数学:2.2.1《椭圆及其标准方程》学案(新人教A版选修2-1)

合集下载

高中数学2.2.1 椭圆及其标准方程学案(1)新人教A版选修2-1

高中数学2.2.1 椭圆及其标准方程学案(1)新人教A版选修2-1

高 二 年级 数学 学科第 1周第 1 课时教学要点=课题: 选修2-1 §2.2.1椭圆及其标准方程 主备人:_一. 学习目标:1.理解并掌握椭圆的定义,了解椭圆标准方程的推导方法;2.能根据椭圆的标准方程熟练地写出椭圆的焦点坐标,会用待定系数法确定椭圆的方程;3.初步掌握用相关点法和直接法求轨迹方程的一般方法.二、教学重点与难点重点:掌握椭圆的标准方程,理解坐标法的基本思想 难点:椭圆标准方程的推导与化简,坐标法的应用 三、教学过程分析1、椭圆定义的理解椭圆定义中,平面内动点与两个定点F 1,F 2的距离之和等于常数,当这个常数大于|F 1F 2|时,动点的轨迹是椭圆;当这个常数等于|F 1F 2|时,动点的轨迹是线段F 1F 2;当这个常数小于|F 1F 2|时,动点不存在. 2、椭圆的标准方程对于两种标准方程对应的图形是全等图形,要注意焦点位置确定的讨论. 3、典型例题例1、(1)求椭圆14222=+y x 的焦距与焦点坐标;(2)求焦点为)0,3(),0,3(21F F -,且过点)516,3(-的椭圆的标准方程. [分析]先把方程化为标准型方程再求解,(1))0,21(),0,21(,1221F F c -=;(2)1162522=+y x . 例2、已知椭圆)0(12222>>=+b a by a x ,21,F F 是椭圆的两个焦点,P 为椭圆上一点,θ=∠21PF F 求证:θ=∆21PF F 的面积2tan 2θb S =.[分析]方法:应用椭圆的定义与余弦定理、面积公式.例3、已知动圆P 过定点A (-3,0),并且在定圆B : (x -3)2+y 2=64的内部与其相切,求动圆圆心P 的轨迹方程.[分析]应用定义法求得:.171622=+y x 例4、在ABC ∆中,BC =24,AC 、AB 边上的中线长之和等于39,求ABC ∆的重心的轨迹方程。

人教课标版高中数学选修2-1《椭圆及其标准方程(第1课时)》教学设计

人教课标版高中数学选修2-1《椭圆及其标准方程(第1课时)》教学设计

2.2.1 椭圆及其标准方程(第一课时)一、教学目标 (一)学习目标 1.掌握椭圆的定义;2.掌握椭圆标准方程的推导和标准方程. (二)学习重点椭圆的定义及椭圆标准方程. (三)学习难点椭圆标准方程的建立和推导. 二、教学设计 (一)预习任务设计 1.预习任务 写一写:(1)定义:平面内与两个定点12,F F 距离的和 等于常数 c ,大于12||F F 的点的轨迹叫做椭圆,这两个定点叫做椭圆的 焦点 ,两定点间距离叫做 椭圆的焦距 .(2)椭圆的标准方程: 焦点在x 轴上: 2221(0)y a b a b+=>> .焦点在y 轴上: 2221(0)x a b a b+=>> .2.预习自测判断分别满足下列条件的动点M 的轨迹是否为椭圆(1)到点()12,0F -和点()22,0F 的距离之和为6的点的轨迹; (2)到点()12,0F -和点2(2,0)F 的距离之和为4的点的轨迹; (3)到点()12,0F -和点2(2,0)F 的距离之和为3的点的轨迹.【解题过程】当12||||2MF MF a +=,且122||a F F >的常数时M 点的轨迹为椭圆,故(2)(3)不是.【思路点拨】注意把握椭圆的定义. 【答案】(1)是;(2)不是;(3)不是.(4)已知动圆P 过定点(3,0)A -,并且与定圆22:(3)64B x y -+=内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆 【解题过程】设动圆P 与定圆B 内切于M ,由条件知:||||||||||8PA PB PM PB BM +=+==,故P 的轨迹是以,A B 为焦点的椭圆.【思路点拨】利用椭圆的定义解题. 【答案】D (二)课堂设计 1.新知讲解探究一 创设情景,认识椭圆 ●活动① 归纳提炼概念画一画:①将一条绳子的两端固定在同一个定点上,用笔尖勾起绳子的中点使绳子绷紧,围绕定点旋转,笔尖形成的轨迹是什么?②将绳子的两端分别固定在两个定点上,笔尖勾直绳子,移动笔尖,得到的是轨迹是什么? 动画演示作图过程.提出问题:①作图过程中,哪些量没有变?哪些量变了? ②为什么要求作图过程中笔尖要绷紧?③笔尖所对应的动点M 到定点的距离有什么长度之间的关系? 总结:笔尖对应的动点M 到直线两个端点的长度之和固定不变.【设计意图】学生可通过动手实践的过程去体会“满足什么样的条件下的点的集合为椭圆”,从而对椭圆定义中的条件有直观深刻的认识.提出问题:根据刚才动手实践的过程,能否总结椭圆的定义?(同学自由发言,再由学生进一步补充完善)我们把平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.●活动② 辨析概念问题1:定义中的常数等于21F F ,则动点的轨迹是什么?问题2:定义中的常数小于21F F ,则动点的轨迹是什么?椭圆相关概念:两个定点1F ,2F 叫作椭圆的焦点.....,两个焦点1F ,2F 间的距离叫作椭圆的焦距...... 【设计意图】使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风. 探究二 推导椭圆的标准方程 ●活动① 利用定义求方程动手演算:让学生动手,求推导焦点在x 轴上的椭圆的标准方程①建系:观察椭圆的几何特征,如何建系能使方程更简洁?(利用椭圆的对称性特征)以直线21F F 为x 轴,以线段21F F 的垂直平分线为y 轴,建立平面直角坐标系.②设点:设焦距为()20c c >,则()()12,0,0F c F c -.设(),M x y 为椭圆上任意一点,点M 与点12F F 、的距离之和为()222a a c >.③列式:动点M 满足的几何约束条件: 122MF MF a += 2a =④化简:()()a y c x y c x 22222=+-+++1F 2F∴()()22222y c x a y c x +--=++∴两边同时平方、整理得:()222y c x acx a +-=-将上式两边平方、整理得:2222222222422y a c a cx a x a x c cx a a ++-=+-()()22222222c a a y a x c a-=+-122222=-+c a y a x 分析22c a -的几何含义,令222b c a =-得到焦点在x 轴上的椭圆的标准方程为()012222>>=+b a b y a x焦点在y 轴上的椭圆的标准方程是什么?(由学生动手列式,()()a c y x c y x 22222=-++++,引导学生观察焦点在x轴上与焦点在y 轴上式子的差异,从而用类比的方法得到焦点在y 轴上椭圆的标准方程)如果椭圆的焦点在y 轴上,其焦点坐标为()c F -,01,()c F ,02,用同样的方法可以推出它的标准方程()012222>>=+b a bx a y ●活动② 归纳梳理、理解提升 椭圆的标准方程及方程特点焦点在x 轴上 焦点在y 轴上标准方程: 12222=+b y a x (0>>b a ) 12222=+b x a y (0>>b a )学生思考:(1)椭圆的标准方程中三个参数b c a ,,的关系怎样?(2)如何从椭圆的标准方程判断椭圆焦点的位置?总结方程特征:(1).0,0222>>>>+=c a b a c b a , (2)哪个变量下的分母大,焦点就在哪个轴上.【设计意图】通过归纳总结让学生对两种方程进行对比分析,强化对椭圆方程的理解.有助于教学目标的实现,培养学生的总结归纳能力,而且使学生体会和学习类比的思想方法.●活动③ 互动交流、初步实践判定下列椭圆的标准方程在哪个轴上,并写出焦点的坐标(1)1162522=+y x (在x 轴上,焦点为()0,3-,()0,3)(2)116914422=+y x (在y 轴上,焦点为()5,0-,()5,0)(3)112222=++m y m x (在y 轴上,焦点为()1,0-,()1,0)●活动④ 巩固基础、检查反馈例1.已知a =c =,则椭圆的标准方程为( )A.2211312x y +=B.2211325x y +=或2212513x y += C.22113x y += D.22113x y +=或22113y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知21b =. 【思路点拨】通过焦点的位置判断方程. 【答案】D同类训练 已知椭圆的焦点为(1,0)-和(1,0),点(2,0)P 在椭圆上,则椭圆的方程为( )A.22143x y += B.2214x y += C.22143y x += D.2214y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知23b =. 【思路点拨】通过焦点的位置判断方程. 【答案】A例2 椭圆22125x y +=上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A.5B.6C.7D.8 【知识点】椭圆的定义.【解题过程】由210a =知P 到另一个焦点的距离为8. 【思路点拨】通过定义122PF PF a +=计算. 【答案】D同类训练 已知F 1、F 2是椭圆 192522=+y x 的两个焦点,过F 1的直线交椭圆于M 、N 两点,则三角形MF 2N 的周长为 . 【知识点】椭圆的定义.【解题过程】由221212101020MN MF NF MF MF NF NF ++=+++=+=.【思路点拨】通过定义122PF PF a +=计算. 【答案】20. 3.课堂总结 知识梳理(1)椭圆的定义:平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.(2)椭圆的标准方程:焦点在x 轴上:12222=+by a x (0>>b a );焦点在y 轴上:12222=+bx a y (0>>b a ).重难点归纳(1)区分焦点:哪个变量下的分母大,焦点就在哪个轴上;(2)标准方程中,,a b c 的关系:.0,0222>>>>+=c a b a c b a , (三)课后作业 基础型 自主突破1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A.椭圆B.直线C.圆D.线段 【知识点】椭圆的几何性质.【解题过程】∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2. 【思路点拨】几何性质判断图形. 【答案】D.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( ) A.5 B.3或8 C.3或5 D.20 【知识点】椭圆的标准方程.【解题过程】2c =2,c =1,故有m -4=1或4-m =1,∴m =5或m =3,故选C.【思路点拨】确定焦点位置再结合222a b c =+可得m 的值. 【答案】C3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A.(±a -b ,0)B.(±b -a ,0)C.(0,±a -b )D.(0,±b -a ) 【知识点】椭圆的标准方程.【解题过程】ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).【思路点拨】将方程整理为椭圆的标准形式. 【答案】D4.中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1B.x 281+y 29=1C.x 281+y 272=1D.x 281+y 236=1 【知识点】椭圆的标准方程.【解题过程】由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C. 【思路点拨】由几何性质即可. 【答案】C5.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________. 【知识点】椭圆的标准方程.【解题过程】由题意可得⎩⎨⎧ a +c =3,a -c =1.∴⎩⎨⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y23=1.【思路点拨】由椭圆定义及几何关系可得,,a b c 的值. 【答案】x 24+y 23=16.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________.【知识点】椭圆的标准方程.【解题过程】由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4. ∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,解得b 2=2 3. 【思路点拨】由椭圆几何性质即可. 【答案】2 3 能力型 师生共研1.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A.m <2B.1<m <2C.m <-1或1<m <2D.m <-1或1<m <32 【知识点】椭圆的标准方程.【解题过程】由题意得⎩⎨⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.【思路点拨】根据焦点的位置可确定椭圆方程形式为22221(0)y x a b a a +=>>.【答案】D2.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 【知识点】椭圆的标准方程.【解题过程】∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D. 【思路点拨】由椭圆定义即可. 【答案】D 探究型 多维突破1.求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)a c =135,且椭圆上一点到两焦点的距离的和为26. 【知识点】椭圆的标准方程.【解题过程】(1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,28a =+=, 所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1. (2)由题意知,2a =26,即a =13,又135a c =,所以c =5, 所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1. 【思路点拨】由椭圆性质求解即可. 【答案】见解析2.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【知识点】椭圆的标准方程及几何性质. 【解题过程】设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433. 【思路点拨】由定义可知焦点三角形12PF F 的面积:2tan2S b θ=,其中12F PF θ∠=.【答案】见解析自助餐1.已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1B.x 2+y 216=1C.x 220+y 25=1D.x 25+y 220=1【知识点】椭圆的标准方程及几何性质.【解题过程】由椭圆过点(2,2),排除A 、B 、D ,选C.【思路点拨】由椭圆定义即可.【答案】C2.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B.3C.977D.94【知识点】椭圆的标准方程.【解题过程】a 2=16,b 2=9⇒c 2=7⇒c =7.∵△PF 1F 2为直角三角形.且b =3>7=c .∴F 1或F 2为直角三角形的直角顶点,∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.【思路点拨】由椭圆定义即可.【答案】D3.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.射线D.直线【知识点】椭圆的几何性质.【解题过程】∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a ,∴|PQ |+|PF 1|=2a ,又∵F 1、P 、Q 三点共线,∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a .即Q 在以F 1为圆心,以2a 为半径的圆上.【思路点拨】根据椭圆定义判断.【答案】A4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B 的值是( )A. 3B.2C.2 3D.4【知识点】椭圆的定义及几何性质.【解题过程】由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A.【思路点拨】根据椭圆定义判断..【答案】A5.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.【知识点】椭圆的标准方程.【解题过程】由题设知1c =. 结合椭圆的定义得:12122||||2||4a PF PF F F =+==,故2,3a b ==,所以椭圆方程为:22143x y +=. 【思路点拨】利用椭圆的定义求,a c ,再利用222a b c =+求b .【答案】22143x y += 6.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.【知识点】椭圆的几何性质.【解题过程】设椭圆右焦点为F′,由椭圆的对称性知,|P1F|=|P7F′|,|P2F|=|P6F′|,|P3F|=|P5F′|,∴原式=(|P7F|+|P7F′|)+(|P6F|+|P6F′|)+(|P5F|+|P5F′|)+12(|P4F|+|P4F′|)=7a=35.【思路点拨】由椭圆定义,转换即可. 【答案】35。

人教A版高中数学高二版选修2-1 《椭圆及其标准方程》导学案

人教A版高中数学高二版选修2-1 《椭圆及其标准方程》导学案

2.1.1《椭圆及其标准方程》导学案一、【学习目标】1、知识与技能:理解椭圆的定义,掌握求椭圆的方程.2、过程与方法:通过亲身操作加深定义的认识.3、情感、态度与价值观:让学生在发现中学习,提高学生的积极性。

培养解析法的思想。

二、【重点难点】【重点难点】椭圆的定义和标准方程。

三、【教学过程】【回顾知识,提出问题】(一) 新课复习:(1)圆是如何定义的?(2)到两定点距离之和为定值的点的集合又是什么曲线呢?(二)问题导学:问题1:根据课本上椭圆的定义,制作教具,画椭圆问题2:写出椭圆上的点满足的关系式________________________________________问题3:这两个定点叫做椭圆的_______。

两个定点的距离用______表示。

常数用______表示【合作探究】:椭圆的定义为什么要满足2a >2c呢?(1)当2a >∣F1F2∣时,轨迹是_____(2)当2a =∣F1F2∣时,轨迹是_____(3)当2a <∣F1F2∣时轨迹是. _____【小试牛刀】动点P到两定点F1(-4,0),F2(4,0)的距离和是8,则动点P 的轨迹为()(A)椭圆(B)线段F1F2(C)直线F1F2(D)不能确定。

问题5:建立坐标系后,利用问题2的关系式,写出推导椭圆方程的过程问题6:椭圆的标准方程是:___________________________问题7:上面的a,b,c三个量满足的关系式为:___________问题8:如何判断焦点在何轴?【小试牛刀】根据下列方程,分别求出a 、b 、c(1)椭圆标准方程为161022=+y x ,则a = ,b = , =c ; (2)椭圆标准方程为1522=+y x ,则a = ,b = , =c ; (3)椭圆标准方程为8222=+y x ,则a = ,b = , =c .四、【例题讲解】 例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.变式题:1.已知椭圆的焦点在y 轴上,且椭圆经过点P(-2,2)和Q(0,-3),求此椭圆的标准方程.变式题:2.已知椭圆经过两个点P(-2,2)和Q(0,-3),求此椭圆的标准方程.【规律方法总结】五、【课堂检测】1.如果椭圆13610022=+y x 上一点P 到焦点F 1的距离等于6,那么点P 到另一个焦点F 2的距离是_____.2.写出适合下列条件的椭圆的标准方程:(1) 1,4==b a ,焦点在x 轴上; (2)15,4==c a ,焦点在x 轴上.六、【归纳总结】1.椭圆的定义2.椭圆的标准方程.3.会根据条件求椭圆的标准方程,掌握其方法.附答案:1.14 2. 2222(1)116(2)116x y y x +=+=。

高二数学2.2.1椭圆及其标准方程教案1人教新课标A版选修21

高二数学2.2.1椭圆及其标准方程教案1人教新课标A版选修21

P F 2F 1课题:2.2.1椭圆及其标准方程(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;已知几何图形建立直角坐标系的两个原则,及引入参量22b a c =-的意义,培养学生用对称的美学思维来体现数学的和谐美。

◆ 情感、态度与价值观目标会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.批 注教学重点:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题。

教学难点:理解椭圆标准方程的推导过程及化简无理方程的常用的方法。

教学用具: 多媒体,三角板 教学方法: 推导,分析教学过程: 一、课前准备(预习教材P 38~ P 40)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学 ※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==.变式:方程214x ym+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).彗星太阳A .23B .6C .43D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 在运动过程中,总满足关系式2222(3)(3)10x y x y ++++-=,点M 的轨迹是 ,它的方程是 .课后作业1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.教学后记:。

高中数学2.2.1椭圆及其标准方程(2)学案新人教A版选修2-1

高中数学2.2.1椭圆及其标准方程(2)学案新人教A版选修2-1

高中数学 椭圆及其标准方程 (2) 教案 新人教 A 版选修 2-1学习目标1.掌握点的轨迹的求法;2.进一步掌握椭圆的定义及标准方程.学习过程一、课前准备42,文34 ~36找出迷惑之处)(预习教材理41~P PPP复习 1:椭圆上x 2y 2 1 一点 P 到椭圆的左焦点 F 1 的距离为 3 ,则 P 到椭圆右焦点 F 2 的距 25 9离 是 .复习 2:在椭圆的标准方程中 , a 6 , b35 , 则椭圆的标准方程是.二、新课导学※学习研究 问题:圆 x 2y 2 6x 5 0 的圆心和半径分别是什么?问题:圆上的全部点到 ( 圆心)的距离都等于 ( 半径) ;反之 , 到点 ( 3,0) 的距离等于 2 的全部点都在 圆上. ※典型例题 例 1 在圆 x 2y 2 4 上任取一点 P ,过点 P 作 x 轴的垂线段 PD , D 为垂足 . 当点 P 在圆上运动时,线段 PD 的中点 M 的轨迹是什么?变式:若点 M 在 DP 的延伸线上,且DM 3DP ,则点 M 的轨迹又是什么?2小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短便可获得椭圆.例 2 设点 A, B 的坐标分别为5,0 , 5,0,.直线AM , BM订交于点M,且它们的斜率之积是4,求点 M 的轨迹方程.9变式:点 A, B 的坐标是1,0 , 1,0 ,直线 AM , BM 订交于点M,且直线AM的斜率与直线BM 的斜率的商是 2 ,点 M 的轨迹是什么?※着手试一试练 1.求到定点 A 2,0 与到定直线x 8 的距离之比为 2 的动点的轨迹方程.2练 2.一动圆与圆 x2 y2 6 x 5 0 外切,同时与圆 x2 y2 6 x 91 0 内切,求动圆圆心的轨迹方程式,并说明它是什么曲线.三、总结提高※学习小结1.①注意求哪个点的轨迹,设哪个点的坐标,而后找出含有点有关等式;②有关点法:追求点 M 的坐标 x, y 与中间x0, y0的关系,而后消去x0 , y0,获得点M的轨迹方程.※知识拓展椭圆的第二定义:到定点 F 与到定直线 l 的距离的比是常数 e (0 e 1) 的点的轨迹.定点 F 是椭圆的焦点;定直线l 是椭圆的准线;常数 e是椭圆的离心率.学习评论※自我评论你达成本节导教案的状况为() .A. 很好B. 较好C. 一般D. 较差※当堂检测(时量: 5 分钟满分: 10 分)计分:1.若对于x, y的方程 x2 sin y2 cos 1 所表示的曲线是椭圆,则在().A.第一象限B.第二象限C.第三象限D.第四象限2.若ABC 的个极点坐标A( 4,0) 、 B(4,0) ,ABC 的周长为18 ,则极点 C 的轨迹方程为().A. x2 y2 1 B. y2 x2 1 ( y 0) C. x2 y2 1 ( y 0)25 9 25 9 16 9D. x2 y2 1 ( y 0)25 93.设定点 F1 (0, 2) , F2 (0,2) ,动点P知足条件 PF1 PF2 m 4,则点 P 的轨迹(m 0)是().mA.椭圆B.线段C .不存在D.椭圆或线段4.与y轴相切且和半圆x2 y2 4(0 x 2) 内切的动圆圆心的轨迹方程是.5. 设 F1, F2 为定点, | F1F2|= 6,动点M知足 | MF1 | |MF2 | 6 ,则动点 M 的轨迹是.课后作业1.已知三角形ABC 的一边长为 6 ,周长为 16,求极点 A 的轨迹方程.2.点M与定点 F (0,2) 的距离和它到定直线 y 8 的距离的比是1: 2,求点的轨迹方程式,并说明轨迹是什么图形.。

人教A版高中数学选修2-1《2.2椭圆》复习教案

人教A版高中数学选修2-1《2.2椭圆》复习教案

1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。

高中数学人教A版选修(2-1)2.2.1《椭圆及其标准方程》word导学案2

高中数学人教A版选修(2-1)2.2.1《椭圆及其标准方程》word导学案2

§2.2.1椭圆及其标准方程(2)【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组合作,动手实践。

【学习目标】1.掌握点的轨迹的求法;2.进一步掌握椭圆的定义及标准方程【重点】椭圆的定义及标准方程【难点】掌握点的轨迹的求法求椭圆的标准方程一、自主学习1.预习教材P 41~ P 42, 找出疑惑之处复习1:椭圆上221259x y +=一点P 到椭圆的左焦点1F 的距离为3,则P 到椭圆右焦 点2F 的距离是 .复习2:在椭圆的标准方程中,6a =,b =则椭圆的标准方程是 .二、典型例题例1在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?变式: 若点M 在DP 的延长线上,且32DM DP =,则点M 的轨迹又是什么?小结:例2设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程 .变式:点,A B的坐标是()()-,直线,1,0,1,0AM BM相交于点M,且直线AM的斜率与直线BM的斜率的商是2,点M的轨迹是什么?三、拓展探究1.求到定点()A与到定直线82,0x=的动点的轨迹方程.2.一动圆与圆22650x y x+--=内切,求动圆圆心的轨迹方程式,+++=外切,同时与圆226910x y x并说明它是什么曲线.四、课堂小结1.知识:2.数学思想、方法:五、课后巩固1.若关于,x y 的方程22sin cos 1x y αα-=所表示的曲线是椭圆,则α在( ).A .第一象限B .第二象限C .第三象限D .第四象限2.若ABC ∆的个顶点坐标(4,0)A -、(4,0)B ,ABC ∆的周长为18,则顶点C 的轨迹方程为( ).A .221259x y +=B .221259y x += (0)y ≠C .221169x y +=(0)y ≠ D .221259x y +=(0)y ≠3.设定点1(0,2)F - ,2(0,2)F ,动点P 满足条件124(0)PF PF m m m +=+>,则点P 的轨迹是(). A .椭圆 B .线段C .不存在D .椭圆或线段4.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是 .5. 设12,F F 为定点,|12F F |=6,动点M 满足12||||6MF MF +=,则动点M 的轨迹是 .6.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程.7.点M与定点(0,2)F的距离和它到定直线8y 的距离的比是1:2,求点的轨迹方程式,并说明轨迹是什么图形.。

人教版高中数学选修2.2.1《椭圆及其标准方程》教学设计

人教版高中数学选修2.2.1《椭圆及其标准方程》教学设计

§2.2.1 椭圆及其标准方程一、分析教材1.教材的地位和作用:椭圆是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线,通过求椭圆的标准方程,使学生掌握导出这一类轨迹方程的一般规律和化简的常用方法,同时为后面学习双曲线,抛物线打下基础。

2教学目标: 知识与技能:掌握椭圆的定义、标准方程的推导和标准方程 过程与方法:通过椭圆概念的引入与椭圆标准方程的推导过程,培养学生分析探索能力,熟练掌握解决解析几何问题的方法——坐标法 情感态度与价值观:通过椭圆定义和标准方程的学习,渗透数形结合的思想,启发学生在研究问题时,抓住问题本质,严谨细致思考,规范得出解答,体会运动变化、对立统一的思想。

3.教学重点:椭圆的定义和椭圆标准方程的两种形式;教学难点:椭圆的标准方程的推导,椭圆的定义中常数加以限制的原因。

4.教学方法:椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以把用坐标法对椭圆的研究放在了重点位置上。

学好椭圆对于学生学好圆锥曲线是非常重要的。

结合多媒体演示,再给出椭圆的定义,强调概念的形成,构成整个教学过程,对椭圆标准方程的推导,可采用观察、分析、归纳、抽象、概括、自主探究、合作交流的教学方法,调动学生参与课堂教学的主动性和积极性。

5.教学过程(一)直观展示和问题引入(二)概念形成与深入探究(三)椭圆标准方程的推导(四)例题解析与随堂测试(五)课堂总结并提高素质(六)布置作业与反思提高 (七)分享故事更了解椭圆 二、新课讲授思考:1.圆的定义是什么?2.圆的标准方程是什么?探究:3.平面上到两个定点的距离等于定长的点的轨迹又是什么呢? 初识椭圆环节-------数学实验[1]取一条细绳,[2]把它的两端固定在板上的两点F1、F2;[3]用铅笔尖(M )把细绳拉紧,在板上慢慢移动观察画出的图形. 新课内容1.归纳椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 需要注意的几点:|MF 1|+|MF 2|> |F 1F 2|时,动点M 的轨迹是椭圆;|MF 1|+|MF 2|= |F 1F 2|时,动点M 的轨迹是线段; |MF 1|+|MF 2|< |F 1F 2|时,动点M 的轨迹不存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《椭圆及其标准方程》学案
一、学习目标
1.知识目标:①掌握椭圆的定义及其标准方程;
②通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法.
2.能力目标:通过自我探究、操作、数学思想(待定系数法)的运用等,从而提高学生
实际动手、合作学习以及运用知识解决实际问题的能力.
3.情感目标:在教学中充分揭示“数”与“形”的内在联系,体会形数美的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于创新的精神.
二、重点难点
1.重点:椭圆的定义及椭圆的标准方程;
2.难点:椭圆标准方程的建立和推导.
三、认真阅读“2.2.1椭圆及其标准方程”一节,回答下列问题。

(一)椭圆的定义
1、[动动手]:取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔拉紧绳子,移动笔尖,画出的轨迹是什么曲线?把细绳的两端拉开一段距离,分别固定在图版的两点处,套上铅笔拉紧绳子,移动笔尖,画出的轨迹是什么曲线?
2、[问题]:①对比两条曲线,分别说出移动的笔尖满足的几何条件。

②能否说,椭圆为平面上一动点到两个定点的距离之和等于定长的点的轨迹呢?
为什么?
3、[讨论]:①平面上一动点到两个定点的距离之和等于这两个定点间的距离的点的轨迹是什么?
②平面上一动点到两个定点的距离之和小于这两个定点间的距离的点的轨迹是什么?
4、[概括归纳]椭圆的定义:
(二)椭圆的标准方程
1、[问题] ① 你能说出求轨迹方程的一般步骤吗?
② 我们是如何建系求圆的标准方程的?观察椭圆的形状,你认为怎样建立坐标
系才能使椭圆的方程简单?
2、[动动手]:根据椭圆定义完成标准方程的推导过程。

【注意】问题1 怎样化简方程22)(y c x +++a y c x 2)(22=+-
同桌合作: 相互检查化简的过程、结果是否正确?出现什么问题?如何更正?
分组讨论: 对a ²-b ²该如何处理?它有几何意义吗?画图说明。

问题2 如果焦点F 1,F 2在y 轴上,坐标分别为(0,-c )(0,c ),a ,b 的意义同上,那么椭圆的方程是什么?它和焦点在轴上的椭圆方程有什么区别?
3、[归纳总结] 椭圆的标准方程:
(1)焦点在x 轴上:
(2)焦点在y 轴上:
(三)例题解析
例1 已知椭圆两焦点的坐标分别是()()0,2,0,2-,并⎪⎭
⎫ ⎝⎛-23,25,求它的标准方程.(要求:用多种方法解题,同学间相互交流,看谁的方法最多最好!)
例2.在圆上任取一点P ,过点P 做X 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?(你能说出椭圆和圆的关系吗?)
(四)小结:(1)知识小结:
(2)求曲线方程的方法:
(3)数学思想:
(四)达标练习
1.到两定点F 1(-2,0)和F2(2,0)的距离之和为4的点M 的轨迹是( )
A.椭圆 B.线段 C.圆 D.以上都不对
2.如果椭圆136
10022=+y x 上一点P 到焦点F 1的距离等于6, 那么点P 到另一个焦点F 2的距
离是( )
A.13 B.14 C.15 D.16
3.命题甲:动点P 到两定点A ,B 的距离之和︱PA ︱+︱PB ︱=2a (a >0,且a 是常数);命题乙:P 点的轨迹是椭圆,则命题甲是命题乙的( )
A .充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
4.椭圆116
3222=+y x 的焦距等于( )
A.123 B.8 C.6 D.4
5. 椭圆两焦点的坐标分别是(0,8)(0,-8)且椭圆上一点到两个焦点的距离之和是20,则此椭圆的方程是( ) A.1100362
2=+y x B.133640022=+y x C.136
10022=+y x D.1400
3362
2=+y x
6.若方程12
22=-a
y a x 表示焦点在y 轴上的椭圆,则a 的取值范围是( ) A. a <0 B.0 < a <1 C.a <1 D.无法确定
7.已知圆C 1: (x -4)²+ y ²=13²,圆C 2:(x +4)²+ y ²=3²,动圆C 与圆C 1内切同时与圆C 2外切,求动圆圆心C 的轨迹方程是
8.已知经过椭圆116
2522=+y x 的右焦点F 2做垂直于x 轴的直线AB 交椭圆与A , B 两点, F 1是椭圆的左焦点.
(1)求△AF 1B 的周长
(2)如果AB 不垂直于x 轴, △AF 1B 的周长有变化吗?为什么?
9. 已知P 为椭圆164
1002
2=+y x 上的点,设F 1, F 2是椭圆的两个焦点,且∠F 1 PF 2=3π 求△F 1 PF 2的面积.
【学后记】:。

相关文档
最新文档