高中数学必修四第二章《平面向量》章末复习PPT课件
合集下载
高中数学人教A版(课件)必修四 第二章 平面向量 2.2.1

→ 因为 tan∠CAB=|B→C|= 3,所以∠CAB=60°.
|AB| 因此,船实际航行的速度大小为 10 km/h,方向与江水的速度方向间的夹角 为 60°.
上一页
返回首页
下一页
[探究共研型]
向量加法的多边形法则 探究 1 在△ABC 中,若A→B=a,B→C=b,C→A=c,那么 a+b+c=0 一定成 立吗? 【提示】 一定成立,因为在△ABC 中,由向量加法的三角形法则A→B+B→C =A→C,所以A→B+B→C+C→A=0,那么 a+b+c=0.
上一页
返回首页
下一页
向量加法运算律的意义和应用原则: (1)意义: 向量加法的运算律为向量加法提供了变形的依据,实现恰当利用向量加法 法则运算的目的. 实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可 以按照任意的次序、任意的组合来进行. (2)应用原则: 利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加 法的结合律调整向量相加的顺序.
阅读教材 P80~P81“例 1”以上内容,完成下列问题. 1.向量加法的定义 定义:求_____两__个__向__量__和______的运算,叫做向量的加法. 对于零向量与任一向量 a,规定0+a=a+_0_=__a_.
上一页
返回首页
下一页
2.向量求和的法则
已知非零向量 a,b,在平面内任取一点 A,作A→B=a,
(3)若正方形 ABCD 的边长为 1,A→B=a,A→D=b,A→C=c.试作出向量 a+b
+c,并求出其模的大小.
上一页
返回首页
下一页
【精彩点拨】 利用向量加法的三角形法则或平行四边形法则求和及作图.
【自主解答】 (1)由向量加法的三角形法则可得: A→E+E→B+B→C=A→B+B→C=A→C.故选 B. (2)由向量求和的三角形法则可知 a+d=D→A,c+b=C→B.
|AB| 因此,船实际航行的速度大小为 10 km/h,方向与江水的速度方向间的夹角 为 60°.
上一页
返回首页
下一页
[探究共研型]
向量加法的多边形法则 探究 1 在△ABC 中,若A→B=a,B→C=b,C→A=c,那么 a+b+c=0 一定成 立吗? 【提示】 一定成立,因为在△ABC 中,由向量加法的三角形法则A→B+B→C =A→C,所以A→B+B→C+C→A=0,那么 a+b+c=0.
上一页
返回首页
下一页
向量加法运算律的意义和应用原则: (1)意义: 向量加法的运算律为向量加法提供了变形的依据,实现恰当利用向量加法 法则运算的目的. 实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可 以按照任意的次序、任意的组合来进行. (2)应用原则: 利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加 法的结合律调整向量相加的顺序.
阅读教材 P80~P81“例 1”以上内容,完成下列问题. 1.向量加法的定义 定义:求_____两__个__向__量__和______的运算,叫做向量的加法. 对于零向量与任一向量 a,规定0+a=a+_0_=__a_.
上一页
返回首页
下一页
2.向量求和的法则
已知非零向量 a,b,在平面内任取一点 A,作A→B=a,
(3)若正方形 ABCD 的边长为 1,A→B=a,A→D=b,A→C=c.试作出向量 a+b
+c,并求出其模的大小.
上一页
返回首页
下一页
【精彩点拨】 利用向量加法的三角形法则或平行四边形法则求和及作图.
【自主解答】 (1)由向量加法的三角形法则可得: A→E+E→B+B→C=A→B+B→C=A→C.故选 B. (2)由向量求和的三角形法则可知 a+d=D→A,c+b=C→B.
高中数学 必修四 课件:第二章 平面向量

专题突破
第二章 章末归纳总结
数学 ·人教A版 · 必修4
专题一 有关向量的共线问题 已知a=(1,2),b=(-3,2).若ka+2b与2a-4b
平行,求实数k的值. [分析] 本题考查两向量的共线问题,要求学生熟练掌握
两向量共线的条件.
第二章 章末归纳总结
数学 ·人教A版 · 必修4
[解析] ∵ka+2b=k(1,2)+2(-3,2)=(k-6,2k+4), 2a-4b=2(1,2)-4(-3,2)=(14,-4), ka+2b与2a-4b平行, ∴(k-6)(-4)-(2k+4)×14=0. 解得k=-1.
→ OP
与
→ OQ
垂
直,求x的值.
第二章 章末归纳总结
数学 ·人教A版 · 必修4
[解析]
∵
→ OP
=(2cosx+1,2cos2x+2),
→ OQ
=(cosx,-
1),
∴由两向量垂直的条件得cosx(2cosx+1)-1×(2cos2x+2)
=0,
即2cos2x+cosx-2(2cos2x-1)-2=0.
数学 ·人教A版 · 必修4
[解析] 解法1:∵||a|-|b||≤|a-b|≤|a|+|b|, ∴1≤|a-b|≤7. 即:|a-b|的范围是[1,7]. 解法2:∵|a-b|2=a2+b2-2a·b =a2+b2-2|a||b|cosθ =25-24cosθ, θ为两向量a、b的夹角,∴θ∈[0,π], ∴|a-b|2∈[1,49].∴|a-b|∈[1,7].
[点拨] 本题易犯的三点错误: (1)求a=2e1+e2或b=-3e1+2e2的模时,错认为|a|= 22+12 或|b|= -32+22 ,这是因为e1与e2不是互相垂直的 单位向量,所以(2,1)或(-3,2)不是a或b的坐标,要将其转化 成模的平方. (2)求点乘e1·e2时极易漏掉cosθ, 应为e1·e2=|e1||e2|cosθ(θ为e1与e2的夹角).
第二章 章末归纳总结
数学 ·人教A版 · 必修4
专题一 有关向量的共线问题 已知a=(1,2),b=(-3,2).若ka+2b与2a-4b
平行,求实数k的值. [分析] 本题考查两向量的共线问题,要求学生熟练掌握
两向量共线的条件.
第二章 章末归纳总结
数学 ·人教A版 · 必修4
[解析] ∵ka+2b=k(1,2)+2(-3,2)=(k-6,2k+4), 2a-4b=2(1,2)-4(-3,2)=(14,-4), ka+2b与2a-4b平行, ∴(k-6)(-4)-(2k+4)×14=0. 解得k=-1.
→ OP
与
→ OQ
垂
直,求x的值.
第二章 章末归纳总结
数学 ·人教A版 · 必修4
[解析]
∵
→ OP
=(2cosx+1,2cos2x+2),
→ OQ
=(cosx,-
1),
∴由两向量垂直的条件得cosx(2cosx+1)-1×(2cos2x+2)
=0,
即2cos2x+cosx-2(2cos2x-1)-2=0.
数学 ·人教A版 · 必修4
[解析] 解法1:∵||a|-|b||≤|a-b|≤|a|+|b|, ∴1≤|a-b|≤7. 即:|a-b|的范围是[1,7]. 解法2:∵|a-b|2=a2+b2-2a·b =a2+b2-2|a||b|cosθ =25-24cosθ, θ为两向量a、b的夹角,∴θ∈[0,π], ∴|a-b|2∈[1,49].∴|a-b|∈[1,7].
[点拨] 本题易犯的三点错误: (1)求a=2e1+e2或b=-3e1+2e2的模时,错认为|a|= 22+12 或|b|= -32+22 ,这是因为e1与e2不是互相垂直的 单位向量,所以(2,1)或(-3,2)不是a或b的坐标,要将其转化 成模的平方. (2)求点乘e1·e2时极易漏掉cosθ, 应为e1·e2=|e1||e2|cosθ(θ为e1与e2的夹角).
【课件】必修4第二章《平面向量》复习课(共81张PPT)

P123
35 35 of 22
3
第23课 第(6)题
P123
36 36 of 22
7
第23课 第(7)题
P123
37 37 of 22
B
第23课 第(7)题
P123
38 38 of 22
= 5
第23课 第(8)题
P123
39 39 of 22
23
第23课 第(8)题
P123
40 40 of 22
平面向量总复习
1 1 of 22
一张图学透
一张图学透 平面向量的
数量积
2 2 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
3 3 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
4 4 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
5 5 of 22
四组题讲透
①②③④⑤⑥
23
第23课 第(8)题
P123
41 41 of 22
方法便笺
求向量的模或其范围的方法
第23课 方法便笺
P122
42 42 of 22
方法便笺
求向量的模或其范围的方法
提示: ①求形如 ma nb的向量的模,可通过平方,转化为数量 的运算. ②用定义法和坐标法求模的范围时,一般把它表示成某个 变量的函数,再利用函数的有关知识求解;用几何法求模 的范围时,注意数形结合的思想,长利用三角不等式进行 最值的求解.
第23课 方法便笺
P122
43 43 of 22
2 2
第23课 第(9)题
P123
44 44 of 22
35 35 of 22
3
第23课 第(6)题
P123
36 36 of 22
7
第23课 第(7)题
P123
37 37 of 22
B
第23课 第(7)题
P123
38 38 of 22
= 5
第23课 第(8)题
P123
39 39 of 22
23
第23课 第(8)题
P123
40 40 of 22
平面向量总复习
1 1 of 22
一张图学透
一张图学透 平面向量的
数量积
2 2 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
3 3 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
4 4 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
5 5 of 22
四组题讲透
①②③④⑤⑥
23
第23课 第(8)题
P123
41 41 of 22
方法便笺
求向量的模或其范围的方法
第23课 方法便笺
P122
42 42 of 22
方法便笺
求向量的模或其范围的方法
提示: ①求形如 ma nb的向量的模,可通过平方,转化为数量 的运算. ②用定义法和坐标法求模的范围时,一般把它表示成某个 变量的函数,再利用函数的有关知识求解;用几何法求模 的范围时,注意数形结合的思想,长利用三角不等式进行 最值的求解.
第23课 方法便笺
P122
43 43 of 22
2 2
第23课 第(9)题
P123
44 44 of 22
高中数学必修四第2章《平面向量》ppt课件

[解析] 解法一:2a-3b=2(5,4)-3(3,2)=(1,2). 设与 2a-3b 平行的单位向量为(x,y), 则xy2-+2yx2==01 ,
解得 x1=
5 5
,或 x2=-
5 5
.
y1=2 5 5
y2=-2 5 5
∴所求的单位向量为 55,2 55或- 55,-25 5.
解法二:与 2a-3b 平行的单位向量是
±|22aa--33bb|=±1,52=±
55,2
5
5
∴所求的单位向量为 55,2 55或- 55,-25 5.
▪ [例3] 设|a|=|b|=1,|3a-2b|=3,求|3a +b|的值.
▪ [分[解析析]] 解本法题一:考因查为|向3a-量2b的|=模3,的求法及有关 数所量以积9a的2-运12a算·b+.4b2=9.
章末归纳总结
▪ 1.向量运算 ▪ (1)加法运算 ▪ 加法法则:
▪ 运算性质:a+b=b+a,(a+b)+c=a+(b +c),a+0=0+a=a.
▪ 坐标运算:设a =(x1,y1),b=(x2,y2),则 a+b=(x1+x2,y1+y2).
▪ (2)减法运算: ▪ 减法法则:
▪ 坐标运算:
▪ 设a =(x1,y1),b=(x2,y2),则
▪ ▪
a设-Ab、A→=B=B(两x(x12--点xx1的,2,y坐2-y标1y-1)分.y2别).为(x1,y1),(x2,y2),
▪ (3)实数与向量的积
▪ 定义:λa,其中λ>0时,λa与a同向,当λ <0时,λa与a反方向,当λ=0时,0a=0.
▪ 其中正确命题的序号为___a·b=0,故①不正 确;
▪ ②由向量加减法的平行四边形法则知, a⊥b时,平行四边形为矩形,故对角线相 等,②正确.也可由a·b=0证得|a+b|= |a-b|;
高中数学必修四《平面向量的基本定理》PPT

栏目 导引
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:
高中数学复习课件-高中数学必修4课件 第二章总结平面向量

专题一 向量的综合运算
向量的运算有:加法、减法、数乘及两个向量的数量积,常见的有两种方法: 定义法和坐标法.特别是利用坐标进行向量的运算时,由于转化为实数的运算, 因此比利用定义运算方便、简捷.
应用 1 若向量 AB =(3,-1),n=(2,1),n· AC =7,则 n· BC 的值为( ).
A.-2
相等向量 : 长度相等且方向相同的两个向量
相反向量 : 长度相等而方向相反的两个向量
表示
几何表示 : 用有向线段表示向量
字母表示
:
用一个小写英文字母或两个大写英文字母表示向量
坐标表示 : 用有序实数对表示向量,等于终点坐标减去起点坐标
线性运算
加法
法则
: 三角形法则和平行四边形法则,结果是向量 运算律 : 交换律、结合律
应用 1 已知向量 a,b 满足|a|=3,|b|=2,a 与 b 的夹角为 60°,则 a·b= ; 若(a-mb)⊥a,则实数 m= .
解析:a·b=|a||b|cos 60°=3×2×1 =3. 2
∵(a-mb)⊥a,∴(a-mb)·a=0. ∴a2-mb·a=0.∴9-3m=0.∴m θ.因此求向量的夹角应先转化为求向量夹角的余弦值,再
结合夹角的范围确定夹角的大小.
应用 1 已知向量 a=(1,2),b=(-2,-4),|c|= 5 ,若(c- b)·a= 15 ,则 a 与 c 的夹 2
角为( ).
A.30°
B.60°
C.120°
D.150°
解析:a·b=-10,则(c- b)·a=c·a- b·a=c·a+10= 15 ,所以 c·a=- 5 .
B.BE D.CF
解析:在正六边形 ABCDEF 中,由于 CD∥AF,且|CD|=|AF|,故 CD = AF .同理
向量的运算有:加法、减法、数乘及两个向量的数量积,常见的有两种方法: 定义法和坐标法.特别是利用坐标进行向量的运算时,由于转化为实数的运算, 因此比利用定义运算方便、简捷.
应用 1 若向量 AB =(3,-1),n=(2,1),n· AC =7,则 n· BC 的值为( ).
A.-2
相等向量 : 长度相等且方向相同的两个向量
相反向量 : 长度相等而方向相反的两个向量
表示
几何表示 : 用有向线段表示向量
字母表示
:
用一个小写英文字母或两个大写英文字母表示向量
坐标表示 : 用有序实数对表示向量,等于终点坐标减去起点坐标
线性运算
加法
法则
: 三角形法则和平行四边形法则,结果是向量 运算律 : 交换律、结合律
应用 1 已知向量 a,b 满足|a|=3,|b|=2,a 与 b 的夹角为 60°,则 a·b= ; 若(a-mb)⊥a,则实数 m= .
解析:a·b=|a||b|cos 60°=3×2×1 =3. 2
∵(a-mb)⊥a,∴(a-mb)·a=0. ∴a2-mb·a=0.∴9-3m=0.∴m θ.因此求向量的夹角应先转化为求向量夹角的余弦值,再
结合夹角的范围确定夹角的大小.
应用 1 已知向量 a=(1,2),b=(-2,-4),|c|= 5 ,若(c- b)·a= 15 ,则 a 与 c 的夹 2
角为( ).
A.30°
B.60°
C.120°
D.150°
解析:a·b=-10,则(c- b)·a=c·a- b·a=c·a+10= 15 ,所以 c·a=- 5 .
B.BE D.CF
解析:在正六边形 ABCDEF 中,由于 CD∥AF,且|CD|=|AF|,故 CD = AF .同理
人教A版高中数学必修4课件:第二章《平面向量》复习课(共23张PPT)

uur a0 (
2, 2
2) 2
ur b0
(
4
41 41
,
5
41 ) 41
题型二:利用向量知识证明
例27.(a1b1+a2b2)2≤(a12+a22)·(b12+b22)
r
r
证则明rar:arr2 设bra1r2aa1ra2b21,(bar a212,abb2122r,),
b
rb22
(b1,
b2
r
向量的模
rr
:|
a
||
AB
|
3)坐标表示 a xi y j (x, y)
r uuur a OA (x, y) 点A(x, y)
r uuuur
a MN (xN xM , yN yM )
一.基本概念
2.零向量及其特殊性
(1)0方向任意(2)0 // a(3)0 0(4) 0 0
r
在正八r边形A1Ar2Ar3……A8中,设A1A2= a ,
A1A8u=uubu,r 试uu用uuuar
,b表示:
uuuuur uuuur
uuuuur
uuuur
A2 A3, A2 A4, A4 A5, A5 A6, A6 A7 , A7 A8
A6 A7
A5 A4
A8
A3
b
A1 a A2
uuuur r r A2 A3 2a b
|a|
可正可负可为零
二r.基本运算(r 坐标途径)
若a r
( r
x1,
y1 ),
b
(
x2
,
y2
),
则
1)a b (x1 x2 , y1 y2 ) rr
高中数学人教B版必修四第二章《平面向量本章回顾》ppt同步课件

例 1 如图所示,若物体重量为 G,被两根不等长的绳子 吊起,绳子两端点 A 和 B 保持同一高度,且绳子与竖直方向的 夹角分别为 α 和 β,试研究拉力 f1、f2 的大小.
剖析 物体处于静止状态,受力平衡,即 f1 和 f2 的合力和 物体重力是平衡力,可以应用力的分解解决.于是可以应用向 量的正交分解来处理本题.
答案 D
三、转化与化归思想 转化与化归思想,就是在研究和解决有关数学问题时,采 用某种手段,通过变换,将问题转化为易解决的问题的一种方 法. 例 3 在△ABC 中,AB=AC,D 为 AB 的中点,E 为△ACD 的重心,F 为△ABC 的外心,证明:EF⊥CD. 剖析 建立适当的平面直角坐标系,将证明 EF⊥CD 转化 为证明E→F·C→D=0.
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/8/29
最新中小学教学课件
27
谢谢欣赏!
2019/8/29
最新中小学教学课件
28
∴x(mx-1)>0.
当 m>0 时,解得 x<0,或 x>m1 ;
当 m=0 时,解得 x<0; 当 m<0 时,x(-mx+1)<0,解得m1 <x<0. 综上所述,当 m>0 时,x∈(-∞,0)∪m1 ,+∞; 当 m=0 时,x∈(-∞,0);当 m<0 时,x∈m1 ,0.
解得|f1|=cosα+|Gsi|nαcotβ, |f2|=cosβ+|Gsi|nβcotα .
故两根绳子的拉力大小为cosα+|Gsi|nαcotβ和cosβ+|Gsi|nβcotα.
规律技巧 (1)当 α=β 时,是本题的一种特例. (2)此处应用了向量的正交分解,因此可以应用直角坐标来 解决. (3)可以得出: 若 α>β,则|f1|<|f2|,若 α=β,则|f1|=|f2|.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
√A. 3
43 C. 3
3 B. 3 D.2 3
解析 答案
达标检测
解答
反思与感悟 数量积运算是向量运算的核心,利用向量数量积可以解决
以下问题:
(1)设a=(x1,y1),b=(x2,y2), a∥b⇔x1y2-x2y1=0, a⊥b⇔x1x2+y1y2=0. (2)求向量的夹角和模的问题
①设 a=(x1,y1),则|a|= x21+y21.
②两向量夹角的余弦值(0≤θ≤π)
cos θ=|aa|·|bb|=
x1x2+y1y2 x21+y21 x22+y22 .
跟踪训练 2 已知△ABC 是边长为 1 的等边三角形,点 D,E 分别是边 AB,
BC 的中点,连接 DE 并延长到点 F,使得 DE=2EF,则A→F·B→C的值为
A.-58
√B.18
1 C.4
11 D. 8
解析 ∵B→C=A→C-A→B,A→F=A→D+D→F=12A→B+32D→E=12A→B+34A→C,
∴B→C·A→F=(A→C-A→B)·12A→B+34A→C
=12×1×1×12-12+34-34×1×1×12=14+34-12-38=18.
解析 答案
类型三 向量坐标法在平面几何中的应用
例 3 在 Rt△ABC 中,CA=CB=2,M,N 是斜边 AB 上的两个动点,且 MN
A.43
√B.53
15
C. 8
D.2
解析 答案
类型二 向量的数量积运算
例 2 已知 a=(cos α,sin α),b=(cos β,sin β),且|ka+b|= 3|a-kb|(k>0).
(1)用k表示数量积a·b;
解 由|ka+b|= 3|a-kb|,
得(ka+b)2=3(a-kb)2,
∴k2a2+2ka·b+b2=3a2-6ka·b+3k2b2.
第二章
2019.4
学习目标
1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征. 2.系统整理向量线性运算、数量积运算及相应的运算律和运算性 质. 3.体会应用向量解决问题的基本思想和基本方法. 4.进一步理解向量的“工具”性作用.
内容索引
知识梳理 题型探究 达标检测
知识梳理
1.向量的运算:设a=(x1,y1),b=(x2,y2)
( ×) 提示 当a,b同向共线时,a·b>0,但a和b的夹角为0.当a,b反向共线
时,a·b<0,但a和b的夹角为π.
提示 答案
题型探究
类型一 向量的线性运算 例 1 若 D 点在三角形 ABC 的边 BC 上,且C→D=4D→B=rA→B+sA→C,则 3r+s 的值为
16
12
A. 5
B. 5
√C.85
4 D.5
解析 答案
反思与感悟 向量共线定理和平面向量基本定理是进行向量合成与分解 的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共 线、共点问题.
跟踪训练 1 (2017·广东深圳二模)如图所示,正方形 ABCD 中,M 是 BC 的中点,若A→C=λA→M+μB→D,则 λ+μ 等于
(2)向量共线定理 向量a(a≠0)与b共线,当且仅当为非零向量,设a=(x1,y1),b=(x2,y2),
a∥b
有唯一实数λ使得__b_=__λ_a_(a_≠__0_)__
a⊥b
__a_·_b_=__0___
x1y2-x2y1=0 _x_1_x2_+__y_1_y2_=__0_
向量运算
法则(或几何意义)
坐标运算
加法 向量的线 性运算
减法
三角形 平行四边形
三角形
a+b=(_x_1_+__x_2,__y_1_+__y_2)_ a-b=(_x_1-__x_2_,__y_1_-__y2_)
向量的线 性运算
(1)|λa|=|λ||a|; (2)当λ>0时,λa的方向与a的方 数乘 向 相同 ;当λ<0时,λa的方向与 a的方向相反 ;当λ=0时,λa=0
λa=_(_λ_x1_,__λ_y_1_) _
a·b=|a||b|cos θ(θ为a与b的夹角),规定 向量的数 0·a=0, 量积运算 数量积的几何意义是a的模与b在a方向上 a·b=__x1_x_2_+__y_1y_2_
的投影的积
2.两个定理
(1)平面向量基本定理 ①定理:如果e1,e2是同一平面内的两个 不共线 向量,那么对于这一平 面内的任意向量a,有且只有一对实数λ1,λ2,使a= λ1e1+λ2e2 . ②基底:把 不共线 的向量e1,e2叫做表示这一平面内 所有 向 量 的 一 组 基底.
∴(k2-3)a2+8ka·b+(1-3k2)b2=0.
∵|a|= cos2α+sin2α=1,|b|= cos2β+sin2β=1,
∴k2-3+8ka·b+1-3k2=0,
2k2+2 k2+1
∴a·b= 8k = 4k (k>0).
解答
(2)求a·b的最小值,并求出此时a与b的夹角θ的大小. 解 a·b=k24+k 1=14k+1k. 由对勾函数的单调性可知,f(k)=14k+1k在(0,1]上单调递减,在[1,+∞) 上单调递增, ∴当 k=1 时,f(k)min=f(1)=14×(1+1)=12, 此时 a 与 b 的夹角 θ 的余弦值 cos θ=|aa|·|bb|=12, 又∵θ∈[0°,180°],∴θ=60°.
= 2,则C→M·C→N的取值范围为__32_,___2_ _.
解析 答案
反思与感悟 把几何图形放到适当的坐标系中,就赋予了有关点与向量 具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题. 这样的解题方法具有普遍性.
跟踪训练 3 如图,半径为 3的扇形 AOB 的圆心角为 120°,点 C 在 AB 上, 且∠COB=30°,若O→C=λO→A+μO→B,则 λ+μ 等于
[思考辨析 判断正误] 1.平面内的任何两个向量都可以作为一组基底.( × )
提示 平面内不共线的两个向量才可以作为一组基底. 2.若向量A→B和向量C→D共线,则 A,B,C,D 四点在同一直线上.( × )
提示 也可能AB∥CD.
3.若a·b=0,则a=0或b=0.( × ) 4.若a·b>0,则a和b的夹角为锐角;若a·b<0,则a和b的夹角为钝角.