2010西安交通大学计算方法考题B(附答案)

合集下载

西安交通大学计算方法10年考试题

西安交通大学计算方法10年考试题

」、判断题:(共12分,每小题2分,正确的打(话,否则打(X ))1. 向量 X (X I ,X 2,X 3)T,则I Xi | I 2x 2 I 3x^1 是向量范数。

()2. 若A 是n n阶非奇异阵,则必存在单位下三角阵L 和上三角阵,使唯一成立。

( )b3.形如 af(x)dxi nA i f (X i )的高斯(Gauss )型求积公式具有最高代数精确度1的次数为2n 1。

( )1 24.已知矩阵A1 3 ,则在范数意义下条件数Co nd (A ) 4。

—( )35.已知 f(x) Xx ,差商 f[0,m, n] 3.5 ( , , m,n 为实数),则f [m, n, 2] 1.5。

( )6.采用牛顿迭代求解方程x 26 0来计算 6的近似值,若以X 。

4作为初值,则该迭代序列{X k }收敛到 6。

( )、填空题:(共28分,每小题4 分)1 0则|AX 42 1(A)1.向量X (1,-2)T,矩阵A2.设A 0.8°,则lim A k。

4 0.9 k3.为使函数f(x) JT万J X (x 1)的计算结果较精确,可将其形式改为4.设f(X) x2 2yx2 2x y ,则f (x)5.用等距节点的二次插值法求f(x) 的极小点的近似值为 _______________ ;x3 3x在[0,4]中的极小点,则第一次求出第一步删去部分区间后保留的搜索区间为:6.已知如下分段函数为三次样条,试求系数A,B,C :A 1 x2 x 1S(x) 2 2x 3 2 x2Bx3 1 x 02 2x Cx23 x 0 x 1则A= ,B= ,C=7.若用复化梯形公式计算1 1 dx,要求误差不超过10 4,则步长01 x三、(10分)线性方程组:2x x2X3 4x1 2x2X33X x22X3 5考察用Jacobi迭代和Gauss-Seidel 迭代解此方程组的收敛性;四、(10分)已知函数y f(x)的函数值、导数值如下:求满足条件的最低插值多项式及截断误差表示式。

计算方法各习题及参考答案

计算方法各习题及参考答案

第二章 数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造一多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到二次多项式2()p x 的值:表中2()p x 的某一个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++ .2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数xe 时,使用多少个节点能够保证误差不超过61102-⨯. 答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<= 的分段三次艾尔米特插值多项式,步长b ah n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章 函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平方逼近多项式,并给出平方误差.答案:()sin f x x =的二次最佳平方逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-⨯+-,二次最佳平方逼近的平方误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=⨯⎰.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-⎰取最小值.答案:810, 0, 33a b c ππ=-== 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式()p x .答案:()f x 的最佳一致逼近多项式为323()74p x x x =++. 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平方逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章 数值积分与数值微分4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =⎰,并与精确值比较.答案:计算结果如下表所示4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量高,并指明所确定的求积公式具有的代数精度. (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++⎰ (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-⎰答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++⎰中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的二次插值多项式,用2()P x 导出计算积分30()hI f x dx =⎰的数值积分公式h I ,并用台劳展开法证明:453(0)()8h I I h f O h '''-=+. 答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+⎰.4.5 给定积分10sin xI dx x =⎰(1)运用复化梯形公式计算上述积分值,使其截断误差不超过31102-⨯. (2)取同样的求积节点,改用复化辛浦生公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若用复化辛浦生公式,应取多少个节点处的函数值? 答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=⨯ (3)取7个节点处的函数值.4.6 用变步长的复化梯形公式和变步长的复化辛浦生公式计算积分10sin xI dx x =⎰.要求用事后误差估计法时,截断误不超过31102-⨯和61102-⨯. 答案:使用复化梯形公式时,80.946I T ≈=满足精度要求;使用复化辛浦生公式时,40.946 083I s ≈=满足精度要求.4.7(1)利用埃尔米特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+⎰,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈. (2)利用上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--⎰,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++ ,而 00, (0,1,2,,), i N x x ih i N Nh x x =+==- .4.8 用龙贝格方法计算椭圆2214x y +=的周长,使结果具有五位有效数字. 答案:49.6884l I =≈.4.9确定高斯型求积公式0011()()()x dx A f x A f x ≈+⎰的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证高斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+⎰的系数及节点分别为0001 2 2A A x x ===-=+第五章 解线性方程组的直接法5.1 用按列选主元的高斯-若当消去法求矩阵A 的逆矩阵,其中111210110A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 答案: 1110331203321133A -⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪-- ⎪⎝⎭5.2 用矩阵的直接三角分解法解方程组1234102050101312431701037x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案: 42x =,32x =,21x =,11x =.5.3 用平方根法(Cholesky 分解法)求解方程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭答案: 12x =,21x =,31x =-.5.4 用追赶法求解三对角方程组123421113121112210x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案:42x =,31x =-,21x =,10x =.第六章 解线性代数方程组的迭代法6.1 对方程1212123879897x x x x x x x -+=⎧⎪-+=⎨⎪--=⎩作简单调整,使得用高斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x =,用该方法求近似解(1)k x+,使(1)()3||||10k k x x +-∞-≤. 答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2 讨论松弛因子 1.25ω=时,用SOR 方法求解方程组121232343163420412x x x x x x x +=⎧⎪+-=⎨⎪-+=-⎩ 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<⨯. 答案:方程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3 给定线性方程组Ax b =,其中111221112211122A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛.6.4 设有方程组112233302021212x b x b x b -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,讨论用雅可比方法和高斯-赛得尔方法解此方程组的收敛性.如果收敛,比较哪种方法收敛较快.答案:雅可比方法收敛,高斯-赛得尔方法收敛,且较快.6.5 设矩阵A 非奇异.求证:方程组Ax b =的解总能通过高斯-赛得尔方法得到.6.6 设()ij n nA a ⨯=为对称正定矩阵,对角阵1122(,,,)nn D diag a a a = .求证:高斯-赛得尔方法求解方程组1122D AD x b --=时对任意初始向量都收敛.第七章 非线性方程求根例7.4 对方程230xx e -=确定迭代函数()x ϕ及区间[,]a b ,使对0[,]x a b ∀∈,迭代过程1(), 0,1,2,k x x k ϕ+== 均收敛,并求解.要求51||10k k x x -+-<. 答案:若取2()x x ϕ=,则在[1,0]-中满足收敛性条件,因此迭代法121, 0,1,2,k x k x k +== 在(1,0)-中有惟一解.取00.5x =-,*70.458960903x x ≈=-.取2()x x ϕ=,在[0,1上满足收敛性条件,迭代序列121, 0,1,2,k x k x k +== 在[0,1]中有惟一解.取00.5x =,*140.910001967x x ≈=- 在[3,4]上,将原方程改写为23xe x =,取对数得2ln(3)()x x x ϕ==.满足收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +== 在[3,4]中有惟一解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6 对于迭代函数2()(3)x x c x ϕ=+-,试讨论:(1)当c 为何值时,1()k k x x ϕ+=产生的序列{}k x(2)c 取何值时收敛最快?(3)取1,2c =-()x ϕ51||10k k x x -+-<.答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所示表7.7例7.13 设不动点迭代1()k x x ϕ+=的迭代函数()x ϕ具有二阶连续导数,*x 是()x ϕ的不动点,且*()1x ϕ'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y xϕϕ+==⎧⎪=-⎨=-⎪-+⎩二阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ϕ=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ϕ为迭代函数的迭代法至少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有高阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且牛顿法收敛,证明牛顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第八章 矩阵特征值8.1 用乘幂法求矩阵A 的按模最大的特征值与对应的特征向量,已知5500 5.51031A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,要求(1)()611||10k k λλ+--<,这里()1k λ表示1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --. 8.2 用反幂法求矩阵110242012A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭的按模最小的特征值.知A 的按模较大的特征值的近似值为15λ=,用5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最小的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设方阵A 的特征值都是实数,且满足121, ||||n n λλλλλ>≥≥> ,为求1λ而作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 用二分法求三对角对称方阵1221221221A ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭的最小特征值,使它至少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 用平面旋转变换和反射变换将向量[2 3 0 5]T x =变为与1[1 0 0 0]Te =平行的向量.答案:203/2/00001010/0T ⎛⎫⎪- ⎪=⎪--⎝0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --⎛⎫⎪--⎪= ⎪ ⎪⎪--⎝⎭8.6 若532644445A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,试把A 化为相似的上Hessenberg 阵,然后用QR 方法求A 的全部特征值.第九章 微分方程初值问题的数值解法9.1 用反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤⎧⎨=⎩,要求取步长0.1h =,每步迭代误差不超过510-. 答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈==9.2 用二阶中点格式和二阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ⎧=+≤⎪⎨⎪=⎩的数值解(取步长0.2h =,运算过程中保留五位小数).答案:用二阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈用二阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 用如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,小数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使二阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y aλλ'=-⎧⎨=⎩为实常数绝对稳定,试求步长h 的大小应受到的限制条件. 答案:2h λ≤.9.5 用如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++⎧=+⎪⎪=++⎨⎪⎪==⎩,求解初值问题sin(), 01(0)1x y e xy x y '⎧=<≤⎨=⎩时,如何选择步长h ,使上述格式关于k 的迭代收敛. 答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式二步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能高,并指出其阶数.答案:系数为142,,33a b d c ====,此时方法的局部截断误差阶最高,为五阶5()O h .9.7 试用欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx⎧=-⎪⎪≤⎨⎪=+=⎪⎩,取步长0.1h =,小数点后至少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =⎧⎨=⎩ , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=⎧⎨≈=⎩ 220.604 820z 2.090 992y =⎧⎨=⎩ , 22(0.2)0.604 659(0.2) 2.088 216y y z z ≈=⎧⎨≈=⎩。

大学计算机基础习题答案(西安交大)

大学计算机基础习题答案(西安交大)

大学计算机根底习题答案〔西安交大〕大学计算机根底第1章引论习题参考答案习题一1.第一代计算机的主要部件是由〔电子管和继电器〕构成的。

2.未来全新的计算机技术主要指〔光子计算机〕,〔生物计算机〕和〔量子计算机〕。

3.按照Flynn分类法,计算机可以分为〔单指令流单数据流〕,〔单指令流多数据〕,〔多指令流单数据流〕和〔多指令流多数据流〕4种类型。

4.计算机系统主要由〔硬件系统〕和〔软件系统〕组成。

5.说明以下计算机中的部件是属于主机系统、软件系统、还是属于外部设备。

〔1〕CPU 〔主机系统〕〔2〕内存条〔主机系统〕〔3〕网卡〔主机系统〕〔4〕键盘和鼠标〔外设〕〔5〕显示器〔外设〕〔6〕Windows 操作系统〔软件系统〕6.控制芯片组是主板的的核心部件,它由〔北桥芯片〕局部和〔南桥芯片〕局部组成。

7.在计算机系统中设计Cache的主要目的是〔提高存去速度〕。

8.计算机各部件传输信息的公共通路称为总线,一次传输信息的位数称为总线的〔宽度〕。

9.PCIE属于〔系统〕总线标准,而SATA那么属于〔硬盘接口或外设〕标准。

10.在微机输入输出控制系统中,假设控制的外部设备是发光二极管,最好选用的输入输出方法是〔程序控制〕方式;假设控制的对象是高速设备,那么应选那么〔 DMA 〕控制方式。

11.操作系统的根本功能包括〔处理器管理或进程管理〕、〔文件管理〕、〔存储器管理〕、〔设备管理〕和用户接口。

12.虚拟存储器由〔主内存〕和〔磁盘〕构成,由操作系统进行管理。

13.CPU 从外部设备输入数据需要通过〔输入接口〕,向外设输出数据那么需要通过〔输出接口〕。

14.简述CPU从外部设备输入数据和向外设输出数据的过程。

请参见教材第18页关于输入输出过程的描述。

15.普适计算的主要特点是〔是一种无处不在的计算模式〕。

1大学计算机根底第1章引论习题二1.在计算机内,一切信息的存取、传输和处理都是以〔二进制码〕形式进行的。

西安交通大学计算方法B上机试题

西安交通大学计算方法B上机试题

1.计算以下和式:0142118184858616nn S n n n n ∞=⎛⎫=--- ⎪++++⎝⎭∑,要求: (1)若保留11个有效数字,给出计算结果,并评价计算的算法;(2)若要保留30个有效数字,则又将如何进行计算。

(1)题目分析该题是对无穷级数求和,因此在使用matlab 进行累加时需要一个累加的终止条件。

这里令⎪⎭⎫ ⎝⎛+-+-+-+=681581482184161n n n n a nn ,则()()1.01616855844864816114851384128698161 681581482184161148113811282984161111<<⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++++++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++++++=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-+-+-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-+-+-+=+++n n n n n n n n n n n n n n n n a a n n n n n n 故近似取其误差为1+≈k a ε,并且有m-1m -11102121⨯=⨯=≈+βεk a ,(2)算法依据使用matlab 编程时用digits 函数和vpa 函数来控制位数。

(3)Matlab 运行程序%%保留11位有效数字 k1=11;s1=0;%用于存储这一步计算值 for n=0:50a=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); n1=n-1;if a<=0.5*10^(1-k1) break end end;for i=0:1:n1t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s1=s1+t; ends11=vpa(s1,k1);disp('保留11位有效数字的结果为:');disp(s11); disp('此时n 值为:');disp(n1);%%保留30位有效数字 clear all; k2=30;digits(k2+2);s2=vpa(0);%用于存储这一步计算值for n=0:50a=vpa((1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)));n2=n-1;if a<=0.5*10^(1-k2)breakendend;for i=0:1:n2t=vpa((1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)));s2=vpa(s2+t);ends30=vpa(s2,k2);disp('保留30位有效数字的结果为:');disp(s30);disp('此时n值为:');disp(n2);2.某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。

西安交大期末考试试题及答案

西安交大期末考试试题及答案

西安交大期末考试试题及答案西安交通大学期末考试试题一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

其数学表达式为:A. F = maB. F = m/aC. a = F/mD. a = F * m2. 在化学中,原子的相对原子质量是指:A. 原子核的质量B. 质子数C. 中子数D. 质子数和中子数之和3. 以下哪个选项不是计算机网络的拓扑结构?A. 星型拓扑B. 环形拓扑C. 总线拓扑D. 树形拓扑4. 经济学中,边际效用递减规律表明:A. 随着消费量的增加,消费者对商品的边际效用逐渐增加B. 随着消费量的增加,消费者对商品的边际效用逐渐减少C. 随着消费量的增加,消费者对商品的边际效用保持不变D. 消费者对商品的边际效用与消费量无关5. 以下哪个不是生物多样性的组成部分?A. 物种多样性B. 基因多样性C. 生态系统多样性D. 个体多样性6. 根据热力学第二定律,在一个孤立系统中,熵总是:A. 增加B. 减少C. 保持不变D. 先增加后减少7. 以下哪个是线性代数中矩阵的特征值?A. 矩阵的元素B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆8. 计算机编程中,递归算法的基本思想是:A. 将问题分解为更小的问题B. 将问题转化为更复杂的问题C. 将问题重复执行多次D. 将问题推迟解决9. 根据量子力学的不确定性原理,一个粒子的位置和动量不能同时被精确测量,因为:A. 测量设备不够精确B. 粒子太小,难以测量C. 这是量子力学的基本特性D. 粒子在测量时会移动10. 在心理学中,认知失调是指:A. 个体在面对矛盾信息时产生的不适感B. 个体在面对困难任务时产生的挫败感C. 个体在面对新信息时产生的好奇心D. 个体在面对压力时产生的焦虑感二、简答题(每题10分,共30分)1. 请简述牛顿三大定律的内容。

2. 描述化学键的形成原理及其在分子结构中的作用。

计算方法考题B06(答案)

计算方法考题B06(答案)

利用对称区间性质:令 x1 = − x 2
A=B ⇒
A = B = 43 ⇒ x = ± 25
由此可得与上相同的公式。为得到误差,考察代数精度:令 f ( x) = x 4 :
x5 x7 24 4 4 4 ∫−1 x (1 + x )dx = ( 5 + 7 ) = 35 ≠ 3 [ f (− 2 5 ) + f ( 2 5 )] = 3 [2 * 25 ] −1
完1010分已知方程给出包含此解的长度不超过05的区间及一个简单迭代使之在此前定的区间中任取初值迭代收敛于收敛
计算方法(B)——答案
考查
学院
姓名
2006-12-24
成绩
学号 6 位有效
1、(4 分) e = 2.718281828⋯ ,则近似值: x1 = 2.71828325 有 数字, x 2 = 2.71828225 有 7 位有效数字;
2、 (4 分)设 f ( x) = 2 x 3 − 3ax + 4 ( a 均为实数),则差商: f [1,2,3] =
12

f [ 0,1, 2, 3 ] =
2

b n i =0 a
3、(4 分)具有 n + 1 个节点的插值型数值积分公式 ∫ f ( x)dx ≈ ∑ Ai f ( xi ) 的代数 精度至少是 n 阶,至多是 2n+1 阶;
因此,由定理可知,迭代 x k = ϕ ( x k −1 ), k = 1,2, ⋯ , ∀x0 ∈ [0.5, 1 ] 收敛。 11、(12 分)试给出计算以下积分的两点求积公式,使之具有尽可能高的代数 精度,并请给出此时公式的误差:
1

(大学数学)计算方法试题及答案

(大学数学)计算方法试题及答案

1. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=402062225A ,求2A = , )(A ρ= 。

2. 计算⎰badx x f )(的辛普森公式为 。

3. 设矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.421231111,=LDL T,其中L 为单位下三角矩阵,D 为 对角矩阵,则L = ,D= 。

4. 线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------11851011151112321x x x ,试写出Jacobi 迭代法的迭代格式 。

5. 已知下列数据:x -3 -2 -1 2 4 y14.38.34.78.322.7用最小二乘法求形如2bx a y +=的经验公式的法方程为 。

6.用牛顿迭代法计算0233=--x x 的根的迭代格式为 , 取初始值=0x 1.5, 迭代一步得=1x 。

1.求积公式)]2(5)5.0(16)0(3[91)(2f f f dx x f ++-≈⎰具有的几阶代数精度。

( ) A. 1 B. 2 C. 3 D. 42.线性方程组的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛=122111221-A ,则下面结论正确的是 ( ) A.Jacobi 迭代法不收敛,Gauss-Seidel 迭代法收敛 B. Jacobi 迭代法收敛,Gauss-Seidel 迭代法不收敛 C. Jacobi 迭代法不收敛,Gauss-Seidel 迭代法不收敛 D. Jacobi 迭代法收敛,Gauss-Seidel 迭代法收敛 3.设6)12(-=f ,取4142.12=,利用下列等式计算,计算结果最好是( )A .6)12(1+=f ; B .3)223(-=f ; C .3)223(1+=f ; D . 27099-=f .4.设,.....)2,1,0(,527)(2==++=j j x x x x f j ,则=],,[210x x x f ( ) A. 7 B. 2 C. 5 D. 01. 若经四舍五入得到近似数0123400.0=x ,则它的绝对误差限为71021-⨯,有效数字为4 位。

计算方法考题B04(答案)

计算方法考题B04(答案)



=
x ∗ − x (k )


q x (1) − x ( 0) 1− q
k

,
(35 )
1− 3
k

5
1 ≤ 10 − 4 , ∴ 3 5 4
( )
k
≤ 16 ∗ 10 −5 ,
k≥
− 5 + 4 lg 2 − 5 + 4 ∗ (0.3010) 3.7960 = = = 17.010680487 lg 3 − lg 5 0.4771 − 0.6990 0.2219
2004 年 计算方法(B)考试答案:
2004-12-26
1、 ( 4 分 ) e = 2.718281828⋯ , e10 = 22026.46579 ⋯ , 它 们 在 浮 点 数 系
F (10,8,−8,8) 中浮点化数 fl (e) = .27182818E1 , fl (e10 ) = .22026466E5
fi , f
i−
1 2
, f i −1 ,
,若用插值法计算新的 f (t , y ) 值,需用哪几个点 ;
上的 f (t , y ) 值:
f i , f i −1 , f i − 2 , f i −3
9、 (10 分)将下述矩阵方程的系数矩阵分解成矩阵乘积 LU 形式,其中 L 为 下三角矩阵, U 为单位上三角矩阵,并解此矩阵方程。 ⎛2 0 ⎜ ⎜4 3 ⎜2 − 3 ⎜ ⎜6 6 ⎝ 1 3 ⎞ ⎛ x1 ⎟⎜ 1 7 ⎟ ⎜ x2 6 4 ⎟ ⎜ x3 ⎟⎜ ⎜ 5 18 ⎟ ⎠ ⎝ x4

1
−1
具有
3
8、 (6 分)求解常微分方程初值问题采用 3 阶 Adams-Bashforth 方法: h y i +1 = y i + [23 f i − 16 f i −1 + 5 f i − 2 ] ,通过误差估计,获知某步所得 y i +1 的误 12 差过大,需要步长减半,重新计算 y i + 1 ≈ y (t i + h ) 。请问:为此,需计算哪几 2 2 个 f (t , y ) 值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试求其系数 ,及公式的局部截断误差,使公式具有尽可能高的精度,这是几阶方法?
共7页第7页
共7页第4页
六、(10分)试给出计算以下积分的两点求积公式,使之具有尽可能高的代数精度,并请给出此时公式的误差:
共7页第5页
七、(10分)方程 在1.5附近有根 ,首先讨论迭代 的收敛性;若不收敛,对此迭代格式实施改善,使改善后的迭代格式收敛;若收敛,使改善后的迭代收敛加速。
共7页第6页
八、(10分)试导出解常微分方程初值问题的一个算法有如下形式:
3.为使函数 的计算结果较精确,可将其形式改为_____________________。
4.设 ,则 。
5.用等距节点的二次插后保留的搜索区间为:;
6.已知如下分段函数为三次样条,试求系数 :
则A=,B=,C=。
7.若用复化梯形公式计算 ,要求误差不超过 ,则步长 。
4.已知、矩阵 ,则在 意义下条件数 4。_()
5.已知、 ,差商 ( 为实数),则 。()
6.、采用牛顿迭代求解方程 来计算 的近似值,若以 作为初值,则该迭代序列 收敛到 。()
1.向量 ,矩阵 则
_____________, _________。
共7页第1页
2.设 ,则 __________。
三、(10分)线性方程组:
考察用Jacobi迭代和Gauss-Seidel迭代解此方程组的收敛性;
共7页第2页
四、(10分)已知函数 的函数值、导数值如下:
-1
1
0
2
3
3
-6
求满足条件的最低插值多项式及截断误差表示式。
共7页第3页
五、(10分)将下述方程组的系数矩阵作 分解( ,L为单位下三角矩阵,U为上三角矩阵),并求解此方程组:
成绩
西安交通大学考试题
课程计算方法B
系别考试日期2010年12月26日
专业班号

姓名学号期中期末
一、判断题:(共12分,每小题2分,)打(Ⅹ)或(∨))
)1.向量 ,则 是向量范数。()
2.、若 是 阶非奇异阵,则必存在单位下三角阵 和上三角阵 ,使 唯一成立。()
3.、形如 的高斯(Gauss)型求积公式具有最高代数精确度的次数为 。()
相关文档
最新文档