( )A .[1,4]B .[2,8]C .[2,10]D .[3,9]【答案】B 【解析】约束条件034120x y x x y ≥≥+-≤⎧⎪⎨⎪⎩表示的区域如图,221112y y s x x ++=++=⨯,11y x ++表示点(x ,y )与点(-1,-1)的斜率,PB 的斜率为最小值,PA 的斜率为最大值,斜率的取值范围是[1,4],112y x ++⨯的取值范围是[2,8]。

12.若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)4【答案】C 【解析】:∵ 作出可行域,作出目标函数线,可得直线与y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =13.在集合}4,1,1|),{(≤+≥≥=y x y x y x A 中,y x 2+的最大值是A 、5B 、6C 、7D 、8.【答案】C 【解析】画出不等式组表示的平面区域,可以看出,当直线2z x y=+经过点(1,3)时, 2z x y =+最大值为7,故选.设集合y x y x y x A --=1,,|),{(是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( ) AB .C .D .【答案】A 【解析】解:0,0,1011由题意可知,x y x y x x y y>⎧⎪>⎪⎪-->⎨⎪->⎪->⎪⎩即为所求的区域A15.目标函数1-=y z x ,变量y x ,满足4001+-≤⎧⎪-≤⎨⎪≥⎩x y x y x ,则有( )A .max min 2,0==z zB .max min 3,0==z z C .min min 3,1==z z 无最大值D .max min 0,2==-z z 【答案】A 【解析】解:利用不等式组,做出可行域,然后目标函数表示的为,区域内的点,到定点(0,1),直线的斜率的取值范围,则可以利用边界点得到选项A16..设m 为实数,若22250{()|30}{()|25}0x y x y x x y x y x y mx y -+⎧⎪-∈⊆+⎨⎪+⎩R ,,、,≥≥≤≥,则m 的最大值是( )A .43 B .34C .23D .32【答案】B17.已知点1(,)40x x y x y ax by c ≥⎧⎪+≤⎨⎪++≥⎩是不等式组表示的平面区域内的一个动点,且目标函数2z x y =+的最大值为7,最小值为1,则a b ca++的值为( )A .2B .12C .-2D .-1【答案】C18.的取值范围是则满足约束条件变量122,012430,++=≤-+≥≥⎪⎩⎪⎨⎧x y s y x xy x y x ( )A.[1,4]B.[2,8]C.[2,10]D.[3,9]【答案】B19.已知变量x ,y 满足约束条件1,0,20,y x y x y -⎧⎪+⎨⎪--⎩≤0≥≤则24x y z =的最大值为A .16B .32C .4D .2【答案】B20.设x,y 满足约束条件⎪⎩⎪⎨⎧≥≤+-≥+-00432032y y x y x ,若目标函数 by ax z +=(其中0,0>>b a )的最大值为3,则ba 21+的最小值为【答案】A21.设x ,y 满足约束条件360,20,0,0,x yxy x y ≤≥≥≥若目标函数z axby (a >0,b >0)的最大值为12,则23ab 的最小值为A .83B .256C .113D . 4【答案】B22.设m>1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+5y 的最大值为4,则m 的值为_______。

【答案】33.已知在平面直角坐标系xoy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A的坐标为,则z OM OA =的最大值为( )A. B. C .4 D .3 【答案】C24.已知点(,)P x y 满足1110x y x y ≤⎧⎪≤⎨⎪+-≥⎩,点Q 在曲线1(0)y x x =<上运动,则PQ 的最小值是( )ABC. D【答案】A25.设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B , ||AB 的最小值为( )A .285B .125C .4D .2【答案】C26.若点M (y x ,)是平面区域⎪⎩⎪⎨⎧≤≤≤≤yx y x 2220内任意一点,点A (-1,2),则z OM OA=⋅的最小值为B.24- 2 【答案】A 【解析】略27.给出平面区域如图所示,其中A (1,1),B (2,5),C (4,3),若使目标函数(0)Z ax y a =->取得最大值的最优解有无穷多个,则a 的值是 A 、32B 、1C 、4D 、23【答案】A二、填空题(题型注释)28.设实数,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数)0,0(>>+=b a b y a x z 的最大值为9,则d=b a +4的最小值为__ ___。

【答案】34 【解析】作出可行域,由图象可知x y z ab =+过点(1,4)时有最大值149a b +=, 因0,0a b >>,则21141164()(4)(8)99b ad a b a b aba b=+=++=++116(899≥+=, 所以d 得最小值为4329.已知实数x,y 满足330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则z=2|x|+y 的取值范围是_________【答案】[-1,11]【解析】作出可行域与目标函数,结合图象可得目标函数经过(0,-1)时,有最小值-1,经过点(6,-1)时有最大值11,所以取值范围是[-1,11]。

30.已知实数满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则yx b =的取值范围是 【答案】]2,31[【解析】如图画出的可行域如下:yx b =的几何意义是可行域内的点与原点的斜率,由图可知过(1,2)有最大值212==b ,过(3,1)有最小值31=b .所以yx b =的取值范围是]2,31[31.已知实数x 、y 满足⎪⎩⎪⎨⎧≤≤--≥-+301,094y y x y x ,则x -3y 的最大值是 _______ .【答案】-1【解析】条件⎪⎩⎪⎨⎧≤≤--≥-+301,094y y x y x 表示的区域如图所示,设3z x y =-,即133z y x =-在y 轴上的截距为3z-,z 的值越大,直线向下平移,过A 点时,z 值最大,求得A (2,1),代入得z 的最大值为.如果实数x ,y 满足⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,则42++=y x z 的最大值 ___ 【答案】29【解析】如图画出实数x ,y 满足⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,的可行域如下: 由图像可知当过点(7,9)时42++=y x z 的有最大值.若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2zx y 的最小值为3,则实数b 的值为____.【答案】94.【解析】由于2zx y 最小值为3,所以最优解应为直线y=-x+b 与2x-y=0的交点.由2320x y x y +=⎧⎨-=⎩得33(,)42,代入y=-x+b 得b=94.34.设,x y 满足约束条件3123x y x y x y +⎧⎪--⎨⎪-⎩≥≥≤,若目标函数(0,0)x yz a b a b=+>>的最大值为10,则54a b +的最小值为 . 【答案】8【解析】由题意知当直线x yz a b =+经过直线x-y=-1与直线2x-y=3的交点(4,5)时,z 最得最大值10.所以451451162510,54(54)()(40)1010b aa b a b a b a b a b+=∴+=++=++11625(402)810b a a b ≥+⋅=(当且仅当4,15a b ==时,取“=”)35.若实数x ,y 满足不等式组3020350x y x y x y +≥⎧⎪-≥⎨⎪--≤⎩,则x 2+y 2的最大值是____.【答案】5【解析】解:利用不等式组,做出可行域,然后目标函数的几何意义为,区域内点到原点距离平方的最大值问题,我们结合边界点,可以解得为536.若非负实数,x y 满足28,39,x y x y +⎧⎨+⎩≤≤则22x y z +=的最大值为 . 【答案】128;【解析】解:由题意可作出可行域,如下图,当直线z ‘=x+2y 平移到过点(3,2)时,Z ’最大,则此时22x y z +==12837.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥,7,3,0ay x x y x (其中a>1).若目标函效z=x+y 的最大值为4,则a 的值为 .【答案】238.已知4435151,2x y x y x y -≥-⎧⎪+≤⎨⎪≥≥-⎩,则232+++x y x 的最大值为 ▲ ;【答案】377939.已知14x y -<+<且23x y <-<,则23z x y =-的取值范围是_______。

相关文档
最新文档