葡萄酒中的二氧化硫危害健康

葡萄酒中的二氧化硫危害健康
葡萄酒中的二氧化硫危害健康

葡萄酒中的二氧化硫危害健康

葡萄汁中有大量的糖,能被酵母菌转化成酒精。此外,还有一些杂菌也可以在其中生长。要让葡萄汁按照人们的希望转化,就要控

制细菌生长。比如说,葡萄汁榨出来后需要“保鲜”,否则就会被

杂菌破坏。另外,为了风味需要留下一些糖,就需要提前终止酵母

菌的活动。终止酵母菌的操作往往不能把它们全部杀光,而后续的

过程也还可能混入其他细菌。这些细菌的生长同样会破坏葡萄酒的

品质。加热可以灭菌,但会破坏葡萄酒的风味,也并不适宜。

此外,葡萄酒的风味和传说中的“保健功能”,很大程度上取决于其中的抗氧化剂。抗氧化剂自己容易被氧化,要保护它们的活性,就需要加入更强大的抗氧化剂。

虽然这些“保鲜”、“防腐”、“抗氧化”的功能可以通过不同的方式来实现,但是在葡萄酒中效果不好。而二氧化硫,可以全部

搞定。这种做法至少有几百年的历史,到今天也没有找到更好的替

代方案。

二氧化硫是气体,使用不方便。实际生产中可以添加它的衍生产物比如亚硫酸盐、焦亚硫酸盐等。它们跟二氧化硫功能类似,在讨

论用量和安全性的时候也是以二氧化硫的含量作为基准。除了少数

反对一切添加剂的人,人们更关心的还是。

世卫组织设定的安全标准是每天每公斤体重不超过0.7毫克。对于一个60公斤的成年人,相当于每天42毫克。在葡萄酒中的最高

限量,美国是350ppm,中国是250ppm(对于“甜葡萄酒”,中国放

宽到400ppm)。“安全标准”的意思,是不超过这个量,即使长期

食用也不会带来可见的危害。不过有一些人对二氧化硫比较“敏感”,类似于食物过敏。这个“一些人”,美国的统计结果是普通

人中1%左右,而哮喘病人大概会有5%。不同的人引发“敏感症状”

所需要的量不尽相同,其症状一般为恶心、呕吐、腹痛、头晕、呼吸困难等,严重的也会危及生命。

仙人球:它的肉茎气孔在夜间会呈现张开状态,能释放出氧气,并吸收空气中对人体有害的气体,将其输送到根部,吸收利用,净化空气。

月季花:四季开花,花香扑鼻,能吸收空气中的乙醚、苯、硫化氢等有害气体,是抗空气污染的理想花卉。

吊兰:居室里放一盆吊兰,在24小时内,它的叶子便会将室内空气中的一氧化碳等有害气体“吃”掉,其效率甚至超过空气过滤器。

紫罗兰:能分泌出一种植物杀菌素,可在较短的时间内把空气中对人体有害的病菌杀死。

杜鹃:它是抗二氧化硫等污染较理想的花木。如石岩杜鹃距二氧化硫污染源300米多的地方也能正常萌芽抽枝。

木槿:它能吸收二氧化硫、氯气、氯化氢等有毒气体。它在距氟污染源150米的地方亦能正常生长。

山茶:花它能抗御二氧化硫、氯化氢、铬酸和硝酸烟雾等有害物质的侵害,对大气有净化作用。

紫薇:它对二氧化硫、氯化氢、氯气、氟化氢等有毒气体抗性较强。每公斤干叶能吸收10克左右。

米兰:它能吸收大气中的二氧化硫和氯气。在含IPPM氯气的空气中熏4小时,1公斤干叶吸氯量为0.0048克。

桂花:它对化学烟雾有特殊的抵抗能力,对氯化氢、硫化氢、苯酚等污染物有不同程度的抵抗性。在氯污染区种植48天后,1公斤叶片可吸收氯4.8克。它还能吸收汞蒸汽。

梅花:它对环境中的二氧化硫、氟化氢、硫化氢、乙烯、苯、醛等的污染,都能有监测能力。一旦环境中出现硫化物,它的叶片上就会出现斑纹,甚至枯黄脱落,这便是向人们发出的警报。

皮肤接触

立即脱去污染的衣着,用大量流动清水冲洗。就医。

眼睛接触

提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入

迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

如发生中毒,应立即将患者移至有新鲜空气的地方,解开紧身衣服,迅速吸氧,冲洗眼睛和鼻腔,用2%苏打溶液漱口。如不慎溅人眼内,应速用大量温水冲洗。严重者应速送医院治疗。

1、二氧化硫是食品添加剂。

2、二氧化硫作用:漂白剂、防腐剂、抗氧化剂等。

3、使用范围很广:干果、腌制食品等。

4、二氧化硫的来源:食品中的二氧化硫来源于两方面:

一是外源性。即采用硫磺熏制食品或用能产生二氧化硫的盐类做食品添加剂时产生(如:亚硫酸钠、亚硫酸氢钠、低亚硫酸钠和焦亚硫酸钠等);

二是内源性。如葡萄酒或其他果酒在自然发酵的过程中,酵母菌就会产生一定量的二氧化硫,但因为其产生的量比较少,达不到防腐、保鲜、抗氧化的作用,因此还要额外添加一些二氧化硫或其盐类。

猜你感兴趣:

葡萄酒中的二氧化硫

葡萄酒中的二氧化硫 人们平时饮用的葡萄酒中都会添加二氧化硫,SO2本是有毒物质,为什么会出现在葡萄酒中?其实,在酒中添加二氧化硫,可以起到以下的特殊作用: 1.抗氧作用:二氧化硫能防止酒的氧化,特别是阻碍和破坏葡萄中的多酚氧化酶,包括健康葡萄中的酪氨 酸酶和霉烂葡萄中的虫漆酶,减少单宁,色素的氧化。 2.杀菌作用:微生物抵抗二氧化硫的能力不一样,细菌最敏感,葡萄酒酵母抗二氧化硫能力较强。 3.澄清作用:添加适量的二氧化硫推迟了发酵开始,有利于葡萄汁中悬浮物的沉降,使葡萄汁很快获得澄 清。 4.溶解作用:由于二氧化硫的应用,生成的亚硫酸有利于果皮中色素、酒石、无机盐等成分的溶解,可增 加浸出物的含量和酒的色度。 5.增酸作用:增酸是杀菌和溶解两个作用的结果。 尽管SO2对葡萄酒的酿制有很大作用,但是不可忽略的一点是,SO2含量过高时会使葡萄酒产生难闻气味,人体饮用后会引起急性中毒,严重的还可能引起肺水肿、窒息、昏迷。因此,葡萄酒中的二氧化硫含量一直属于葡萄酒检测中要产格监控的检测项目。 每个国家对酿酒过程中能加入的SO2最大限度都有专门的法律规定。欧盟规定红葡萄酒中SO2的最高含量为160mg/L,白葡萄酒和粉红葡萄酒为210m g/L,另外允许成员国在比较差的年份加入不超过40mg/L的SO2,由于SO2对人类身体有一定的毒牲作用,世界卫生组织规定每人依体重算,每天吸入SO2的最大量应控制0.7mg/k,也就是说,如果一个人体重是50kg,那么他吸入SO2的量不超过35mg 为宜。另外,更加重要的是,在开瓶后你摇杯的时间里,葡萄酒中有30%-40%的SO2的会跟氧气结合而消失了。 葡萄酒中的二氧化硫具有重要作用,需要注意他们的使用时间,只有在合适的时间使用二氧化硫才能达到它的最佳效果。 1.发酵以前:30~80mg/L 二氧化硫处理应在发酵触发以前进行。但对于酿造红葡萄酒的原料,应在葡萄破碎除梗后泵入发酵罐时立即进行,需要一边装罐一边加二氧化硫。装罐完毕后进行一次倒罐,以使所加的二氧化硫与发酵基质混合均匀。 不能在破碎前或破碎除梗时对原料进行二氧化硫处理,如果这是进行二氧化硫处理会造成二氧化硫不能与原料混合均匀;由于挥发和固体部分的固定而损耗部分二氧化硫,达不到保护发酵基质的目的;如果在破碎除梗时进行处理二氧化硫气体可能与金属设备发生反应腐蚀金属设备。 酿造白葡萄酒,二氧化硫处理在取汁以后立即进行,以保护葡萄汁在发酵以前不被氧化。避免在破碎除梗后、葡萄汁与皮渣分离以前进行二氧化硫处理,防止部分二氧化硫被皮渣固定,从而降低了保护葡萄汁的效应;二氧化硫的溶解作用可加重皮渣浸渍现象,影响葡萄酒的质量。 2.在葡萄酒陈酿和贮藏时:60~100mg/L 为了防止葡萄酒在陈酿和贮藏过程中被氧化和葡萄汁中的微生物的活动,葡萄酒中的游离二氧化硫含量需要保持在一定的水平。 在贮藏过程中葡萄酒中游离SO2的含量不断地变化,必须定期测定,调整葡萄酒中游离SO2的浓度。在进行调整前,应取部分葡萄酒在室内观察其抗氧化能力。

锅炉烟气中二氧化硫的测定实验指导

锅炉烟气中二氧化硫的测定 一、实验目的 掌握甲醛吸收-副玫瑰苯胺分光光度法测定烟气中的二氧化硫的方法 学会使用尘毒采样器 熟练使用分光光度计 熟练滴定操作 复习标准曲线的测定 掌握正确的采样布点的方法 二、实验原理 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处进行测定。 三、仪器 多孔板吸收管(短时间采样) 空气采样器() 具塞比色管 分光光度计 四、试剂 1. 氢氧化钠溶液,c(NaOH)=1.5mo1/L。 2. 甲醛缓冲吸收液贮备液。吸取36%~38%的甲醛溶液5.5mL,CDTA-2Na溶液 (3.2)20.00mL;称取2.04g邻苯二甲酸氢钾,溶于小量水中;将三种溶液合并,再用水稀释至100mL,贮于冰箱可保存1年。 3. 甲醛缓冲吸收液。 用水将甲醛缓冲吸收液贮备液(3.3)稀释100倍而成。临用现配。 4. 乙二胺四乙酸二钠盐(EDTA)溶液,0.05g/100mL。 称取0.25gEDTA[-CH2N(CH2COONa)CH2COOH]2·H20溶于500mL新煮沸但已冷却的水中。临用现配。 5. 二氧化硫标准溶液。 称取0.200g亚硫酸钠(Na2SO3),溶于200mLEDTA·2Na溶液(3.13)中,缓缓摇匀以防充氧,使其溶解。放置2~3h后标定。此溶液每毫升相当于320~400μg二氧化硫。

标定出准确浓度后,立即用吸收液(3.4)稀释为每毫升含10.00μg二氧化硫的标准溶液贮备液,临用时再用吸收液(3.4)稀释为每毫升含1.00μg二氧化硫的标准溶液。在冰箱中5℃保存。10.0Qμg/mL的二氧化硫标准溶液贮备液可稳定6个月;1.00μg/mL的二氧化硫标准溶液可稳定1个月。 6. 副玫瑰苯胺(Pararosaniline,简称PRA,即副品红,对品红)贮备液,0.20g/100mL。 其纯度应达到质量检验的指标(见国标附录A)。 7. PRA溶液,0.05g/100mL。 吸取25.00mLPRA贮备液(3.15)于100mL容量瓶中,加30mL85%的浓磷酸,12mL浓盐酸,用水稀释至标线,摇匀,放置过夜后使用。避光密封保存。 五、测定步骤 采样: 短时间采样:根据空气中二氧化硫浓度的高低,采用内装10mL吸收液的U形多孔玻板吸收管,以O.5L/min的流量采样。采样时吸收液温度的最佳范围在23~29℃。 分析步骤 1. 校准曲线的绘制 取14支10mL具塞比色管,分A、B两组,每组7支,分别对应编号。A组按表1配制校准溶液系列: 表1 B组各管加入1.00mL PRA溶液(3.15),A组各管分别加入0.5mL氢氧化钠溶液(3.1),混匀。再逐管迅速将溶液全部倒入对应编号并盛有PRA溶液的B管中,(立即具塞混匀后放入恒温水浴中显色。显色温度与室温之差应不超过3℃,)根据不同季节和环境条件按表2选择显色温度与显色时间: 表2

二氧化硫对不同花朵颜色影响的实验探究

二氧化硫对不同花朵颜色影响的实验探究 摘要二氧化硫作为主要的大气污染物之一,其对植物的伤害越来越受到人们的关注。那么,对于自然界中五颜六色的花朵,二氧化硫对其颜色又有什么样的影响呢?本实验探究试图说明这一问题。通过合理的实验设计和直观的实验现象,对学生进行环保教育,以实现新课标对学生的环保意识以及科学素养进行培养的要求。 关键词二氧化硫花朵颜色实验探究环保意识环境教育实验评价 1 问题的提出 20世纪环境警示录记载:1930年12月1~15日的比利时马斯河谷事件,1948年10月26~31日的美国多诺拉烟雾事件,1952年12月5~8日的英国伦敦烟雾事件以及从1959年开始的由于石油冶炼产生的废弃物导致的日本四日市哮喘病事件,都是因为有害气体的长期排放导致的环境污染,而二氧化硫气体就是其中的主要元凶之一[1]。二氧化硫作为一种主要的大气污染物,在工业生产上规定空气中 允许排放量不得超过0.02 mg/m 3,否则就会造成环境污染,危害人类健康[2]。二 氧化硫不仅会以“酸雨”的形式对建筑物、森林、植被等产生损害,危害自然生态系统,还会直接破坏植物的叶肉组织,使叶片失绿,严重危害植物绿叶的生长发育,浓度高时甚至会使植物枯死[3]。那么,二氧化硫对绿叶有如此严重的影响,它对五颜六色的花朵又有什么样的影响呢?为了使学生对二氧化硫给美丽的花朵带来的危害有一个直观而深刻的认识,使其认识到环境保护的重要性,从而对学生进行环保教育,使之树立环保意识,我们通过合理的实验设计与实验验证,探究了大气中二氧化硫对花朵颜色的影响。 2 提出假设 自然界中花朵的品种和颜色多种多样,同一类植物会开出不同颜色的花朵,不同的植物也会开出颜色相同或相近的花朵。经过分析,提出以下实验假设:相同外界条件下,不同浓度的SO2可能对同一朵花的伤害程度不同;同一浓度的SO2可能对颜色不同的同一类植物花朵伤害程度不同;同一浓度的SO2可能对相同或相近颜色的不同类植物花朵伤害程度也不同。 3 实验设计 3.1 实验原理

为什么葡萄酒里要加二氧化硫

为什么葡萄酒里要加二氧化硫 早在1487年,普鲁士皇室颁布法令同意在葡萄酒酿制中使用二氧化硫(SO2)。今天,在葡萄酒的酿制中加入SO2,其实是再平常不过的事情。 简单地来说,如果没有SO2,所有的葡萄酒都将会在短短的几个月之内坏掉。SO2对葡萄酒的影响可谓是从内到外,主要有两种。第一,SO2通常作为保护剂添加到葡萄酒中,有杀死葡萄皮表面的杂菌(SO2几乎是酿酒师所能使用的唯一的细菌抑制剂)。第二,它又是一种抗氧化剂,在保护酒液的天然水果特性的同时防止酒液老化。 尽管SO2对葡萄酒的酿制有很大作用,但是不可忽略的一点是,SO2含量过高时会使葡萄酒产生如腐蛋般的难闻气味,人体饮用后会引起急性中毒,严重的还可能引起肺水肿、室息、昏迷。因此,葡萄酒中的二氧化硫含量一直属于葡萄酒检测中要产格监控的检测项目。 每个国家对酿酒过程中能加入的SO2最大限度都有专门的法律规定。欧盟规定红葡萄酒中SO2的最高含量为160mg/l,白葡萄酒和粉红葡萄酒为210mg/l,另外允许成员国在比较差的年份加入不超过40mg/l的SO2。由于SO2对人类身体有一定的毒牲作用,世界卫生组织规定每人依体重算,每天吸入SO2的最大量应控制在0.7mg/kg,也就是说,如果一个人体重是50kg,那么他吸入SO2的量不超过35mg为宜。另外,更加重要的是,在开瓶后你摇杯的时间里,葡萄酒中有30%-40%的SO2的会跟氧气结合而消失了。 按照我们提倡的葡萄酒最佳健康饮用量是男性每人每天0.3-0.4升,女性每人每天0.2-0.3升,按SO2的最高含量来算,假设一天喝的葡萄酒为0.3升,再剔除与氧气反应的S02,喝入的SO2最高也就是160mg/l*0.3*70%=33.6mg,更何况一般进口优质葡萄酒SO2含量都没有160mg/l。因此,大可放心饮用。

紫外吸收法测试烟气中SO2

第一章烟气监测中干扰SO2测试的几种气体随着国家环保部开展的以锅炉或炉窑监测SO2/NOx为主的气态污染源调查,以及全国各省市环保局主张的CEMS在线监测系统的大力普及,SO2/NOx的CEMS在线监测与瞬时监测之间的数据不统一性的矛盾日趋突出。 目前国内普及的SO2/NOx 常用的瞬时监测仪器多为恒电位电解法—亦即电化学传感器法,国内自95年推出第一台电化学传感器的烟气测试仪以来,以电化学传感器为探测原件的便携式烟气监测仪籍其体积小、重量轻、测试方便等特点在十五年间迅速占领中国市场,成为锅炉烟气或炉窑尾气排放监测的主打仪器,目前国内生产该类型的便携式监测仪器有十几个生产厂家,加上来自英国、德国等国外品牌,供货厂家大致有20个。 几乎所有的便携式的以电化学传感器为探测元件的生产厂家都使用同一厂家即英国CITY公司生产的3SF/F—SO2传感器/3NF—NO传感器,个别厂家使用或部分使用瑞士公司生产的电化学传感器。 本人自1991年参加工作以来,一直从事烟尘烟气便携式测试仪器的市场调研、研发定向及市场推广、售后服务等,在实际的工作当中不断有用户反映烟气或管道气SO2的监测数据误差较大。我所接触的顾客最早提出该问题的是上海市环境监测中心,他们提出在对管道煤制气的监测中,SO2显示数值特别高,到了无法令人信服的地步,由于当时对SO2电化学的相关知识知之甚少,当时无法解答顾客的

疑问。2000年后,随着各地装备的CEMS在线监测仪器越来越多,CEMS的标定及校准仍使用电化学传感器的便携式烟气监测仪,但某些行业--例如水泥行业、铝业制造及钢铁冶炼高炉等炉窑的SO2排放使用原来电化学仪器标定其CEMS的SO2数值大部分是明显偏高的。 2007年8月,中国环境监测总站在青岛召开各省、直辖市、省会城市环境监测工作会议,许多与会代表提出目前电化学传感器测试烟气中的SO2存在许多问题,中环总站副站长在会上指出:电化学传感器是否继续适用我国的固定污染源测试值得商榷?建议环境监测仪器的生产厂家抓紧时间研制稳定、可靠的SO2测试仪。 2008年3月份,山东省环境监测中心、淄博市环境监测站、淄博市淄川区环境监测站三级监测部门分别使用英国、雷博3020烟尘烟气测试仪及3012自动烟尘气测试仪对淄川辖区的山水水泥集团淄博分公司的一台水泥轮窑尾气排放进行监测,测出的SO2结果分别为0、2200、3700mg/m3.出现明显错误,针对这一现象,淄博市环境监测中心曾两次召开办公会研究对策,顾客曾多次质疑我公司,为什么会出现这么大的差异。带着疑问笔者与英国CITY公司上海办事处的技术支持张先生多次深入探讨,3SF/F SO2电化学传感器的影响因素除温度、压力外,主要的影响因子就是烟气成分的复杂多样。 附表一列出了烟气其它气体组分对SO2监测的正负干扰及大致干扰幅度。 笔者于2008年12月参加中铝中州分公司高炉的现场监测,用英国一公司生产的电化学传感器的便携式仪器测试其SO2为

二氧化硫的危害

二氧化硫的危害

————————————————————————————————作者: ————————————————————————————————日期:

二氧化硫的危害和烟气脱硫技术 班级:2006级预防医学1班姓名:彭秀学号:2 摘要:文章主要阐述了二氧化硫的各种危害,论述了湿法、干法、半干法烟气脱硫技术各自的优缺点,详细介绍了烟气脱硫技术的发展和脱硫新技术的研究。 关键词:二氧化硫,酸雨,烟气,脱硫,技术,研究 一、二氧化硫的危害 中国二氧化硫是大气中主要污染物之一,是衡量大气是否遭到污染的重要标志。世界上有很多城市发生过二氧化硫危害的严重事件,使很多人中毒或死亡。在我国的一些城镇,大气中二氧化硫的危害较为普遍而又严重。 二氧化硫进入呼吸道后,因其易溶于水,故大部分被阻滞在上呼吸道,在湿润的粘膜上生成具有腐蚀性的亚硫酸、硫酸和硫酸盐,使刺激作用增强。上呼吸道的平滑肌因有末梢神经感受器,遇刺激就会产生窄缩反应,使气管和支气管的管腔缩小,气道阻力增加。上呼吸道对二氧化硫的这种阻留作用,在一定程度上可减轻二氧化硫对肺部的刺激。但进入血液的二氧化硫仍可通过血液循环抵达肺部产生刺激作用。 二氧化硫可被吸收进入血液,对全身产生毒副作用,它能破坏酶的活力,从而明显地影响碳水化合物及蛋白质的代谢,对肝脏有一定的损害。动物试验证明,二氧化硫慢性中毒后,机体的免疫受到明显抑制。 二氧化硫浓度为10~15ppm时,呼吸道纤毛运动和粘膜的分泌功能均能受到抑制。浓度达20ppmg时,引起咳嗽并刺激眼睛。若每天吸入浓度为100ppm8小时,支气管和肺部出现明显的刺激症状,使肺组织受损。浓度达400ppm时可使人产生呼吸困难。二氧化硫与飘尘一起被吸入,飘尘气溶胶微粒可把二氧化硫带到肺部使毒性增加3~4倍。若飘尘表面吸附金属微粒,在其催化作用下,使二氧化硫氧化为硫酸雾,其刺激作用比二氧化硫增强约1倍。长期生活在大气污染的环境中,由于二氧化硫和飘尘的联合作用,可促使肺泡纤维增生。如果增生范围波及广泛,形成纤维性病变,发展下去可使纤维断裂形成肺气肿。二氧化硫可以加强致癌物苯并(a)芘的致癌作用。据动物试验,在二氧化硫和苯并(a)芘的联合作用下,动物肺癌的发病率高于单个因子的发病率,在短期内即可诱发肺部扁平细胞癌。 二氧化硫还是酸雨的重要来源,酸雨给地球生态环境和人类社会经济都带来严重的影响和破坏。研究表明,酸雨对土壤、水体、森林、建筑、名胜古迹等人文景观均带来严重危害,不仅造成重大经济损失,更危及人类生存和发展。 二、二氧化硫的控制目标 我国是世界产煤和燃煤大国,由燃煤排放的二氧化硫造成的酸雨已影响到全国40%近400万平方公里的面积,且还在扩大。1998年国务院批文正式确定了控制二氧化硫污染的政策和措施,对二氧化硫排放进行总量控制。如到2010年二氧化硫排放量控制在2000年排放水平之内,”两控区”内所有城市环境空气二氧化硫浓度全部达到国家标准,酸雨控制区降水PH<4.5地区的面积要明显减少。新建、改建燃煤含硫量大于1%的电厂必须建立脱硫设施。现有燃煤含硫量大于1%的电厂要在2010年前分批建成脱硫设施或采取其他具有相应效果的减排二氧化硫的措施。 三、烟气脱硫 治理烟气中的二氧化硫有许多方法:有燃烧前的燃料脱硫、参烧脱硫剂的燃烧过程中脱硫以及燃烧后的烟气脱硫。从目前世界各国的使用情况看:对燃煤锅炉来说,最经济、有效

探究二氧化硫的毒害作用

探究二氧化硫对植物的毒害作用 适用对象:科技兴趣小组。 适用主体:学校 活动目标 1.态度目标 (1)采取分组的活动形式,培养质疑和渴望了解新知识的精神,使学生主动地获取科学知识。 (2)体验科学过程与科学方法,培养学生的合作精神和科学实验态度。 (3)从生命体与环境的关系角度理解人类应当保护环境,提高环保意识。 2.科学方法、能力目标 (1)掌握科学观察方法。学习生物绘图、生物摄影、观察记录技能。 (2)培养学生的描述和合作能力,能够写出完整的观察实验报告和探究实验论文。 3.知识目标 (1)使学生接受并深入理解探究性学习的过程和宗旨。 (2)认识环境污染的危害,增加环保知识。 活动方式 活动以环保科技小组为单位,分为若干活动小组(四名学生为一组),以科学探究、实验观察法完成二氧化硫对植物毒害作用这一科学探究活动。 所需活动时间 5天 背景资料 1.知识背景 (1)二氧化硫是人口密集地区重要的大气污染物。是一种有刺鼻臭味的无色气体,易溶于水生成亚硫酸。分子式:SO2。大气中的二氧化硫不仅来源于硫及其化合物的生产中,而且更多来源于煤和石油的燃烧。它是分布面积大、影响范围广的一种有毒气体。 (2)大气中的污染物质,能否对植物产生危害,首先决定于气体的浓度以及有毒气体影响植物延续的时间。植物受危害状况可分为三类,即急性危害、慢性危害和不可见危害。大气中的二氧化硫通过植物叶片的气孔,很容易被植物吸收,破坏植物的叶绿体,使植物受害部

分的细胞失去绿色,导致植物叶片的光合作用降低或消失。 2.方法背景 (1)根据强酸与亚硫酸钠反应可以制得较纯的二氧化硫气体,二氧化硫气体能够使红色的品红溶液褪色这一原理来设计模拟实验方案。 (2)本活动是用亚硫酸钠和浓硫酸反应来制备二氧化硫气体,并通过观察植物叶片的颜色变化和受害症状来研究二氧化硫对植物的毒害作用。 3.重要词汇:二氧化硫、植物、观察、毒害。 设计思路 1.活动依据和意义 此活动利用学生在青少年时期善于质疑和渴望了解新知识的特点,使他们在浓厚的学习兴趣驱动下,主动探索,充分发挥他们在学习上的主动性和实践创造能力。有效的培养学生的科技意识、科学态度、科学方法、科学探究和创新精神。 天津地处我国北方地区,燃煤中含硫量高,燃烧后会产生大量的二氧化硫。在1999年比较全国47个重点城市空气污染合指数中,天津空气污染位于第十。从每天的天津市城区空气质量预报得知二氧化硫是主要污染物之一。开展二氧化硫对植物毒害作用的研究对于防止植物受损,保护生态平衡具有特别重要的意义。 2.活动要点和安排 活动以小组为单位(每组4人),每个小组分别选用两种不同的植物叶片作研究对象,并做好实验观察记录。活动后每位学生写一篇实验报告,每个小组完成一篇实验论文。 第一天:利用教师提供的模拟二氧化硫气体来设计探究实验方案,包括设计实验连接装置和选择实验对象。 第二天:实施探究实验活动,每组做好观察记录,对实验结果进行拍照,留取照片(受害叶片与正常叶片的对比照)。 第三天:针对观察记录描述实验现象,根据实验结果得出结论,并进行讨论评价。 第四天:在教师的指导下,根据实验过程和实验结果写出实验报告。 第五天:在教师的指导下,小组完成实验论文。 实施条件 1.材料:幼嫩的植物叶片,细线等。

葡萄酒中二氧化硫的作用

法国红酒之二氧化硫在葡萄酒中的作用 绝大部分葡萄酒无论新旧世界的葡萄酒,在配料表中都会标出含有二氧化硫,如果没有标出的也不代表没有含二氧化硫,只是代理商不知道有,又或者不标明而已。 其实早在1487年,普鲁士皇室颁布法令同意在葡萄酒酿制中使用二氧化硫(SO2)。今天,在葡萄酒的酿制中加入SO2,是再平常不过的事情。 简单地来说,如果没有SO2,所有的葡萄酒都将会在短短的几个月之内坏掉。SO2对葡萄酒的影响可谓是从内到外,主要有两种。第一,SO2通常作为保护剂添加到葡萄酒中,有杀死葡萄皮表面的杂菌(SO2几乎是酿酒师所能使用的唯一的细菌制剂)。第二。它又是一种抗氧化剂,在保护酒液的天然水果特性的同时防止酒液老化。 尽管SO2对葡萄酒的酿制有很大作用,但是不可忽略的一点是,SO2含量过高时会使葡萄酒产生如腐蛋般的难闻气味,人体饮用后会引起急性中毒,严重的还可能引起肺水肿、室息、昏迷。因此,葡萄酒中的二氧化硫含量一直属于葡萄酒检测中要产格监控的检测项目。每个国家对酿酒过程中能加入的SO2最大限度都有专门的法律规定。欧盟规定红葡萄酒中SO2的最高含量为160mg/l,白葡萄酒和粉红葡萄酒为210mg/l,另外允许成员国在比较差的年份加入不超过40mg/l的SO2。由于SO2对人类身体有一定的毒牲作用,世界卫生组织规定每人依体重算,每天吸入SO2的最大量应控制在0.7mg/kg,也就是说,如果一个人体重是50kg,那么他吸入SO2的量不超过35mg为宜。另外,更加重要的是,在开瓶后你摇杯的时间里,葡萄酒中有30%-40%的SO2的会跟氧气结合而消失了。 按照我们提倡的葡萄酒最佳健康饮用量是男性每人每天0.3-0.4升,女性每人每天0.2-0.3升,所以,按SO2的最高含量来算,假设一天喝的葡萄酒为0.3升,再剔除与氧气反应的S02,喝入的SO2最高也就是160mg/l*0.3*70%=33.6mg,更何况一般进口优质葡萄酒SO2含量都没有160mg/l。因此,大可放心饮用。

烟气SO2分析方法

1.1烟气中二氧化硫含量的测定及吸收率计算 1目的 测定进出口气中二氧化硫含量,可计算吸收率,调节吸收塔操作,使出口气中的二氧化硫含量控制在要求的范围内。 1.1.2原理 气体中所含的二氧化硫在通过一定量的碘溶液时被氧化成硫酸。其余气体收集在量气管中,待淀粉指示剂的兰色刚刚消失,表示反应完毕,根据碘和余气的数量可计算出二氧化硫的含量。 反应按下式进行: SO2 + I2 + H2O H2SO4 + 2HI 1.1.3仪器和试剂 A仪器 (1)反应管; (2)气体定量管(400毫升); (3)水准瓶(500毫升); (4)温度计(0--100℃); (5)采样管; (6)气体冷凝管; (7)移液管(10毫升)。 B试剂 (1)0.01N碘溶液; (2)0.001N碘溶液; (3)0.5%淀粉溶液; (4)蒸馏水。 1.1.4测定 A测定的准备工作 (1)检查量气管,水准瓶以及仪器装置是否漏气; (2)用移液管移取0.01N或0.001N (看气相中二氧化硫含量而定) 碘溶液10毫升注入反应管,加水至反应管的3/4处,加0.5%淀粉溶液2毫升,塞紧橡皮塞备用。 (3)检查采样管是否畅通。在负压下采样时,取样管与水准瓶连接,抬高水准瓶利用排水吸气法将样气抽处,充分置换进入反应管前管道中的余气,然后才进行测定。

B 测定方法 (1) 将仪器按图(1)连接好,旋转塞2,提高水准瓶,使气流由反应管的毛 细管中呈“豌豆;大小的气泡,由明显间隔的连续冒出,直到溶液兰色刚刚消失时,停止进气,将水准瓶中水位与量气管中的水位对平,读取量气管内气体体积和温度,根据读数进行查表和计算。 (2) 分析完毕后,打开水准瓶,使量气管内水位恢复零点。 1.1.5计算 二氧化硫含量的计算: 图1 气体中二氧化硫含量测定装置 1—气体管路;2—三通旋塞;3—冷却器;4—反应管;5—水准瓶;6—气体量管; 7—温度计 SO 2%(v )=N W N V t P P V V ++?-??273273760100 =N W N V t P P V V ++?-??])00367.01(760[100 式中: V N —与碘反应的二氧化硫体积(标准状态),毫升;V N =1.0944R ,R 为反应管中 加入的碘溶液的毫升数; V — 气体量管上表示的吸收二氧化硫后的余气体积,毫升; P — 大气压力,毫米汞柱;

食品二氧化硫超标有什么危害

22种果脯蜜饯类小食品因二氧化硫超标,2月17日被北京市食品办、工商局责令在全市下架。据介绍,这些下架食品包括枸杞子、百合干、橄榄、话梅、话梅肉、杏肉等。 二氧化硫是一种无色、有刺激气味的气体。人们在日常生活中经常会接触到二氧化硫。 人体接触二氧化硫的途径 职业接触制造硫酸、硫酸盐及漂白、制冷、熏蒸消毒剂的工人,均可通过生产过程接触到二氧化硫。 工业废气熔炼硫化物矿石或燃烧含硫染料时均可产生二氧化硫而污染大气,这是常见的一种工业废气。 经食品摄入硫磺、二氧化硫、亚硫酸钠、焦亚硫酸钠和低亚硫酸钠等二氧化硫类物质,是食品工业中常用的食品添加剂(其在食品中的残留量用二氧化硫计算),如果在食品加工生产过程中使用了类似漂白剂,食品中就会含有二氧化硫。 食品加工为什么要用二氧化硫 因为二氧化硫类物质通过生成亚硫酸,亚硫酸对食品有漂白和防腐作用。硫磺燃烧产生二氧化硫,遇水形成亚硫酸。亚硫酸盐与酸反应产生二氧化硫,后者遇水形成亚硫酸。亚硫酸是较强的还原剂,在

被氧化时可将着色物质还原退色,使食品保持鲜艳色泽,还可抑制食品中的氧化酶,防止食品褐变。由于其还原作用,还可阻断微生物的正常生理氧化过程,抑制微生物繁殖,从而起到防腐作用。因此,二氧化硫类物质是食品加工过程中常用的漂白剂和防腐剂。 二氧化硫超标可产生毒性 二氧化硫进入体内后生成亚硫酸盐,并由组织细胞中的亚硫酸氧化酶将其氧化为硫酸盐,通过正常解毒后最终由尿排出体外,因此少量的二氧化硫进入机体可以认为是安全无害的。其毒性主要表现为经职业接触所引起的急慢性危害。 急性中毒可引起眼、鼻、黏膜刺激症状,严重时产生喉头痉挛、喉头水肿、支气管痉挛,大量吸入可引起肺水肿、窒息、昏迷甚至死亡。人对空气中二氧化硫的嗅觉阈为0.03mg/L,刺激阈为 0.01mg/L,0.03mg/L只能耐受1分钟。 慢性毒性长期小剂量接触空气中的二氧化硫,会导致嗅觉迟钝、慢性鼻炎、支气管炎、肺通气功能和免疫功能下降。严重者可引起肺部弥漫性间质纤维化和中毒性肺硬变。经口摄入二氧化硫的主要毒性表现为胃肠道反应,如恶心、呕吐。此外,可影响钙吸收,促进机体钙丢失。 二氧化硫使用标准 为保证消费者健康,我国在食品添加剂标准中规定了二氧化硫类物质在食品中的使用范围、使用量及允许最大残留量。如硫磺只限于

大气污染对动植物的危害

大气污染对动植物的危害1、对植物的危害 (1)大气污染物,尤其是二氧化硫、氟化物等对植物的危害是十分 严重的。当污染物浓度很高时,会对植物产生急性危害,使植物叶 表面产生伤斑,或者直接使叶枯萎脱落;当污染物浓度不高时,会 对植物产生慢性危害,使植物叶片褪绿,或者表面上看不见什么危 害症状,但植物的生理机能已受到了影响,造成植物产量下降,品 质变坏。 (2)大气污染对植物的危害可分为可见性伤害和不可见性伤害。可见 性伤害是由于植物茎叶吸收较高浓度的污染物或长期暴露在被污染 的大气环境中而出现的可以看到的受害现象。可见性伤害又根据植 物受害程度分为急性型、慢性型和混合型3种类型。急性伤害是在 污染物浓度很高的情况下,短时间内造成的危害,如叶片出现伤斑、脱落,甚至整株死亡;慢性伤害是指低浓度的污染物在长时间作用 下造成的危害,例如叶片褪绿、生长发育受影响;混合型伤害是介 于急性伤害和慢性伤害之间的受害症状,一般叶片出现黄白化症状,以后虽可恢复青绿,但会造成普遍减产。不可见伤害是由于植物吸 收低浓度污染物而使生理、生化方面受到不良影响。虽然叶片表现

不呈明显的受害症状,但会造成植物不同程度的减产,或影响产品的质量。 (3)危害植物的大气污染气体 二氧化硫:是我国当前最主要的污染物,排放量大,对植物的危害也比较严重。二氧化硫是各种含硫的石油和煤燃烧时的产物之一,发电厂、石油加工厂和硫酸厂等散发较多的二氧化硫。0.05~10mg /L的二氧化硫就有可能危害植物,当然以持续时间而定。植物少量的硫是植物生长所需要的,然而高浓度的二氧化硫进入植物体内,会造成高浓度的亚硫酸根离子的累积,高浓度的亚硫酸根离子能使植物受到损害。二氧化硫危害植物的症状是:开始时叶片微失去膨压,有暗绿色斑点,然后叶色褪绿、干枯,直至出现坏死斑点;禾本科植物如稻、麦叶尖呈色条斑,豆科及百合科中葱、蒜、韭菜叶片上呈黄色斑块,茄科中茄子、番茄叶面呈较深色斑。 (4)氟化物:有氟化氢、四氟化硅、硅氨酸及氟气等,其中排放量最大、毒性最强的是氟化氢。当氟化氢的浓度为1~5μg/L时,较长时间接触可使植物受害。凡是生产过程中使用冰晶石、含氟磷矿石等原料的工厂,如铝厂、磷肥厂、钢铁厂和玻璃厂等,都可能向大

二氧化硫在葡萄酒中的含量

二氧化硫在葡萄酒中的含量 二氧化硫在葡萄酒中的含量 在欧美,当葡萄酒中的二氧化硫含量超过10ppm(百万分之一,1ppm=1毫克/千克=1毫克/升),就必须标明“含二氧化硫”。由于天然发酵产生的量往往比这要高,所以几乎所有的葡萄酒都会有这一标注。(不过他们并不要求标明具体含量数值。)至于葡萄酒中二氧化硫的上限,美国是350ppm,中国是250ppm,对于“甜型”葡萄酒或者果酒,中国放宽到400ppm。不过实际上,要实现所需功能,并不需要这么大量的二氧化硫,美国对葡萄酒检测统计的结果是平均100ppm上下。 国际食品添加剂联合专家委员会(JECFA)制定的二氧化硫安全摄入限是每天每公斤体重0.7毫克。对于一个60公斤的成年人,这相当于每天42毫克。假如按照100ppm的平均值来算,那么400毫升葡萄酒中就含有40毫克,接近“最高摄入量”了。 “安全摄入限”的意思是,不超过这个含量的二氧化硫,即使长期食用,也不会带来可见的危害。不过有一些人对二氧化硫比较“敏感”,类似于其他的食物过敏。这个“一些人”,美国的统计是普通人中1%左右,而哮喘病人大概会有5%。不同的人引发“敏感症状”所需要的量不尽相同,其症状一般为恶心、呕吐、腹痛、头晕、呼吸困难等等,严重的也会危及生命。 二氧化硫还用在哪里? 保鲜、防腐、抗氧化,并不仅仅是葡萄酒有这种需求,很多其他的食物加工中也会有这样的需求。二氧化硫(以及其他的衍生物),也就成了一种很有用的食品添加剂。 许多食物中含有酚类化合物,被氧化之后被变成黄褐色。而二氧化硫具有一定的还原性,可以让它们不变色,或者把色素漂成白色。像腐竹、竹笋这样的食物对此都有相当的需求。 从防腐的角度来说,二氧化硫的使用范围更为广泛。各种干制蔬菜水果、坚果、蔬菜汁、果汁、果酒中,都可以找到它们的身影。 随着食品营养与安全越来越受关注,越来越多的人开始阅读食品标签。喜欢喝葡萄酒的人发现,欧美的葡萄酒几乎都标注了“含二氧化硫”。为什么这个常常跟酸雨、空气污染物相关联的“有毒有害的化学物质”竟然堂而皇之地出现在了“典雅”的葡萄酒中?

废气SO2NOX现场测试复习题2003

废气中SO2、NO x、NO2复习题 一. 填空题 1.气态污染物在采样断面内,一般是混合均匀的,可取靠近(烟道中心)的一点作为采样点。(GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.1.2) 2.气态污染物采样时,采样管入口与气流方向(垂直),或(背向)气流。 (空气和废气监测分析方法第349页) 3.根据气态污染物测试分析方法不同,分为(化学)法和(仪器直接测试)法。(GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.2) 4.为防止烟尘进入试样干扰测定,在采样管入口或出口出装入阻挡尘粒的滤料,滤料应选择(不吸收)亦不与待测污染物起(化学反应)的材料,并能耐受(高温)排气。 (GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法9.3.1.2) 5.烟气中的二氧化硫被(氨基磺酸铵)和(硫酸铵)混合溶液吸收,用碘标准溶液滴定。(空气和废气监测分析方法第349页) 6. 目前SO2测试常用的方法有(碘量法)、(定电位电解法)、(电导法)等,为避免采样气体在采样管中冷凝,通常对采样管进行(加热保温),温度(120—150)度。连接管要进行保温,内径应大于(6)mm,管长应(尽可能短)。 7. 烟气采样中应记录现场大气压力以及(采样流量)、(采样时间)、(流量前的气体温度),(流量前的气体压力)。 8.烟气化学法采气系统一般由(采样管)、连接导管、(吸收瓶)、旁路吸收瓶、干燥剂、(流量计)、(温度计)、(压力计)、抽气泵组成。 (环境空气监测质量保证手册110页) 9.烟气脱硫的工艺很多,根据脱硫介质的不同可分为(湿)法、(干)法和(半干)法。(环境测试技术基本理论试题集225页) 10.用吸收瓶采集烟气样品前,用旁路吸收瓶抽气的目的是为了置换吸收瓶前采样管路中的(空气),并使(滤料)被待测气体饱和。 (环境测试技术基本理论试题集225页) 11.用吸收瓶正式采集烟气样品前,应先用(旁路吸收瓶)抽气5-10min。 (环境测试技术基本理论试题集213页) 12.定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器(标定零点)。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.1) 13. 定电位电解法测定烟道废气时,当仪器采样管插入烟道中,既可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可(读数)。同一工况下应连续测定(三)次,取(平均值)作为测量结果。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.2) 14. 定电位电解法电化学传感器灵敏度随时间变化,为保证测试精度,根据仪器使用频率每(三)月至(半)年需校准一次。 (HJ/T57-2000固定污染源排气中二氧化硫的测定定电位电解法6.4.1)

烟气中二氧化硫及粉尘的计算方法

一、燃料燃烧过程二氧化硫排放量的计算 1.煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全部的80%,计算公式如下: Gso2=2××B×S×(1-η)=×(1-η) 2. 燃油二氧化硫排放的计算公式如下: Gso2=2BS×(1-η) 式中:Gso2—SO2产生量量,kg ; W—燃煤(油)量,kg; S—煤(油)的全硫分含量,(重量) %; η—脱硫设备的脱硫效率%(实测值),无脱硫装置的脱硫效率η值为0 。 3. 燃烧天然气二氧化硫排放的计算公式如下: Gso2=×C H S×10-3 式中:Gso2—SO2产生量量,kg ; V—气体燃料消耗量,m3(标); C H S—气体燃料中H2S的体积%。 二、工艺过程产生气体污染物排放量计算 1.水泥生产中SO2排放量计算: G SO2=2×(B×式中: Gso2—水泥熟料烧成中排放SO2量,t; B—烧成水泥熟料的煤耗量,t; S—煤或油的全硫分含量,(重量)%; M—水泥熟料产量,t; f1—水泥熟料中S032-的含量(%); G d—水泥熟料生产中产生的窑灰量,回转窑一般占孰料量的25%(20%~30%),t; f2—粉尘中SO32-含量(%); —系数,即S/S032-=32÷80= 。 2.硫酸生产中排放S02的计算: Gso2=W×S×H×J×(1-Z)×(1-A)×2 式中:Gso2—硫酸废气SO2排放量,t; W—硫铁矿石用量,t; S—硫铁矿石含硫量(%): H—硫磺烧出率(%); J—净化工序硫的净化效率(%); Z—转化工序转化为SO3的转化率(%); A—尾气氨吸收净化率(%)。 3.烧结废气中排放SO2计算: G SO2=2×(SH-SJ-SF) 式中: G SO2—废气中SO2含量(千克/吨),烧结矿; SH—混合料中含硫量(千克/吨); SJ—烧结矿中含硫量(千克/吨); SF—粉尘带出的硫量(千克/吨)。 4. 工业粉尘排放量的计算: G d=10—6·Q f·C f·t 式中: G d—工业粉尘排放量,kg; Q f—排尘系统风量,m3(标)/h; C f—设备出口排尘浓度, mg/ m3(标)(实测); t—排尘除尘系统运行时间。

二氧化硫对植物的影响 word (1)

二氧化硫对植物的影响 张涛 20135937 摘要:近年来SO2污染比较严重,它对植物有着多方面的影响。植物既受到SO2污染的影响,又对SO2的影响具有一定程度的修复能力。本文总结了关于SO2单一污染物对植物生理生化的直接影响以及其适应机制,并提出对这方面研究的展望。 关键词:二氧化硫;植物;抗氧化酶 我国是以煤为主要能源的国家,所以我国的大气污染主要是以SO 2 污染为主。特别是近30年来我国经济的高速发展,更使煤炭以及石油的消耗量达到 了一个前所未有的高度,加剧了SO 2的排放污染。SO 2 是我国当前最主要 的大气污染物,在个别地区污染相当严重。SO 2 可通过气孔进入植物叶片细 胞后快速溶于细胞中,在细胞内释放出H+、HSO 3-和SO 3 2-等,从而对细 胞产生直接或间接的伤害。也可与其它大气污染物进行化学反应,生成各种硫酸盐,这些成分随雨水共同降落成为“酸雨”,能够导致土壤和水系的酸化,干扰植物的代谢,对生态系统有很大的破坏作用,从而间接地危害人类健康。关 于SO 2 污染环境对植物生理生化及生长发育的影响已引起了众多学者的关 注,并己取得了长足的进展。近年来,在SO 2 的植物伤害症状、伤害机理、对生理生化指标、植物组织结构影响等方面取的研究得了许多进展。 1.二氧化硫对植物形态的影响 李利红,仪慧兰[1]等采用室内培养及密闭箱静态熏气方法,研究了不同浓 度SO 2暴露对拟南芥叶片形态的影响,结果显示:SO 2 暴露对拟南芥成熟 叶片的伤害主要是叶面伤害斑的出现和叶片枯死,伤

害程度与暴露浓度和时间呈正相关,暴露于低浓度SO 2 时叶面无伤害斑,随 时间推移有少数叶片边缘卷曲,但在停止暴露后恢复正常;中浓度时暴露的植株叶片出现大小不等的透明斑,随着暴露时间的延长,伤害症状发展为坏死斑, 暴露于高浓度SO 2 的植株,叶片很快出现不规则形的黄色坏死斑,坏 死斑的面积随暴露时间的延长而扩大,之后叶片大量枯死。但在脱离高浓度S O 2 后伤害性斑点不再增加,并能继续生长发育。 SO 2暴露对拟南芥植株的生长发育具有双向作用,较低浓度SO 2 暴露 对植株的生长发育有一定的促进作用,高浓度SO 2 暴露会抑制植株的生长发育,使株高、单株叶片数和单叶面积呈浓度依赖性减少。 2二氧化硫对植物生理生化的影响 2.1二氧化硫对植物气孔的影响 气孔是植物与外界环境间气体交换的主要通道,气体污染物主要通过气孔进入叶组织,因此气孔在大气污染物对植物的影响中占有相当重要的地位。高吉喜 [2]通过试验表明:通常情况下 SO2 促使植物气孔关闭,但也有某些植物经S O 2熏气后气孔关闭。气孔对SO 2 浓度的反应通常是SO 2 浓度越大,气孔 反应越快。 2.2二氧化硫对植物细胞膜的影响 细胞膜是植物细胞的重要组成部分,起着调节控制细胞内外物质交流的屏障作用,当植物处在不利环境条件下时,刺激首先作用于细胞膜。大量观察研 究表明,细胞膜也是SO 2作用的最初部位,在植物接触高浓度SO 2 后,膜 首先受到损伤,继而膜透性发生改变。植物膜透性对SO 2 的反应差异通常与 植物的抗性有关,抗SO 2强的植物,细胞膜对SO 2 的反应不敏感,反之则很

葡萄酒中的二氧化硫危害健康

葡萄酒中的二氧化硫危害健康 葡萄汁中有大量的糖,能被酵母菌转化成酒精。此外,还有一些杂菌也可以在其中生长。要让葡萄汁按照人们的希望转化,就要控 制细菌生长。比如说,葡萄汁榨出来后需要“保鲜”,否则就会被 杂菌破坏。另外,为了风味需要留下一些糖,就需要提前终止酵母 菌的活动。终止酵母菌的操作往往不能把它们全部杀光,而后续的 过程也还可能混入其他细菌。这些细菌的生长同样会破坏葡萄酒的 品质。加热可以灭菌,但会破坏葡萄酒的风味,也并不适宜。 此外,葡萄酒的风味和传说中的“保健功能”,很大程度上取决于其中的抗氧化剂。抗氧化剂自己容易被氧化,要保护它们的活性,就需要加入更强大的抗氧化剂。 虽然这些“保鲜”、“防腐”、“抗氧化”的功能可以通过不同的方式来实现,但是在葡萄酒中效果不好。而二氧化硫,可以全部 搞定。这种做法至少有几百年的历史,到今天也没有找到更好的替 代方案。 二氧化硫是气体,使用不方便。实际生产中可以添加它的衍生产物比如亚硫酸盐、焦亚硫酸盐等。它们跟二氧化硫功能类似,在讨 论用量和安全性的时候也是以二氧化硫的含量作为基准。除了少数 反对一切添加剂的人,人们更关心的还是。 世卫组织设定的安全标准是每天每公斤体重不超过0.7毫克。对于一个60公斤的成年人,相当于每天42毫克。在葡萄酒中的最高 限量,美国是350ppm,中国是250ppm(对于“甜葡萄酒”,中国放 宽到400ppm)。“安全标准”的意思,是不超过这个量,即使长期 食用也不会带来可见的危害。不过有一些人对二氧化硫比较“敏感”,类似于食物过敏。这个“一些人”,美国的统计结果是普通 人中1%左右,而哮喘病人大概会有5%。不同的人引发“敏感症状”

二氧化硫对人体有什么危害

二氧化硫对人体有什么危害? 二氧化硫是大气中主要污染物之一,是衡量大气是否遭到污染的重要标志。世界上有很多城市发生过二氧化硫危害的严重事件,使很多人中毒或死亡。在我国的一些城镇,大气中二氧化硫的危害较为普遍而又严重。 二氧化硫进入呼吸道后,因其易溶于水,故大部分被阻滞在上呼吸道,在湿润的粘膜上生成具有腐蚀性的亚硫酸、硫酸和硫酸盐,使刺激作用增强。上呼吸道的平滑肌因有末梢神经感受器,遇刺激就会产生窄缩反应,使气管和支气管的管腔缩小,气道阻力增加。上呼吸道对二氧化硫的这种阻留作用,在一定程度上可减轻二氧化硫对肺部的刺激。但进入血液的二氧化硫仍可通过血液循环抵达肺部产生刺激作用。 二氧化硫可被吸收进入血液,对全身产生毒副作用,它能破坏酶的活力,从而明显地影响碳水化合物及蛋白质的代谢,对肝脏有一定的损害。动物试验证明,二氧化硫慢性中毒后,机体的免疫受到明显抑制。 二氧化硫浓度为10~15ppm时,呼吸道纤毛运动和粘膜的分泌功能均能受到抑制。浓度达20ppm时,引起咳嗽并刺激眼睛。若每天吸入浓度为100ppm8小时,支气管和肺部出现明显的刺激症状,使肺组织受损。浓度达400ppm时可使人产生呼吸困难。二氧化硫与飘尘一起被吸入,飘尘气溶胶微粒可把二氧化硫带到肺部使毒性增加3~4倍。若飘尘表面吸附金属微粒,在其催化作用下,使二氧化硫氧化为硫酸雾,其刺激作用比二氧化硫增强约1倍。长期生活在大气污染的环境中,由于二氧化硫和飘尘的联合作用,可促使肺泡纤维增生。如果增生范围波及广泛,形成纤维性病变,发展下去可使纤维断裂形成肺气肿。二氧化硫可以加强致癌物苯并(a)芘的致癌作用。据动物试验,在二氧化硫和苯并(a)芘的联合作用下,动物肺癌的发病率高于单个因子的发病率,在短期内即可诱发肺部扁平细胞癌。

二氧化硫污染对绿色植物的影响

二氧化硫污染对绿色植物的影响 上海市园林学校(200051)胡天勤 化学与生活,1996(7) 随着人类对自然资源的不断开发和工农业生产的迅速发展,大量有毒有害物质任意排放,对我们周围环境带来了严重污染。 本文就二氧化硫这一主要大气污染物对绿色植物所产生的影响作一分析和探讨。 (一)二氧化硫的来源 在大氧中有许多污染物质,如二氧化硫、NOx、臭氧、烟尘等,其中以二氧化硫为主要污染源,原因是它来源广、危害大。据统计,全球每年向大气排放的二氧化硫多达2.4亿吨左右,单在我国,就有1400万吨之多,其污染量之大令人吃惊。二氧化硫污染大气,它来自以下凡方面: (1)煤、石油等燃料的燃烧是大气中二氧化硫的主要来源。煤炭中含硫,一般含量在3%~5%左右,燃烧后即被氧化成二氧化硫,由燃料燃烧所产生的二氧化硫大多从烟囱排入大气。 (2)钢铁、炼油、有色金属冶炼、化工、水泥等工厂企业,在生产流程及工艺操作过程中,也会排放相当量的二氧化硫气体。据统计,到本世纪末。全世界二氧化硫排放总量可达3.4吨左右。而当大气中二氧化硫的含量超出0。2~0。3PPm时,一些绿色植物将会受到严重的伤害。 (二)二氧化硫对植物的危害 大气中二氧化硫污染物对植物的危害方式一般有三种: 1。急性危害:高浓度的SO2气体会大大超出植物的承受能力,使植物在短时问内(1~2天或几小时内)发生叶片枯焦脱落,生长发育严重受阻,直到枯

萎死亡。 2。慢性危害:植物因长期在低浓度SO2污染的环境中,逐渐产生不易被人们所觉察的一些症状,使植物出现不同程度的生长不良。 3。隐性危害:植物长期在低浓度SO2影响下,并未表现出任何症状,但植物内部的生理活动已受到侵害,生长发育受阻。 (三)二氧化硫危害植物的化学机理 当二氧化硫通过植物叶片上的气孔进入叶子后,被叶肉吸收,转变成亚硫酸根离子然后又可转变成硫酸根离子,由于在植物体内SO2转变成SO32-的速度要比SO32-转变成SO42-快得多,所以当高浓度的二氧化硫进入植物体内后,会造成高浓度的SO32-的积累,而SO32-对植物的毒性比SO42-扩大30倍,从这一意义上分析,二氧化硫对植物造成的损害,实际上是由于其还原作用所引起的。 (1)对气孔机能的影响 当二氧化硫气体进入叶片以SO32-形式积累起来后;便会对气孔的开启和关闭机能带来影响,使气孔机能瘫痪,从而使大量二氧化硫气体进入植物体的细胞,加重对植物的危害。此外,由于植物气孔机能受阻,还会引起水份大量蒸腾,导致植物组织迅速枯萎。 (2)对叶片组织结构的破坏 当二氧化硫通过开放的气孔进入叶片组织后,溶解在细胞中,致使细胞内含物遭破坏或变形,引起外渗与原生质分离,使叶片组织结构遭到损害,海绵细胞与栅栏细胞发生质壁分离,其主要症状为:细胞失水变形、组织破碎。栅状组织细胞的排列层次紊乱、细胞间隙增大、叶片明显变薄等。 (3)对光合作用的影响

相关文档
最新文档