基因组学和比较基因组学PPT讲稿
分子生物学 基因组与比较基因组学

枝原体 Mycoplasma genitalium 580,070 bp,预计有500个基因
(5)细胞器基因组 线粒体基因组
在不同类型的生物(多细胞动物、高等植物、原生动 物、藻类、真菌)中变化很大
多细胞动物:细小、致密 高等植物:复杂、不均一 原生动物、藻类、真菌:或偏向于动物型, 或偏向于植物型,但又有其各自的独特之处
生物的复杂程度与基因组大小的关系
生物种类 真细菌
革兰氏阴性菌 革兰氏阳性菌 蓝细菌 枝原体
古细菌
原生生物 眼虫(裸藻) 纤毛虫 变形虫
真菌
各类生物中基因组大小的变化范围
基因组大小范围(kb) 650 ~ 13,200 650 ~ 7,800 1,600 ~ 11,600 3,100 ~ 13,200 650 ~ 1,800
物理图
以已知DNA序列片段(序列标签位点, STS)为路 标, 以碱基对(bp)为基本测量单位的基因组图.
STS只是基因组中单拷贝的短DNA序列.
建立物理图,需要得到5套该基因组的DNA片 段.(建立相互重叠的相连DNA片段群)
比较准确
序列图
序列图是指整个人类基因组的核苷酸序 列图,也是最详尽的物理图。
结构基因组学研究的主要目标 人类基因组计划(the Human Genome Project)之前,只测定过 一些病毒(X174、、T4等)的基因组全序列
Phage X174: 5375 nt
基因组全序列的测定
1995 嗜血流感菌(Haemophilus influenzae) 1,830 kb
又称染色体外DNA(extrachromosomal DNA)
(2)大小
基因组大小(genome size)一般以单倍体基因 组的核酸量来衡量,单位有pg(10-12 g)、 Dalton(道尔顿)、bp 或 kb 、Mb等
医学分子生物学-基因组ppt课件

调控序列:启动子/增强子/加尾信号
基因组(Genome)
细胞或生物体 一套完整单倍体的遗传物质的总和。
人
(Homo Sapien)
常染色体: 22 性染色体: X,Y
线粒体
n 基因组储存了生物体整套的遗传信息
n 不同生物基因组蕴含的遗传信息量有着巨大的 差别
反向重复序列 7.功能相关的基因构成各种基因家族(gene family) 8.存在可移动的遗传因素(mobile genetic element) 9.体细胞为双倍体,配子(精子/卵子)为单倍体
n (多)基因家族:指核苷酸序列或编码产物的结构具 有一定程度同源性的一组基因,它们功能相似。
n 基因超家族:一组由多基因家族及单基因组成的更大 的基因家族。它们的结构有程度不等的同源性,但功 能并不一定相同,甚至毫无相同之处。在进化上亲缘 关系较远。
Hairpin
5’
3’
小结构基因没有翻译起始序列
Splicing
DNA病毒 RNA过程
HBV 基因结构
原核生物基因组
模式生物: 大肠杆菌 (E.coli)
细菌的遗传物质
Genome DNA
plasmid
Transposable element
原核生物基因组结构与功能特点*
1、为一条环状双链DNA(无典型染色体结构,拟核) 2、只有一个复制起点(Ori) 3、具有操纵子结构V 4、重复序列少:绝大部分基因为单拷贝(99.7%) 5、可表达基因约50% ,>真核生物, <病毒
n 假基因:多基因家族中,某些成员并不能表达出有功 能的产物。与有功能的基因同源,但因突变等原因失 活,可能为进化的痕迹。
研究生课程比较基因组学ppt课件

7
基因组共线性模型
相同的分子标记A~P标记不同物种 间遗传图谱实验,将实验结果校直 成染色体组图谱。 左图染色体组图谱(I和i)所示,完 全共线性。
8
基因组共线性模型(2)
左图显示出一个特殊物种 (I)的染色体组和其他几 个物种的几个染色体存在 着共线性证实了易位的发 生。 在比较遗传图谱的试验过 程中也常观察到整个染色 体臂或者染色体小片段的 倒位。
9
基因染色组共线性模型
比较二倍体和四倍体物种,四 倍体中标记点有两点,左图染 色体组四倍体的1和2和二倍体I 连线。两物种间多态性程度的 分析,不是所有的四倍体标记 在不同的点,如B和N。
10
比较拟南芥和C型脑膜炎遗传图谱
如右图所示,拟南芥 和C型脑膜炎除了短 的相反片段外都表现 出良好的共线性。 右:拟南芥染色体4图 谱 左:C型脑膜炎的连 锁图谱群组 虚线:表示松散的连 接(>20cM)
35
模式生物体在基因组组研究中的重要性
模式生物具有潜能,可以使它适于将基因组研究 基因操作性工具的应用性 (转录,突变,基因克隆和互补作用) 相关的小的和非相关的基因组,真核生物,一个双倍体基因组。 在实验室中简单培养,保持和再生产 相对短的世代 组织的紧密相关性对生物技术、农业医药、和环境是很重要的
11
Comparative maps of the wheat genome described in terms of the rice genome (A) and the Ae. umbellulata genome (B)
12
Comparative genetic
maps of five
长序列的校准具有不确定性。目前,几乎 所有的校准算法首先确定在两个基因组序 列间较长的保守序列原理,然后形成全部 的校准。基本上相似的基因组更易校准。
基因组学与比较基因组学研究

基因组学与比较基因组学研究随着科技日新月异的发展,我们的知识世界也变得越来越广泛而深入。
其中,基因组学和比较基因组学是当前科学领域中备受瞩目的领域。
它们不仅仅是关注人类的生命起源和进化方面的研究,而且还涉及到解决人类不同种类的疾病及其他遗传问题。
本文将介绍和探讨基因组学和比较基因组学的研究,以及研究它们所需的技术和工具。
一、基因组学的研究1.1 基因组学的概念基因组学是对一个组织、一个生物或一个群体中所有基因,以及它们的组成和功能进行研究的学科。
换句话说,基因组学是一种研究基因组及其相互关系的综合科学。
它是生物学、生化学、细胞学及遗传学等领域多学科的交叉发展,旨在揭示生物体内基因的编码组成和相互作用机制。
1.2 基因组学的研究方法基因组学通常使用分子生物学、生物信息学和计算机科学等方法进行研究。
其中,分子生物学主要是通过分离、克隆和研究DNA以及表达dNA时参与到的基因。
生物信息学则是将大量的基因数据对比、分类和注释,以便更好地理解基因组的功能和作用。
计算机科学是利用计算机技术帮助对基因组数据进行处理和解析。
1.3 基因组学的应用基因组学的应用十分广泛。
它被广泛用于生物信息学、遗传学、生物工程学、疾病诊断和治疗等领域。
例如,在基因组学的研究中,可以判断人类遗传性疾病是由哪些基因突变所引起,进而研究开发一些治疗方案和药物等。
二、比较基因组学的研究2.1 比较基因组学的概念比较基因组学是对不同基因组在结构、序列和功能上进行对比和研究的学科。
在比较基因组学中,通过比较不同物种基因组之间的差异,更好地理解每个物种的遗传性特征,以及它们之间的进化关系。
2.2 比较基因组学的意义比较基因组学在生物学上具有重要意义。
它可以更好地理解基因组的演化,尤其是生命起源和进化过程的研究。
根据不同物种基因组内的共同点和差异,可以对其进行分类和固定物种的地位。
同时,还可以通过比较不同物种基因组序列之间的差异,寻找新药物或其他生物产品。
基因组与比较基因组

转录图
生物的性状,包括疾病,都是由功 能蛋白质决定的,而所有已知蛋白 质都是由RNA聚合酶Ⅱ指导的带有 多聚腺苷酸“尾巴”的mRNA按照 遗传密码三联子的规律产生的。
分离纯化mRNA(或cDNA),抓住了 基因组的主要成分(可转录部分)。
人类的基因转录图(cDNA图),即表 达序列标签图(EST,expressed sequence tag)是人类基因组图的雏型。
从整体上看,不同人类个体的基因是相同的, “人类只有一个基因组” 。
不同的人可能拥有不同的等位基因,这一点 决定了人们个体上的差异。
与人类登月计划相比,HGP的资金 投入少,但它对人类生活的影响都 可能更深远。随着这个计划的完成, DNA分子中储藏约有关人类生存和 繁衍的全部遗传信息将被破译,它 将帮助我们理解人类如何作为健康 人发挥正常生理功能,还将最终揭 示严重危害人类健康疾病的机理。
整个人类基因组中,有1%-5%的序 列编码了蛋白质,最多可能有(5~7) 万个蛋白质编码基因。
得到了一段cDNA或一个EST,就能 被用于筛选全长的转录本,并将该 基因准确地定位于基因组上。
大规模生产EST的程序: 分离特定组织在 某一发展阶段的总mRNA,合成cDNA并 进行序列分析。
物理图的主要内容是建立相互重叠连接 的"相连DNA片段群“
只要有一定数被确定。
遗传图
遗传图(连锁图)→DNA标志在染 色体上的相对位置(遗传距离), 遗传距离以DNA片段在染色体交换 过程中的分离频率厘摩(cM)来表示。 cM值越大,两者之间距离越远。
交换频率不会大于50%,因 为当重组率等于50%(即遗传 学距离等于50cM)时,即发生 随机交换,则两个位点之间 完全不连锁。
基因组学课件8比较基因组学

二者差别在于基因数量上,流感嗜血杆菌基 因组有1743个ORF,尿殖道支原体只有470 个ORF。
7/13/2020
模式生物基因组的研究
通过对尿殖道支原体与流感嗜血杆 菌这两个亲缘关系较远的生物基因组的 比较,选取其共同的基因(共240个), 再加上一些其他基因,最后组成一套含 256个基因的最小基因组。
7/13/2020
模式生物基因组研究对人类基因组研 究的促进作用
另一个应用是把比较基因组作图用于复杂 性状的分析。许多遗传性状是由一个以上的 基因控制的,这些基因的识别通常在老鼠中 比在人中来得容易。一旦一个候选疾病基因 或疾病区域被在老鼠中确认,我们就可以筛 选同源基因或同源区域,看看是否与人类遗 传病相对应。
克隆新基因 揭示基因功能 阐明物种进化关系、基因组的内在结构
7/13/2020
比较基因组学的应用
➢ 揭示非编码功能序列 ➢ 发现新基因 ➢ 发现功能性SNP ➢ 阐述物种间的进化史 ➢ 阐明人类疾病过程的分子机制
7/13/2020
比较基因组学与进化
古细菌---产甲烷球菌 与原核生物共同之处:
染色体组织与结构:环状基因组、基因的操纵子结构等 能量产生和固氮基因与有很高的同源性 与细胞分裂有关的蛋白质、20多个编码无机离子运输蛋白的
7/13/2020
2 模式生物基因组研究揭示了人类疾病基 因的功能。 由于某些模式生物基因的功能已知,这 就对人类疾病基因的功能研究有很大的 促进作用。这一跨种关系使模式生物基 因的有效功能数据立刻用于研究它的高 等生物的同源体。
生命科学前沿进展基因组学、比较基因组学和宏基因组学

原核生物:一般只有一个环状DNA分子,其上所有的基因为一个基因组; 真核生物:指一个物种的单倍体染色体所含有的全部DNA分子; 真核生物通常含有2~3个基因组 -核基因组(Nuclear genome) -线粒体基因组(Mitochondrial genome) -质体基因组(Plastid genome) 真核细胞中的细胞器(如叶绿体、线粒体等)中的DNA也为环状,构成叶绿 体基因组、线粒体基因组 If not specified, “genome” usually refers to the nuclear genome.
生命科学前沿进展(一)
基因组学、元基因组学和功能 基因组学
§1 基因组学概述
基因组(genome),又称染色体组,是 某个特定物种细胞内全部DNA分子的总和 (细胞内细胞器的DNA属于该细胞器的基 因组)。物种全部遗传信息的总和。
物种遗传信息的“总词典” 控制发育的“总程序” 生物进化历史的“总档案”
E. coli:4000多个基因,人:~30000个
4、原核生物的基因绝大多数是连续基因,不 含间隔的内含子;基因组结构紧密,重复序列 远少于真核生物的基因组。
例子:E. coli K-12
双链环状DNA分子,全基因组长为4,600kb; 目前已经定位的基因有4,2因组(mitochondrion genome):长为16,569bp的环状DNA分子, 位于产生能量的细胞器——线粒体中
基因组学(genomics)
• 以分子生物学技术、计算机技术和信息网络技术为研 究手段,以生物体内全部基因为研究对象,在全基因 背景下和整体水平上分析生命体(包括人类)全部基 因组结构及功能,探索生命活动的内在规律及其内外 环境影响机制的科学。 对物种的所有基因进行定位、作图、测序和功能分析 由美国人T· H· Rodehck在1986年提出。基因组学完全改 变一次只能研究单个基因的状况,它着眼于研究并解 析生物体整个基因组的所有遗传信息。
基因组与比较基因组学

❖ 发现与DNA复制、重组等有关的序列。
❖ 研究DNA突变、重排和染色体断裂等,了解疾病的分子机制,为 疾病诊断、预防和治疗提供理论依据。
❖ 确定人类基因组中转座子、逆转座子和病毒残余序列,研究其周 围序列的性质。
❖ 研究人类个体之间的多态性(SNP)情况,用于基因诊断、个体 识别、亲子鉴定、组织配型、发育进化等许多医疗、司法和人类 学的研究。
❖ 连锁分析是通过分析同一遗传位点在不同个体中等位基因 的不同(多态性)来研究同一染色体上两位点之间的相互 关系。
2021/4/8
18
❖ 遗传距离图的基本数据来自基因的重组。
2021/4/8
19
❖Sds绝对是假的 么么么么方面
❖ 由于不能对人类进行“选择性”婚配,而且人类子代个体 数量有限、世代寿命较长,呈共显多态性的蛋白质数量不 多,等位基因的数量不多。DNA技术的建立为人类提供了 大量新的遗传标记。遗传标记有三代:
如果该基因与某标记间不发生重组(重组率等于0),我 们就推测该标记与所研究的疾病基因可能非常接近。
2021/4/8
26
3. 物理图
❖ 物理图是指以已知核苷酸序列的DNA片段(序列标签位点 ,STS)为“路标”,以碱基对(bp,kb,Mb)作为基本 测量单位(图距)的基因组图。
❖ STS是基因组中任何单拷贝的长度在 100~500bp之间的 DNA序列,与核酸内切酶识别序列相关联。
SNP中大多数为转换,即由一种嘧啶碱基替换另一种嘧啶 碱基,或由一种嘌呤碱基替换另一种嘌呤碱基,颠换与转 换之比为1:2。
SNP有可能在密度上达到人类基因组“多态”位点数目的 极限。估计人类基因组中可能有300万个SNP位点!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、全基因组鸟枪法测序
鸟枪法的顺序组装是直接从已测序的小片段中寻 找彼此重叠,然后依次向两侧邻接的序列延伸。
DNA的鸟枪法测序的主要步骤
• 第一,建立高度随机、序。 • 第三,序列集合。 • 第四,填补缺口。
新技术方法:
➢ 杂交测序法 ➢ 质谱法 ➢ 单分子测序法 ➢ 原子探针显微镜测序法 ➢ DNA芯片法
1、双脱氧链末端终止法
•是 由 英 国 剑 桥 分 子 生物学实验室的生物 化学家F. Sanger等人 于1977年发明的。
•利 用 双 脱 氧 核 苷 酸 作为链终止物测定 DNA 核 苷 酸 顺 序 的 方法。
1980年诺贝尔奖金获得者F. Sanger
(1)Sanger 双脱氧链末端终止法测定DNA 序列的基本原理:
• 以DNA合成反应为基础,加入ddNTP生成特定
末端不同长短的DNA片段;
• 聚丙烯酰胺凝胶电泳可以区分长度只差一个核
苷酸的DNA分子。
DNA合成反应
利用DNA聚合酶不能够区分dNTP和ddNTP的 特 性 , 在 DNA 合 成 反 应 中 , 加 入 ddNTP , ddNTP不存在3′-OH末端,故不能与下一个核 苷 酸 的 5′-P 端 形 成 3′ 、 5′- 磷 酸 二 酯 键 , 导 致 DNA新链的延伸提前终止于ddNTP 。
(2)双脱氧末端终止法主要步骤
• 单链DNA模板的制备 • DNA模板与测序引物退火 • 延伸-终止反应 • 变性聚丙烯酰胺凝胶电泳 • 放射性自显影 • 阅读板
如何得到单链DNA ?
• 将DNA克隆到质粒载体 • 将DNA克隆到M13噬菌体载体 • 将DNA克隆到酵母自动化
• DNA测序的自动化是在Sanger的双脱氧链
末 端 终 止 法 的 基 础 上 在 1987 年 由 美 国 应 用 生物系统公司进一步发展起来的激光测序 法,其基本原理与末端终止法一样,都是 通过ddNTP竞争性的终止新合成的DNA链。
DNA测序自动化步骤:
Template Primer
dATP dNTP
Polymerase Terminator
A
G
C
T
THE PROCESS
ACTG G C CTAATC GAGTCAGT
TGACCGGA T
C
T
A CC
C
T
A GA AC
G GT T
G G GA
C
T
DNA模板 ATTGCAGTCGAC 生成的新链 TAACGTCAGCTG
T管: TAACGTCAGCT TAACGT T
C管: TAACGTCAGC TAACGTC TAAC
G管: TAACGTCAGCTG TAACGTCAG TAACG
A管: TAACGTCA TAA TA
TAACGTCAGCTG TAACGTCAGCT TAACGTCAGC TAACGTCAG TAACGTCA TAACGTC TAACGT TAACG TAAC TAA TA T
DNA序列 分析技术
鸟枪法测 序技术及 其改良
(一)DNA序列分析技术
• DNA序列测定: • 是指DNA一级结构的测定,是在核酸酶学
和生物化学的基础上,创立并发展起来的 一门重要的DNA技术学。
DNA序列测定的技术
经典方法:
双脱氧链末端终止法(Sanger,1977) DNA化学降解法(Maxam&Gilbert,1977)
基因组学和比较基因组学课件
什么是基因组,基因组学?
• 基因组(Genome):是指生物体的单倍体细胞
中所有的DNA,包括细胞核内的DNA和各种细 胞器中的DNA,是生物体内遗传信息的集合。
• 基因组学(genomics):是研究并解析生物体整
个基因组所有遗传信息的一门学科。
基因组学的发展:从序列到功能
基因组计划的主要任务是获得全基因组序 列;
现在的测序方法每次只能测800-1000bp, 大量的测序片段要拼接;
要知道序列在染色体上的位置才能正确拼 接,因此需构建基因组图谱。
教学内容
• 一、高通量DNA序列分析技术 • 二、人类基因组计划 • 三、比较基因组学
一、高通量DNA序列分析技术
DNA 序列分析
4种带有不同荧光染料标记的终止物ddNTPs Sanger测序反应
反应产物电泳分离 激光激发不同大小DNA片段上的荧光分子,发射出
四种不同波长的荧光 荧光信号采集、计算机分析与DNA自动排序
Template
Primer
Terminator
A
G
C
T
dNTP
Polymerase
THE PROCESS
ACTG G C CTAATC GAGTCAGT
TGACCGGA T
T A
CC
C T
C
G GT T
G G GA
A
C A
G
AC C T
以荧光化合物标记双脱氧核苷酸的自动测序
(二)鸟枪法测序技术及其改良
• 基因组的每条染色体长度可达数百万碱基对以上,
将链终止法测定的小片段DNA组装成真实的排列 顺序是一项浩繁而精细的工作。
结构基因组学 功能基因组学 比较基因组学
结构基因组学
结构基因组学:基因组计划
基因组作图 测定核苷酸序列 基因定位
功能基因组学
功能基因组学:后基因组学(postgenomics)
利用结构基因组学提供的 信息和产物,在基因组系 统水平上全面分析基因的 功能的一门学科。
比较基因组学
比较基因组学:研究不同物种之间在基因组结 构和功能方面的亲源关系及其内在联系的学科。
鸟枪法测序示意图
鸟枪法的优势:
ATP、dATP和ddATP的结构 ATP dATP ddATP
• 这样以待测序列的DNA为模板,加入引物和4种
dNTP(其中一种为α-32P标记),将此反应物分 为4等份,每份内加入一定比例的一种ddNTP, 如此形成A、T、C、G四个反应体系,最后在各 反应体系中加入DNA聚合酶催化DNA片段合成。 这样各反应体系中即可形成以一种ddNTP残基为 3’端结尾的一系列长短不一片段。