2015佛山一模 广东省佛山市普通高中2015届高三教学质量检测(一)数学文试卷及答案
广东省佛山市第一中学2015届高三10月月考数学(文)试题 Word版含答案

佛山一中2015届10月考(文科)数学试题2014-10-12一、选择题:本大题共10小题,每小题5分,共50分.1.设集合A ={x |y =3x -x 2},B ={y |y =2x ,x >1},则A ∩B 为( )A .B .(2,3]C . 2.已知f (x )=⎩⎪⎨⎪⎧ln 1x x >01x x <0,则f (x )>-1的解集为( )A .(-∞,-1)∪(0,e )B .(-∞,-1)∪(e ,+∞)C .(-1,0)∪(e ,+∞)D .(-1,0)∪(0,e )3.已知R x ∈,则“4|2||1|>-++x x ”是“2-<x ”的( ) A . 充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4.设a =⎝ ⎛⎭⎪⎫120.5,b =0.30.5,c =log 0.30.2,则a 、b 、c 的大小关系是( )A .a >b >cB .a <b <cC .b <a <cD .a <c <b5.已知f (x )=(x -a )(x -b )-2 (a <b ),并且α、β是方程f (x )=0的两个根(α<β),则实数a 、b 、α、β的大小关系可能是( )A .α<a <b <βB .a <α<β<bC .a <α<b <βD .α<a <β<b 6.在ABC ∆中, 已知向量)72cos ,18(cos 00=AB , )27cos 2,63cos 2(00=AC , 则BAC ∠cos 的值为 A .0 B .21 C .22 D .23 7.若f (x )=x 3-6ax 的单调递减区间是(-2,2),则a 的取值范围是( )A .(-∞,0]B .C .{2}D .∪[43,83] B .(-13,1]∪∪∪[12,43)∪[43,3)9.函数x x y cos +=的大致图象是 ( )A .B .C .D .10.已知命题“x ∃∈R ,12x a x -++≤”是假命题,则实数a 的取值范围是 A.)1,3(- B. ]1,3[- C. ),1()3,(+∞--∞ D. ),1[]3,(+∞--∞ 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.若函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2⎝ ⎛⎭⎪⎫12x -1,x <2是R 上的单调减函数,则实数a 的取值范围是12.已知函数)2(+x f 是定义在),(∞+∞-上的奇函数. 当)2,(∞-∈x 时,4)(x x x f -=,则 当),2(∞+∈x 时,=)(x f13.设函数()y f x =是定义域为R 的奇函数,且满足(2)()f x f x -=-对一切x ∈R 恒成立,当-1≤x ≤1时,3()f x x =.则下列四个命题:①()f x 是以4为周期的周期函数; ②()f x 在上的解析式为3()(2)f x x =-;③()f x 在33(,())22f 处的切线方程为3450x y +-=;④()f x 的图像的对称轴中有x =±1.其中正确的命题是(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知直线l :132x ty t =+⎧⎨=-⎩(t 为参数且t R ∈)与曲线C :22x cos y cos αα=⎧⎨=+⎩(α是参数且[)02,απ∈),则直线l 与曲线C 的交点坐标为 .15.(几何证明选讲选做)如图(4),AB 是半圆的直径,C 是AB 延长线上一点,CD 切半圆于点D ,CD =2,DE ⊥AB ,垂足为E ,且E 是OB 的中点,则BC 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的 图象的一部分如下图所示.(1)求函数)(x f 的解析式;(2)当]32,6[--∈x 时,求函数)2()(++=x f x f y 的最大值与最小值及相应的x 的值.17. (本小题满分12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:患心肺疾病 不患心肺疾病 合计 男 5 女 10 合计 50已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为35.(Ⅰ)请将上面的列联表补充完整;(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(Ⅲ)已知在不患心肺疾病的5位男性中,有3位又患胃病.现在从不患心肺疾病的5位男性中,任意选出3位进行其他方面的排查,求恰好有一位患胃病的概率.下面的临界值表供参考:2()P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.63 57.87910.828(参考公式22()()()()()n ad bc K a b c d a c b d -=++++ 其中n a b c d =+++)yOx12 -13 5 -218.(本小题满分14分)如图,1AA 、1BB 为圆柱1OO 的母线,BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点.(I )证明:DE //平面ABC ;(II )若21==BC BB ,求三棱锥BC A A 1-的体积的最大值。
2015年佛山市普通高中高三教学质量检测(一)文科综合(历史)(试题+答案)

2015年佛山市普通高中高三教学质量检测(一)文科综合(历史)能力试题2015.1本试卷共12页,满分150分,考试时间150分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上.用2B铅笔将答题卡试卷类型(A)填涂在答题卡上,并在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案答在试题卷上无效.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷上各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4.考试结束后,将答卷和答题卡一并交回.第一部分 选择题 (共140分)一、单项选择题:本题共35小题,每小题4分,共140分.在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,错选、不选得0分.12.公元前817年鲁武公带着长子姬括、次子姬戏拜见周天予,周天子格外喜欢姬戏,故硬性作主,立姬戏为鲁国太子。
待鲁武公病逝,姬戏即位,是为懿公。
这说明A.宗法制已经崩溃 B.姬括足鲁国的小宗C.地方官员由中央任命 D.天子好恶是立储君的唯一标准13.有学者认为,我国历史上的第一次社会政治大转型,发自商鞅,极盛于始皇,而完成于汉武。
与该转型描述相符的是A.“兼并天下,建皇帝之号,立百官之职,收天下之权,尽归于中央” B.“诏知府公事并须长吏、通判签议连书,方许行下”C.“设行中书省……统郡县,镇边鄙,与都省为表里”D.“革中书省,归其政于六部,置殿阁大学士”14.据史料记载,隋文帝开皇四年,智贾租得常田一亩,交与田租银钱五文,租田人不负担田赋;灌田水渠破而水溢,田主不负责。
据此可知A.均田制已经瓦解 B.租佃制在全国范围推广C.土地私有制开始确立 D.经济生活中存在契约意识15.近代以来不同中国人对美国的政治看法不一。
【解析】广东省佛山市2015届高三第一次教学质量检测(一模)数学文试题Word版含解析

2015年广东省佛山市高考数学一模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数等于()A.1+2i B.1﹣2i C.2﹣i D.2+i【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:利用复数的运算法则即可得出.【解析】:解:原式===2﹣i,故选:C.【点评】:本题考查了复数的运算法则,属于基础题.2.(5分)已知集合M={x∈R|0<x<2},N={x∈R|x>1},则M∩(∁R N)=()A.[1,2)B.(1,2)C.[0,1)D.(0,1]【考点】:交、并、补集的混合运算.【专题】:集合.【分析】:求出N的补集,从而求出其与M的交集.【解析】:解:∵集合M={x∈R|0<x<2}=(0,2),N={x∈R|x>1}=(1,+∞)∴∁R N=(﹣∞,1]∴M∩∁R N=((0,2)∩[1,+∞)=(0,1]故选:D.【点评】:本题考查了集合的运算,是一道基础题.3.(5分)若函数y=的图象关于原点对称,则实数a等于()A.﹣2 B.﹣1 C.1 D. 2【考点】:函数奇偶性的性质;函数的图象.【专题】:函数的性质及应用.【分析】:根据函数y=的图象关于原点对称,得到函数y=f(x)是R上的奇函数,根据奇函数的定义求出a的值即可.【解析】:解:令y=f(x),∵函数y=的图象关于原点对称,∴函数y=f(x)是R上的奇函数,∴f(﹣x)====﹣=﹣f(x)=﹣,∴a=﹣1,故选:B.【点评】:本题考查了函数的奇偶性,是一道基础题.4.(5分)已知x,y满足不等式组,则目标函数z=3x+y的最大值为()A.12 B.24 C.8 D.【考点】:简单线性规划.【专题】:不等式的解法及应用.【分析】:作出题中不等式组表示的平面区域,得如图的四边形OABC及其内部,再将目标函数z=2x+y对应的直线进行平移,可得当x=4,y=0时,z=3x+y取得最大值为12.【解析】:解:作出不等式组表示的平面区域,得到如图的四边形OABC及其内部,其中O(0,0),A(4,0),B(,),C(0,8)设z=F(x,y)=3x+y,将直线l:z=3x+y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(4,0)=12故选:A.【点评】:本题给出二元一次不等式组,求目标函数z=3x+y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.5.(5分)已知两个单位向量的夹角为45°,且满足⊥(λ﹣),则实数λ的值为()A.1 B.C.D.2【考点】:平面向量数量积的运算.【专题】:计算题;平面向量及应用.【分析】:运用向量的数量积的定义,可得两个单位向量的数量积,再由向量垂直的条件:数量积为0,计算即可得到所求值.【解析】:解:由单位向量的夹角为45°,则•=1×1×cos45°=,由⊥(λ﹣),可得,•(λ﹣)=0,即λ﹣=0,则﹣1=0,解得λ=.故选B.【点评】:本题考查平面向量的数量积的坐标定义和性质,考查向量垂直的条件,考查运算能力,属于基础题.6.(5分)在空间中,有如下四个命题:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面α内有不共线的三个点到平面β距离相等,则α∥β;④过平面α的一条斜线有且只有一个平面与平面α垂直.其中正确的两个命题是()A.①、③ B.②、④ C.①、④ D.②、③【考点】:平面与平面之间的位置关系;空间中直线与直线之间的位置关系.【专题】:作图题.【分析】:我们可以从正方体去观察理解,①从空间两条直线的位置关系判断.②由线面垂直的性质定理判断;③从两平面的位置关系判断;④由射影的条数判断.【解析】:解:①平行于同一个平面的两条直线,可能平行,相交或异面.不正确;②垂直于同一条直线的两个平面是平行平面,由线面垂直的性质定理知正确;③若平面α内有不共线的三个点到平面β距离相等,可能平行,也可能相交,不正确;④过平面α的一条斜线有且只有一个平面与平面α垂直.正确,因为一条斜线只有一条射影,只能确定一个平面.故选B【点评】:本题主要考查了两直线的位置关系,两平面的位置关系及线面垂直的性质定理,斜线,垂线,射影等概念,作为客观题要多借助空间几何体来判断.7.(5分)某校高三年级学生会主席团有共有5名同学组成,其中有3名同学来自同一班级,另外两名同学来自另两个不同班级.现从中随机选出两名同学参加会议,则两名选出的同学来自不同班级的概率为()A.0.35 B.0.4 C.0.6 D.0.7【考点】:互斥事件的概率加法公式;相互独立事件的概率乘法公式.【专题】:概率与统计.【分析】:分别计算出从5名学生中选出2名学生进入学生会的基本事件总数和满足这两名选出的同学来自不同班级的基本事件个数,代入古典概型概率计算公式,可得答案【解析】:解:来自同一班级的3名同学,用1,2,3表示,来自另两个不同班级2名同学用,A,B表示,从中随机选出两名同学参加会议,共有12,13,1A,1B,23,2A,2B,3A,3B,AB共10种,这两名选出的同学来自不同班级,共有1A,1B,23,2A,2B,3A,3B共7种,故这两名选出的同学来自不同班级概率P==0.7故选:D【点评】:本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.8.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,过F2的直线与该双曲线的右支交于A、B两点,若|AB|=5,则△ABF1的周长为()A.16 B.20 C.21 D.26【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:根据双曲线的定义和性质,即可求出三角形的周长.【解析】:解:由双曲线的方程可知a=4,则|AF1|﹣|AF2|=8,|BF1|﹣|BF2|=8,则|AF1|+|BF1|﹣(|BF2|+|AF2|)=16,即|AF1|+|BF1|=|BF2|+|AF2|+16=|AB|+16=5+16=21,则△ABF1的周长为|AF1|+|BF1|+|AB|=21+5=26,故选D.【点评】:本题主要考查双曲线的定义,根据双曲线的定义得到A,B到两焦点距离之差是个常数是解决本题的关键.9.(5分)已知f(x)=x﹣x2,且a,b∈R,则“a>b>1”是“f(a)<f(b)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】:必要条件、充分条件与充要条件的判断.【专题】:简易逻辑.【分析】:根据二次函数的性质分别判断其充分性和必要性.【解析】:解:画出函数f(x)=x﹣x2的图象,如图示:,由图象得:f(x)在(,+∞)递减,∴a>b>1时,f(a)<f(b),是充分条件,反之不成立,如f(0)=0<f()=1,不是必要条件,故选:A.【点评】:本题考查了二次函数的性质,考查了充分必要条件,是一道基础题.10.(5分)有10个乒乓球,将它们任意分成两堆,求出这两堆乒乓球个数的乘积,再将每堆乒乓球任意分成两堆并求出这两堆乒乓球个数的乘积,如此下去,直到不能再分为止,则所有乘积的和为()A.45 B.55 C.90 D.100【考点】:归纳推理.【专题】:等差数列与等比数列;推理和证明.【分析】:用特殊值法,假设每次分出一个,分别求出每一次的乘积,然后等差数列的性质相加可得答案.【解析】:解:假设每次分堆时都是分出1个球,第一次分完后应该一堆是1个球,另一堆n﹣1个,则乘积为1×(n﹣1)=n﹣1;第二次分完后应该一堆是1个球,另一堆n﹣2个,则乘积为1×(n﹣2)=n﹣2;依此类推最后一次应该是应该一堆是1个球,另一堆1个,则乘积为1×1=1;设乘积的和为T n,则T n=1+2+…+(n﹣1)=n(n﹣1)当n=10时,T10=×10×(10﹣1)=45故选:A【点评】:本题主要考查等差数列的求和.属基础题.在解答选择填空题时,特殊值法是常用方法之一.解决本题的关键在于特殊值法的应用.二、填空题:本大共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11~13题)11.(5分)如果f(x)=,那么f[f(2)]=1.【考点】:函数的值.【专题】:计算题;函数的性质及应用.【分析】:根据x的范围,分别求出相对应的函数值,从而得到答案.【解析】:解:∵f(2)=0,∴f(0)=1,即f[f(2)]=1,故答案为:1.【点评】:本题考查了分段函数问题,考查了函数求值问题,是一道基础题.12.(5分)已知点A(﹣2,0),B(0,4)到直线l:x+my﹣1=0的距离相等,则m的值为或1.【考点】:点到直线的距离公式.【专题】:直线与圆.【分析】:利用点到直线的距离公式即可得出.【解析】:解:由点到直线的距离公式可得=,即|4m﹣1|=3,解得m=或1.故答案为:或1.【点评】:本题考查了点到直线的距离公式,属于基础题.13.(5分)如图,为了测量河对岸A、B两点之间的距离,观察者找到一个点C,从C点可以观察到点A、B;找到一个点D,从D点可以观察到点A、C;找到一个点E,从E点可以观察到点B、C;并测量得到一些数据:CD=2,CE=2,∠D=45°,∠ACD=105°,∠ACB=48.19°,∠BCE=75°,∠E=60°,则A、B两点之间的距离为.(其中cos48.19°取近似值)【考点】:解三角形的实际应用.【专题】:应用题;解三角形.【分析】:求出AC,通过正弦定理求出BC,然后利用余弦定理求出AB.【解析】:解:依题意知,在△ACD中,∠A=30°由正弦定理得AC==2在△BCE中,∠CBE=45°,由正弦定理得BC==3在△ABC中,由余弦定理AB2=AC2+BC2﹣2AC•BCcos∠ACB=10∴AB=.故答案为:.【点评】:本题考查三角形的面积的求法,正弦定理与余弦定理的应用,考查计算能力.三、几何证明选讲14.(5分)如图,P是圆O外一点,PA,PB是圆O的两条切线,切点分别为A,B,PA中点为M,过M作圆O的一条割线交圆O于C,D两点,若PB=2,MC=1,则CD=2.【考点】:与圆有关的比例线段.【专题】:几何证明.【分析】:由切割线定理,得MA2=MC•MD,由此能求出CD.【解析】:解:由已知得MA=,∵MA是切线,MCD是割线,∴MA2=MC•MD,∵MC=1,∴3=1×(1+CD),解得CD=2.故答案为:2.【点评】:本题考查与圆有关的线段长的求法,是基础题,解题时要认真审题,注意切割线定理的合理运用.四、坐标系与参数方程15.(2012•湖南)在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=.【考点】:简单曲线的极坐标方程.【专题】:计算题.【分析】:根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2将极坐标方程化成普通方程,利用交点在极轴上进行建立等式关系,从而求出a的值.【解析】:解:∵曲线C1的极坐标方程为:ρ(cosθ+sinθ)=1,∴曲线C1的普通方程是x+y﹣1=0,∵曲线C2的极坐标方程为ρ=a(a>0)∴曲线C2的普通方程是x2+y2=a2∵曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上∴令y=0则x=,点(,0)在圆x2+y2=a2上解得a=故答案为:【点评】:本题主要考查了简单曲线的极坐标方程与普通方程的转化,同时考查了计算能力和分析问题的能力,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(ωx﹣)(ω>0,x∈R)的最小正周期为π.(1)求f().(2)在图3给定的平面直角坐标系中,画出函数y=f(x)在区间[﹣,]上的图象,并根据图象写出其在(﹣,)上的单调递减区间.【考点】:五点法作函数y=Asin(ωx+φ)的图象;正弦函数的图象.【专题】:作图题;三角函数的图像与性质.【分析】:(1)依题意先解得ω=2,可得解析式f(x)=sin(2x﹣),从而可求f()的值.(2)先求范围2x﹣∈[﹣,],列表,描点,连线即可五点法作图象,并根据图象写出其在(﹣,)上的单调递减区间.【解析】:解:(1)依题意得=π,解得ω=2,∴f(x)=sin(2x﹣),…2分∴f()=sin()=sin cos﹣cos sin==…4分(2)∵x∈[﹣,]∴2x﹣∈[﹣,],列表如下:2x﹣﹣﹣π﹣0x ﹣﹣﹣f(x)0 ﹣1 0 1画出函数y=f(x)在区间[﹣,]上的图象如下:由图象可知函数y=f(x)在(﹣,)上的单调递减区间为(﹣,﹣),(,) (12)分【点评】:本题主要考察了五点法作函数y=Asin(ωx+φ)的图象,三角函数的图象与性质,属于基础题.17.(12分)某地区“腾笼换鸟”的政策促进了区内环境改善和产业转型,空气质量也有所改观,现从当地天气网站上收集该地区近两年11月份(30天)的空气质量指数(AQI)(单位:μg/m3)资料如下:(图1和表1)2014年11月份AQI数据日期1 2 3 4 5 6 7 8 9 10AQI 89 55 52 87 124 72 65 26 46 48日期11 12 13 14 15 16 17 18 19 20AQI 58 36 63 78 89 97 74 78 90 117日期21 22 23 24 25 26 27 28 29 30AQI 137 139 77 63 63 77 64 65 55 45表12014年11月份AQI数据频率分布表分组频数频率[20,40)[40,60)[60,80)[80,100)[100,120)[120,140]表2(Ⅰ)请填好2014年11月份AQI数据的频率分布表(表2)并完成频率分布直方图(图2);(Ⅱ)该地区环保部门2014年12月1日发布的11月份环评报告中声称该地区“比去年同期空气质量的优良率提高了20多个百分点”(当AQI<100时,空气质量为优良).试问此人收集到的资料信息是否支持该观点?【考点】:频率分布直方图.【专题】:概率与统计.【分析】:(Ⅰ)根据题意,填写2014年11月份AQI数据的频率分布表,画出频率分布直方图;(Ⅱ)利用数据计算2013年与2014年的11月优良率是多少,比较数据信息得出结论.【解析】:解:(Ⅰ)根据题意,填写2014年11月份AQI数据的频率分布表,如下;分组频数频率[20,40)2[40,60)7[60,80)12[80,100)5[100,120) 1[120,140] 3(3分);根据频率分布表,画出频率分布直方图如下;(6分)(Ⅱ)支持,理由如下:2013年11月的优良率为:,…(8分)2014年11月的优良率为:,…(9分)∴;…(11分)∴利用数据信息得出“比去年同期空气质量的优良率提高了20多个百分点”.…(12分)【点评】:本题考查了频率分布表与频率分布直方图的应用问题,是基础题目.18.(14分)如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(Ⅰ)求证:PC⊥AD;(Ⅱ)在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;(Ⅲ)求点D到平面PAM的距离.【考点】:点、线、面间的距离计算;空间中直线与直线之间的位置关系.【专题】:空间位置关系与距离.【分析】:(Ⅰ)法一:取AD中点O,连结OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,从而AD⊥平面POC,由此能证明PC⊥AD.法二:连结AC,依题意可知△PAD,△ACD均为正三角形,从而AM⊥PC,DM⊥PC,由此能证明PC⊥AD.(Ⅱ)当点Q为棱PB的中点时,A,Q,M,D四点共面.取棱PB的中点Q,连结QM,QA,由已知得QM∥BC,由此能证明A,Q,M,D四点共面.(Ⅲ)点D到平面PAM的距离即点D到平面PAC的距离,由已知得得PO为三棱锥P﹣ACD 的体高,由V D﹣PAC=V P﹣ACD,能求出点D到平面PAM的距离.【解析】:(Ⅰ)证法一:取AD中点O,连结OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD,又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,所以AD⊥平面POC,又PC⊂平面POC,所以PC⊥AD.…(4分)证法二:连结AC,依题意可知△PAD,△ACD均为正三角形,又M为PC的中点,所以AM⊥PC,DM⊥PC,又AM∩DM=M,AM⊂平面AMD,DM⊂平面AMD,所以PC⊥平面AMD,又AD⊂平面AMD,所以PC⊥AD.…(4分)(Ⅱ)解:当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:…(6分)取棱PB的中点Q,连结QM,QA,又M为PC的中点,所以QM∥BC,在菱形ABCD中AD∥BC,所以QM∥AD,所以A,Q,M,D四点共面.…(8分)(Ⅲ)解:点D到平面PAM的距离即点D到平面PAC的距离,由(Ⅰ)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,即PO为三棱锥P﹣ACD的体高.…(9分)在Rt△POC中,,,在△PAC中,PA=AC=2,,边PC上的高AM=,所以△PAC的面积,…(10分)设点D到平面PAC的距离为h,由V D﹣PAC=V P﹣ACD得…(11分),又,所以,…(13分)解得,所以点D到平面PAM的距离为.…(14分)【点评】:本题考查异面直线垂直的证明,考查四点共面的判断与求法,考查点到平面的距离的求法,解题时要注意空间思维能力的培养.19.(14分)已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1(n∈N),且a1=1.(1)求证:数列{a n}为等差数列;(2)设bn=,数列{b n}的前n项和为T n,证明:T n<(n∈N).【考点】:数列的求和;数列递推式.【专题】:等差数列与等比数列.【分析】:(1)由已知得4a n=(2n﹣1)a n+1﹣(2n﹣3)a n,从而=,由此能证明数列{a n}是首项为1,公差为2的等差数列.(2)由a n=2n﹣1,S n=n+=n2,得bn===,由此利用裂项求和法能证明T n <(n∈N).【解析】:(1)证明:∵4S n=(2n﹣1)a n+1+1,①∴n≥2时,4S n﹣1=(2n﹣3)a n+1,②①﹣②,得4a n=(2n﹣1)a n+1﹣(2n﹣3)a n,n≥2∴(2n+1)a n=(2n﹣1)a n+1,∴=,∴a n==1×=2n﹣1,∴a n﹣a n﹣1=(2n﹣1)﹣(2n﹣3)=2,∴数列{a n}是首项为1,公差为2的等差数列.(2)解:∵数列{a n}是首项为1,公差为2的等差数列,∴a n=2n﹣1,S n=n+=n2,∴bn====,n≥2∴T n<(1+++…+)=.∴T n<(n∈N).【点评】:本题考查数列{a n}为等差数列的证明,考查不等式的证明,解题时要认真审题,注意累乘法和裂项求和法的合理运用.20.(14分)已知点M(2,1),N(﹣2,1),直线MP,NP相交于点P,且直线MP的斜率减直线NP的斜率的差为1.设点P的轨迹为曲线E.(Ⅰ)求E的方程;(Ⅱ)已知点A(0,1),点C是曲线E上异于原点的任意一点,若以A为圆心,线段AC 为半径的圆交y轴负半轴于点B,试判断直线BC与曲线E的位置关系,并证明你的结论.【考点】:圆与圆锥曲线的综合.【专题】:圆锥曲线的定义、性质与方程.【分析】:(Ⅰ)设出P点坐标,依题意得列关于P点坐标的方程,化简后得答案;(Ⅱ)证法一、设出C点坐标,把c的坐标代入E的轨迹方程,再求出圆A的方程,求出点B的坐标,进一步求出直线BC的方程,和抛物线方程联立后由判别式等于0可证直线BC与曲线E相切.证法二:设出C点坐标,把c的坐标代入E的轨迹方程,再求出圆A的方程,求出点B的坐标,进一步求得直线BC的斜率,然后利用导数求出抛物线在过C点的切线的斜率,可得直线BC与曲线x2=4y过点C的切线重合,即说明直线BC与曲线E相切.【解析】:解:(Ⅰ)设P(x,y),依题意得,化简得x2=4y(x≠±2),∴曲线E的方程为x2=4y(x≠±2);(Ⅱ)结论:直线BC与曲线E相切.证法一:设C(x0,y0),则,圆A的方程为,令x=0,则,∵y0>0,y<0,∴y=﹣y0,点B的坐标为(0,﹣y0),直线BC的斜率为,直线BC的方程为,即,代入x2=4y得,,即,,∴直线BC与曲线E相切.证法二:设C(x0,y0),则,圆A的方程为,令x=0,则,∵y0>0,y<0,∴y=﹣y0,点B的坐标为(0,﹣y0),直线BC的斜率为,由x2=4y得,得,,过点C的切线的斜率为,而,∴k=k1,∴直线BC与曲线x2=4y过点C的切线重合,即直线BC与曲线E相切.【点评】:本题考查了曲线方程的求法,考查了圆与圆锥曲线的综合,考查了直线与圆的位置关系,对于(Ⅱ)的第二种证明方法,运用了利用导数研究过曲线上某点的切线的斜率,体现了导数在解题中的广泛应用,该题属中高档题.21.(14分)设函数f(x)=的导函数为f'(x)(a为常数,e=2.71828…是自然对数的底数).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)求实数a,使曲线y=f(x)在点(a+2,f(a+2))处的切线斜率为﹣;(Ⅲ)当x≠a时,若不等式||+k|x﹣a|≥1恒成立,求实数k的取值范围.【考点】:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】:导数的综合应用.【分析】:(Ⅰ)根据导数和函数的单调性的关系即可求出单调区间;(Ⅱ)根据导数的几何意义,令a+2=t,则有e t+t3﹣1=0,构造函数,利用导数求出即可;(Ⅲ)原不等式可化为,在分类讨论,继而求出实数k的取值范围.【解析】:解:(Ⅰ)函数f(x)的定义域是(﹣∞,a)∪(a,+∞),…(1分)对f(x)求导得:,…(2分)由f'(x)>0得x>a+1;由f'(x)<0得x<a或a<x<a+1,…(4分)所以f(x)在(﹣∞,a),(a,a+1)上单调递减,在(a+1,+∞)上单调递增.…(5分)(Ⅱ)由(Ⅰ)得…(6分)令得e a+2+a3+6a2+12a+7=0…①令a+2=t,则有e t+t3﹣1=0,…(8分)令h(t)=e t+t3﹣1,则h'(t)=e t+3t2>0,…(9分)故h(t)是R上的增函数,又h(0)=0,因此0是h(t)的唯一零点,即﹣2是方程①的唯一实数解,故存在唯一实数a=﹣2满足题设条件.…(10分)(Ⅲ)因为,故不等式可化为,令x﹣a=t,则t≠0,…(11分)且有…(12分)①若t<0,则,即,此时k≥0;②若0<t≤1,则,即,此时k≥1;③若t>1,则,即,此时k≥1.故使不等式恒成立的k的取值范围是[1,+∞).…(14分)【点评】:本题考查了导数和函数单调性的关系,以及导数的几何意义,以及不等式恒成立的问题,培养了学生的转化能力,属于中档题。
2015届高三教学质量一模数学试题(理)及答案

2015年高三教学质量检测(1)数学试题(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{1,0,1},{||10}A B x x =-=+>,那么AB =A .{1,0,1}-B .{0,1}C .(1,)-+∞D .[)1,-+∞ 2、已知复数1z i =+,则21z-= A .i - B .1 C .i D .-13、沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为4、已知程序框图如图所示,则该程序框图的功能是A .求11112310++++的值 B .求111124620+++的值 C .求11112311++++的值 D .求111124622+++的值 5、已知平面向量,a b 满足11,(2)()2a b a b a b ==+-=-,则与a 与b 的夹角为 A .6π B .3π C .23π D .56π6、在正项等比数列{}n a 中,232629log log log 3a a a ++=,则111a a 的值是 A .16 B .8 C .4 D .27、在二项式251()x x-的展开式中,含7x 的项的系数为A .-10B .10C .-5D .58、某城市对机动车单双号限行进行了调查,在参加调查的2548名有车人中有1560名持反对意见,2452名无车人中有1200名持反对意见,在运用这些数据说明“拥有车辆”与“反对机动车单双号限行”是否有关系时,用什么方法最有说服力A .平均数与方差B .回归直线方程C .独立性检验D .概率9、焦点在y 轴上的双曲线G 的下焦点为F ,上顶点为A ,若线段FA 的中垂线与双曲线G 有公共点,则双曲线G 的离心率的取值范围是( )A .()1,3B .(]1,3C .()3,+∞D .[)3,+∞ 10、已知()[)[]211,010,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象正确的是A .()1f x +的图象B .()f x 的图象C .()fx 的图象 D .()f x 的图象11、若直线20(0,0)ax by a b -+=>>过圆22:2410C x y x y ++-+=的圆心,则11a b+的最小值为( ) A .14 B.32+.32+ 12、定义域为R 的偶函数()f x 满足对任意x R ∈,有()()()21f x f x f +=-,且当[]2,3x ∈时,()221218f x x x =-+-,若函数()log (1)a y f x x =-+在()0,+∞上恰有三个零点,则a 的取值范围是( ) A. B. C. D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
金山中学、广雅中学、佛山一中2015届高三联考文科数学试题

图 1金山中学、广雅中学、佛山一中2015届高三联考数学(文科) 试题(本试卷共4页,21小题,满分150分.考试用时120分钟.)参考公式:棱锥的体积公式:13V Sh =.其中S 表示棱锥的底面积,h 表示棱锥的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|lg(x-2)≥0},B={x|x≥2},全集U=R,则(C U A)∩B=( )A. {x|-1<x≤3}B. φC. {x|x=3}D. {x|2≤x ﹤3}2. 复数iaiz -=3在复平面内对应的点在第三象限是a≥0的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3. 已知数列{}n a 满足)2(2,111≥+==-n n a a a n n ,则=7a ( ) A.53 B.54C.55D.1094.已知一棱锥的三视图如图1所示,其中侧视图和俯视图都是 等腰直角三角形,正视图为直角梯形,则该棱锥的体积为( ) A .8 B .16 C .32 D .485.对于函数2(),f x x mx n =++若()0,()0f a f b >>,则函数()f x 在区间(,)a b 内 ( )A .一定有零点B .一定没有零点C .可能有两个零点D .至多有一个零点 6.曲线12x y e=在点2(4,)e 处的切线与坐标轴所围三角形的面积为( )A .2e B .22eC .24e D .292e7. 下列程序框图(图2)的输出结果为 ( )A.20132012B. 20131C.20142013 D. 20141图2图 38. 设,22ππθ⎛⎫∈- ⎪⎝⎭,则关于θ的方程1cos 2tan θθ-=的解的个数为( )A .0B .1C .2D .39. 点P 到图形E 上每一个点的距离的最小值称为点P 到图形E 的距离.已知点(1,0)A ,圆C :2220x x y ++=,那么平面内到圆C 的距离与到点A 的距离之差为1的点的轨迹是( )A. 双曲线的一支B. 椭圆C. 抛物线D. 射线 10.定义两种运算:a b ⊕=a b ⊗2()(2)2xf x x ⊕=⊗-为( )A .奇函数B .偶函数C .奇函数且为偶函数D .非奇函数且非偶函数二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.(a →+b →)与a →垂直,且⎥b →⎢=2⎥a →⎢,则a →与b →的夹角为 12. 若等比数列{a n }的前项n 和为S n ,且S 4S 2 = 5,则S 8S 4 =13.已知函数21()(2),()(1,2)1x x x f x x g x a a x x -+==>-≥≥.①若[)02,x ∃∈+∞,使0()f x m =成立,则实数m 的取值范围为 ;②若[)12,x ∀∈+∞,[)22,x ∃∈+∞使得12()()f x g x =,则实数a 的取值范围为 .(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,过点3π4,2A ⎛⎫⎪⎝⎭引圆4sin ρθ=的一条切线,则切线长为 .15.(几何证明选讲选做题)如图3,PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点,且2,1,PA PB ==则AB 的长为 .三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图4,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且⎪⎭⎫⎝⎛∈2,3ππα.将角α的终边按 逆时针方向旋转6π,交单位圆于点B .记),(),,(2211y x B y x A . (Ⅰ)若411=x ,求2x ; (Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC 的 面积为1S ,△BOD 的面积为2S .若21S S =,求角α的值.17.(本小题满分12分)从某校高三年级800名学生中随机抽取50名测量身高.据测量,被抽取的学生的身高全部介于155cm 和195cm 之间,将测量结果分成八组得到的频率分布直方图如图5:(1)试估计这所学校高三年级800名学生中身高在180cm 以上(含180cm )的人数为多少; (2)在样本中,若学校决定身高在185cm 以上的学生中随机抽取2名学生接受某军校考官 进行面试,求:身高在190cm 以上的学生中至少有一名学生接受面试的概率.18.(本小题满分14分)如图6,已知三棱柱ABC —A 1B 1C 1的侧棱与底面垂直,且∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,点P 、 M 、N 分别为BC 1、CC 1、AB 1的中点. (1)求证:PN//平面ABC ; (2)求证:A 1M ⊥平面AB 1C 1;(3)求点M 到平面AA 1B 1的距离.cm )图5 图6图419(本题满分14分)已知数列{}n a 满足1331(,2)n n n a a n N n *-=+-∈≥且395a =。
佛山市2015届普通高中高三教学质量检测(二)(文数)

佛山市2015届普通高中高三教学质量检测(二)数学(文科)本试卷共4页,21小题,满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁.考试结束后,将答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{|11}x Z x ∈-≤≤的子集个数为( )A .3B .4C .7D .82.若复数z 满足(1)i z i -=,其中i 为虚数单位,则在复平面上复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知向量(1,0)a =-,13(,2b =,则向量a 与b 的夹角为( ) A .6π B . 3π C .23π D . 56π4.由不等式组22024010x y x y x --≥⎧⎪-+≥⎨⎪-≤⎩确定的平面区域记为M ,若直线320x y a -+=与M 有公共点,则a 的最大值为( )A .3-B .1C .2D .4 5.某班有49位同学玩“数字接龙”游戏,具体规则按如图所示 的程序框图执行(其中a 为座位号),并以输出的值作为下一个 输入的值。
若第一次输入的值为8,则第三次输出的值为(A . 8B .15C . 29D .366.不可能以直线12y x b =+作为切线的曲线是( ) A .sin y x = B .1y x= C .ln y x = D . xy e =7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若)cos cos b A a B -=,则A=( )A .12π B . 6π C . 4π D .3π8.已知函数()()(2)f x x a bx a =++,(,)a b R ∈,则“0a =”是“()f x 为偶函数”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件9.已知a ,b ,c 均为直线,α,β为平面,下面关于直线与平面关系的命题:(1)任意给定一条直线a 与一个平面α,则平面α内必存在与a 垂直的直线; (2)a ∥β,β内必存在与a 相交的直线;(3)α∥β,a ⊂α,b ⊂β,必存在与a ,b 都垂直的直线; (4)α⊥β,c αβ=,a ⊂α,b ⊂β,若a 不垂直c ,则a 不垂直b 。
广东省佛山市2015届普通高中高三教学质量检测(一)数学【文】试题及答案

广东省佛山市2015届普通高中高三教学质量检测(一)数学(文)试题一.选择题:本大题共8小题,每小题5分,满分40分.1.复数31i i ++等于( ). A .12i + B .12i - C .2i - D .2i +2.已知集合{}{}|02,|1M x R x N x R x =∈<<=∈>,则()R M N =I ð( ). A .[)1,2 B .()1,2 C .(]0,1 D .[)0,1 3.若函数的图象关于原点对称,则实数a 等于 A .-2 B .-1 C .1 D .24.已知,a b R ∈,则“1a b >>”是“log 1a b <”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知,x y 满足不等式组,则目标函数的最大值为 A .12 B .24 C .8 D .6.在空间,有如下四个命题:其中正确的两个命题是A .①②B .②④C .①④D .②③7.某校高三年级学生全主席团共有5名同学组成,其中有3名同学来自同一班级,另外两名同学来自另两个不同班级,现从中随机选出两名同学参加会议,则两名选出的同学来自不同班级的概率为A .0.35B .0.4C .0.6D .0.78.已知双曲线的左、右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A 、B 两点,若的周长为 A .16 B .20 C .21 D .269.已知的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.有10个乒乓球,将它们任意分成两堆,求出这两堆乒乓球个数的乘积,再将每堆乒乓球任意分成两堆并求出两堆乒乓球个数的乘积,如此下去,直到不能再分为止,则所有乘积的和为A .45B .55C .90D .100二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)11.如果()11sin 1x f x x x ⎧≤⎪=⎨>⎪⎩,那么()2f f =⎡⎤⎣⎦____________. 12.已知点()()2,0,0,4A B -到直线:10l x my +-=的距离相等,则m 的值为____________.13.如图1,为了测量河对岸,A B 两点之间的距离,观察者找到一个点C ,从C 点可以观察到点,A B ,找到一个点D ,从D 点可以观察到点,A C ,找到一个点E ,从E 点可以观察到点,B C ,并测量得到一些数据:2,45,105,48.19,75,CD CE D ACD ACB BCE ==∠=∠=∠=∠=o o o o E ∠=60o ,则,A B 两点之间的距离为____________.(其中cos 48.19o 取近似值23).(二)必做题(14~15题,考生只能从中选做一题)14.(几何证明选讲)如图2,P 是圆O 外一点,,PA PB 是圆O 的两条切线,切点分别为,,A B PA 中点为M ,过M 作圆O 的一条割线交圆O 于,C D 两点,若1PB MC ==,则CD =_________.15.(坐标系与参数方程)在极坐标系中,曲线)1:sin 1C ρθθ+=与曲线()2:0C a a ρ=>的一个交点在极轴上,则a =__________.三.解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()()sin 0,4f x x x R πωω⎛⎫=->∈ ⎪⎝⎭的最小正周期为π. (1)求6f π⎛⎫ ⎪⎝⎭. (2)在图3给定的平面直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,并根据图象写出其在,22ππ⎛⎫- ⎪⎝⎭上的单调递减区间.17.(本小题满分12分)某地区“腾笼换鸟”的政策促进了区内环境改善和产业转型,空气质量也有所改观,现从当地天气网站上收集该地区近两年11月份(30天)的空气质量指数(AQI )(单位:3/g m μ)资料如下:(1)请填好2014年11月份AQI 数据的平率分布表并完成频率分布直方图.(2)该地区环保部门2014年12月1日发布的11月份环评报告中声称该地区“比去年同期空气质量的优良率提高了20多个百分点”(当100AQI <时,空气质量为优良).试问此人收集到的资料信息是否支持该观点?18.(本小题满分14分)如图6,四棱锥P ABCD -,侧面PAD 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ABC ∠=o 的菱形,M 为棱PC 上的动点,且[]()0,1PM PC λλ=∈. (1)求证:PBC V 为直角三角形.(2)试确定λ的值,使得二面角P AD M --的平面角余弦值为5.19.(本小题满分14分)数列{}n a 的前n 项和为n S ,已知()()211,12n n a S n a n n n N *==--∈. (1)求23,a a .(2)求数列{}n a 的通项.(3)设11n n n b S S +=,数列{}n b 的前n 项和为n T ,证明:52n T <()n N *∈.。
广东省佛山市第一中学2015届高三10月段考数学(理)试题 Word版含答案

佛山一中2015届高三上学期数学(理科)段考试题命题人 谭江南 审题人 卢志常2014.10.14本试卷共4页,21小题,满分150分。
考试用时120分钟。
一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x|-x 2-3x>0},B ={x|x<-1},则A ∩B =( )A .{x|-3<x<-1}B .{x|-3<x<0}C .{x|x<-1}D .{x|x>0} 2.函数2cos 1y x =+在下列哪个区间上为增函数A .π[0, ]2B .π[, π]2C .[]0, πD .[]π, 2π 3.已知幂函数()y f x =的图象过点11(,)28--,则2log (4)f 的值为 A . 3 B .4 C .6 D .-6 4.已知函数()12sin()cos()2f x x x ππ=++-,则()f x 是A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数5.向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=A .12B .13C .14D .156.已知非零向量a 、b ,“函数2()()f x ax b =+为偶函数”是“a b ⊥”的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件7.在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →等于A .14a +12bB .23a +13bC .12a +14bD .13a +23b8.设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围为A. 9(,2]4-- B.[1,0]- C.(,2]-∞- D.9(,)4-+∞二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.已知函数f (x )=(m -2)x 2+(m 2-4)x +m 是偶函数,函数g (x )=-x 3+2x 2+mx +5在(-∞,+∞)内单调递减,则实数m 等于________.10.已知向量a 与b 的夹角为2π3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________. 11.有一道解三角形的题目,因纸张破损有一个条件模糊不清,具体如下:“在△ABC 中,已知a =4B π=, ,求b .”若破损处的条件为三角形的一个内角的大小,且答案提示b =试在横线上将条件补充完整.12.若数()f x x a =+-a =__________.13.直线2()y x m m R =+∈和圆122=+y x 交于A 、B 两点,以Ox 为始边,OA ,OB 为终边的角分别为α,β,则)sin(βα+的值为_________.(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程)直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设A 、B 分别在曲线C :⎩⎨⎧+=+=θθsin 23cos 24y x (θ为参数)和曲线21=ρ上,则||AB 的取值范围是_______15.(几何证明选讲)如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,4,8PC PB ==,则OBC S ∆= .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-. (Ⅰ)求sin C ;(Ⅱ)当2c a =,且b =a .17.(本题满分12分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素x,y 满足x ≥175,且y ≥75时,该产品为优等品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年佛山市普通高中高三教学质量检测(一)数 学(文科) 2015.1本试卷共4页,21小题,满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回. 参考公式: 锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i1i3++等于( ) A .i 21+B .i 21-C .i 2-D .i 2+2.已知集合{}02M x x =∈<<R ,{}1N x x =∈>R ,则()R MN =ð( )A .[)1,2B .()1,2C .[)0,1D .(]0,13.若函数42x xay +=的图象关于原点对称,则实数a 等于( ) A .2- B .1- C .1 D .24.已知x ,y 满足不等式组282800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则目标函数3z x y =+的最大值为( )A .12B .24C .8D .3325.已知两个单位向量12,e e 的夹角为45︒,且满足()121λ⊥-e e e ,则实数λ的值是( )A .1 BCD .2 6.在空间中,有如下四个命题: ①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面α内有不共线的三个点到平面β距离相等,则α∥β; ④过平面α的一条斜线有且只有一个平面与平面α垂直. 其中正确的两个命题是( )A .①③B .②④C .①④D .②③7.某校高三年级学生会主席团有共有5名同学组成,其中有3名同学来自同一班级,另外两名同学来自另两个不同班级.现从中随机选出两名同学参加会议,则两名选出的同学来自不同班级的概率为( )A .0.35B .0.4C .0.6D .0.78. 已知双曲线221169x y -=的左、右焦点分别为1F ,2F ,过2F 的直线与该双曲线的右支交于A 、B 两点,若5=AB ,则1ABF ∆的周长为( )A .16B .20C .21D .26 9.已知()2f x x x =-,且a ,b ∈R ,则“1a b >>”是“()()f a f b <”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件10.有10个乒乓球,将它们任意分成两堆,求出这两堆乒乓球个数的乘积,再将每堆乒乓球任意分成两堆并求出这两堆乒乓球个数的乘积,如此下去,直到不能再分为止,则所有乘积的和为( ) A . 45 B . 55 C . 90 D . 100 二、填空题:本大共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.如果()1,10,1x f x x ì£ïï=íï>ïî,那么()2f f =⎡⎤⎣⎦ . 12.已知点()2,0A -、()0,4B 到直线l :10x my +-=的距离相等,则m 的值为 . 13. 如图1,为了测量河对岸A 、B 两点之间的距离,观察者找到一个点C ,从C 点可以观察到点A 、B ;找到一个点D ,从D 点可以观察到点A 、C ;找到一个点E ,从E 点可以观察到点B 、C ;并测量得到一些数据:2CD =,CE =45D ∠=︒,105ACD ∠=︒,48.19ACB ∠=︒,75BCE ∠=︒,E ∠=60︒,则A 、B 两点之间的距离为_________.(其中cos 48.19︒取近似值23)C图1O DCA MP B图22013年11月份AQI 数据频率分布直方图2014年11月份AQI 数据频率分布直方图频率组距(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲)如图2,P 是圆O 外一点,PA 、PB 是圆O 的两条切线,切点分别为A 、B ,PA 中点为M ,过M 作圆O 的一条割线交圆O 于C 、D 两点,若PB =,1MC =,则CD = .15.(坐标系与参数方程)在极坐标系中,曲线1C :)sin 1ρθθ+=与曲线2C :a ρ=(0a >)的一个交点在极轴上,则a =______.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数()sin 4f x x πω⎛⎫=- ⎪⎝⎭(0ω>),x ∈R 的最小正周期为π.(Ⅰ) 求6f π⎛⎫⎪⎝⎭; (Ⅱ) 在图3给定的平面直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图像,并根据图象写出其在,22ππ⎛⎫- ⎪⎝⎭17.(本小题满分12分)某地区“腾笼换鸟”的政策促进了区内环境改善和产业转型,空气质量也有所改观,现从当地天气网站上收集该地区近两年11月份(30天)的空气质量指数(AQI )(单位:3g /m μ)资料如下:(Ⅰ) 请填好2014年11月份AQI 数据的频率分布表.....并完成频率分布直方图.......; 图3表1PABC DM图6(Ⅱ) 该地区环保部门2014年12月1日发布的11月份环评报告中声称该地区“比去年同期空气质量的优良率提高了20多个百分点”(当AQI 100<时,空气质量为优良).试问此人收集到的资料信息是否支持该观点?18.(本小题满分14分)如图6,四棱锥P ABCD -,侧面PAD 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ABC ∠=︒的菱形,M 为PC 的中点.(Ⅰ) 求证:PC AD ⊥;(Ⅱ) 在棱PB 上是否存在一点Q ,使得,,,A Q M D 四点共面?若存在,指出点Q 的位置并证明;若不存在,请说明理由;(Ⅲ) 求点D 到平面PAM 的距离.19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+(*n ∈N ),且11=a .(Ⅰ) 求证:数列{}n a 为等差数列; (Ⅱ) 设n b =数列{}n b 的前n 项和为n T ,证明:32n T <(*n ∈N ).20.(本小题满分14分)已知点()2,1M ,()2,1N -,直线MP ,NP 相交于点P ,且直线MP 的斜率减直线NP 的斜率的差为1.设点P 的轨迹为曲线E . (Ⅰ) 求E 的方程;(Ⅱ) 已知点()0,1A ,点C 是曲线E 上异于原点的任意一点,若以A 为圆心,线段AC 为半径的圆交y 轴负半轴于点B ,试判断直线BC 与曲线E 的位置关系,并证明你的结论.21.(本小题满分14分)设函数()e xf x x a=-的导函数为()f x '(a 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(Ⅰ) 讨论函数()f x 的单调性;(Ⅱ) 求实数a ,使曲线()y f x =在点()()2,2a f a ++处的切线斜率为3261274a a a +++-;(Ⅲ) 当x a ≠时,若不等式()()1f x k x a f x '+-≥恒成立,求实数k 的取值范围. 2015年佛山市普通高中高三教学质量检测(一)数学试题(文科)参考答案和评分标准一、选择题:本大题共10小题,每小题5分,满分50分.[必做题] 11.1 12.112-或 13[选做题]14.215.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.【解析】(Ⅰ)依题意得2ππω=,解得2ω=,所以()sin 24f x x π⎛⎫=- ⎪⎝⎭,………………2分 所以s i63f ππ⎛⎫=-⎪⎝⎭………4分(Ⅱ)因为2x ππ-≤≤,所以532x πππ-≤-≤,列表如下:……………………6分 ………8分8π3π2014年11月份AQI 数据频率分布直方图2014年11月份AQI 数据频率分布表PABCDM QO画出函数()y f x =在区间,ππ⎡⎤-上的图像如图所示! 由图象可知函数()y f x =在,22- ⎪⎝⎭上的单调递减区间为,28-- ⎪⎝⎭,,82 ⎪⎝⎭.…………12分17.【解析】(Ⅰ) 频率分布表(3分);频率分布直方图(6分) (Ⅱ) 支持,理由如下:2013年11月的优良率为:119200.0050.0050.0150.010330⎛⎫⨯⨯+++= ⎪⎝⎭, …………8分2014年11月的优良率为:3026, …………9分 因此2619723.3%20%303030-=≈> …………11分 所以数据信息可支持“比去年同期空气质量的优良率提高了20多个百分点”.…………………12分18.【解析】(Ⅰ)方法一:取AD 中点O ,连结,,OP OC AC ,依题意可知△PAD ,△ACD 均为正三角形,所以OC AD ⊥,OP AD ⊥,又OCOP O =,OC ⊂平面POC ,OP ⊂平面POC ,所以AD ⊥平面POC ,又PC ⊂平面POC ,所以PC AD ⊥.………………4分 方法二:连结AC ,依题意可知△PAD ,△ACD 均为正三角形, 又M 为PC 的中点,所以AM PC ⊥,DM PC ⊥, 又AMDM M =,AM ⊂平面AMD ,DM ⊂平面AMD ,所以PC ⊥平面AMD ,又AD ⊂平面AMD ,所以PC AD ⊥.………………4分(Ⅱ)当点Q 为棱PB 的中点时,,,,A Q M D 四点共面,证明如下:………………6分 取棱PB 的中点Q ,连结QM ,QA ,又M 为PC 的中点,所以//QM BC ,在菱形ABCD 中//AD BC ,所以//QM AD ,所以,,,A Q M D 四点共面.………………8分 (Ⅲ)点D 到平面PAM 的距离即点D 到平面PAC 的距离, 由(Ⅰ)可知PO AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PO ⊂平面PAD ,所以PO ⊥平面ABCD ,即PO 为三棱锥P ACD -的体高 (9)分在Rt POC ∆中,PO OC ==PC =,在PAC ∆中,2PA AC ==,PC =边PC 上的高AM ==,所以PAC ∆的面积1122PAC S PC AM ∆=⋅==,………………10分 设点D 到平面PAC 的距离为h ,由D PAC P ACD V V --=得………………11分1133PAC ACD S h S PO ∆∆⋅=⋅,又224ACD S ∆==所以11323h ⨯=………13分解得h =,所以点D 到平面PAM ………………14分 19.【解析】(Ⅰ) 由题设()14211n n S n a +=-+,则21413a S =-=,3234115,a S =-=35a =. 当2n ≥时,()14231n n S n a -=-+,两式相减得()()12121n n n a n a ++=-, ……………………………………2分方法一:由()()12121n n n a n a ++=-,得12121n n a a n n +=+-,且2131a a=. 则数列21n a n ⎧⎫⎨⎬-⎩⎭是常数列,即1121211n a a n ==-⨯-,也即21n a n =- ……………………………6分所以数列{}n a 是首项为1,公差为2的等差数列 ………………………………………7分方法二:由()()12121n n n a n a ++=-,得()()122321n n n a n a +++=+, 两式相减得212n n n a a a +++=,且1322a a a += ……………………………………6分所以数列{}n a 等差数列. ………………………………………7分 (Ⅱ) 由(Ⅰ)得12-=n a n ,()21212n n n S n +-==,()121n b n n =-,…………9分当1=n 时,1312T =<成立;…………………………………………………10分 当2n ≥时,()()111111*********n b n n n n n n n n ⎛⎫==<=- ⎪---⎛⎫⎝⎭- ⎪⎝⎭…………12分所以1111111122231n T n n ⎡⎤⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦1113111222n ⎛⎫=+-<+= ⎪⎝⎭综上所述,命题得证.………………………………………………………………………………14分 20.【解析】(Ⅰ)设(),P x y ,依题意得11122y y x x ---=-+, ……………………3分 化简得24x y=(2x ≠±),所以曲线E的方程为24x y =(2x ≠±). …………………5分(Ⅱ) 结论:直线BC 与曲线E 相切. 证法一:设()00,C x y ,则2004x y =,圆A的方程为()()22220011x y x y +-=+-, ……………7分 令0x =,则,()()()2222000111y x y y -=+-=+,因为00,0y y ><,所以y y =-,点B的坐标为()00,y -, ………………………………………9分直线BC 的斜率为002y k x =,直线BC 的方程为0002y y y x x +=,即0002yy x y x =-,……………11分代入24x y =得200024y x x y x ⎛⎫=-⎪⎝⎭,即20000840x x y x x y -+=,……………13分 ()22000000064441640y x x y y y x ∆=-⋅=-=,所以,直线BC 与曲线E 相切.……………………………………………………………14分证法二:设()00,C x y ,则2004x y =,圆A 的方程为()()22220011x y x y +-=+-,……………7分 令0x =,则,()()()2222000111y x y y -=+-=+,因为00,0y y ><,所以0y y =-,点B 的坐标为()00,y -,………………………………………9分直线BC 的斜率为02y k x =,…………………………………10分由24x y =得214y x =得12y x '=,过点C 的切线的斜率为1012k x =,……………12分 而200000122142x y k x x x ⨯===,所以1k k =,……………13分 所以直线BC 与曲线24x y =过点C 的切线重合,即直线BC 与曲线E 相切.…………………………………………………………14分 21.【解析】(Ⅰ)函数()f x 的定义域是()(),,a a -∞+∞,…………………………1分对()f x 求导得:()()()2e 1x x af x x a --'=-,…………………2分由()0f x '>得1x a >+;由()0f x '<得x a <或1a x a <<+,…………………4分 所以()f x 在(),a -∞,(),1a a +上单调递减,在()1,a ++∞上单调递增.…………………5分(Ⅱ)由(Ⅰ)得()2e 24af a +'+=……………………………………6分令232641274a a e a a ++++-=得 32261270a a a a e +++++=………① 令2a t +=,则有310te t +-=,……………………………8分令()31th t e t =+-,则()203th t e t '=+>,……………………………9分故()h t 是R 上的增函数,又()00h =,因此0是()h t 的唯一零点,即2-是方程①的唯一实数解, 故存在唯一实数2a =-满足题设条件.…………………………………………………………10分(Ⅲ)因为()()1f x x a f x x a '--=-,故不等式()()1f x k x a f x '+-≥可化为11x a k x a x a--+-≥-, 令x a t -=,则0t ≠,……………………………11分 且有111k t t≥-- ………12分 ① 若0t <,则1kt t -≥,即21k t≥-,此时0k ≥; ② 若01t <≤,则12kt t ≥-,即2221111k t t t ⎛⎫≥-=--+ ⎪⎝⎭,此时1k ≥;③ 若1t >,则1kt t ≥,即21k t≥,此时1k ≥. 故使不等式恒成立的k 的取值范围是[)1,+∞.………………………………………………14分。