共聚焦显微镜简介及免疫荧光染色
激光扫描共聚焦显微镜

1、 选择好适宜的荧光探针。 原则上讲,无论是荧光素还是荧光标记抗体均 可用于LSCM 。如果打算用2种以上荧光标记物,要 注意它们是否激发光波长及发射光波长能区别开, 还要注意是否与LSCM的激发器相匹配,要根据现有 的激发波长来选择荧光标记物。
• 不同的荧光探针在不同标本的效果常有差异,故除综合 考虑以上因素以外,有条件者应进行染料的筛选,以找 出最适的荧光探针。
6.观察活细胞、活组织:LSCM在不损伤
细胞的前提下,对活组织、活细胞进行观 察和测量,这不仅省去了繁琐的样品前期 处理过程(如脱水、脱蜡、染色等);而且观 察过的样品还可以继续用于其他的研究。 这种功能对于细胞培养、转基因研究尤为 重要。这可以说是LSCM最大的优势。
7. 生化成分精确定位观察配合专用的分子探 针,对于要检测的成分不仅可以定位到细 胞水平,还可以定位到亚细胞水平和分子 水平。
2015/6/12
激光扫描共聚焦显微镜:以激光作为激发光源,采用 光源针孔与检测针孔共轭聚焦技术,对样本进行断层扫 描,以获得高分辨率光学切片的荧光显微镜系统.
形态学研究:组织细胞 标本的抗原免疫荧光检 测,凋亡检测…
目的结构是用荧光探针标记的, 都可以用激光共聚焦显微镜观察
分子生物学:荧光原位杂交对DNA 和RNA定量,外源基因在真核细胞 的表达及定位,蛋白质相互作用 (FRET)…
4. 采 用点扫描技术将样品分成无数个点,用十分细小的激光 束逐点逐行扫描成像,再通过电脑组合成一个整体。传统的 光镜在场光源下一次成像,标本上每一点都会受到相邻点的 衍射光和散射光的干扰。这两种图像的清晰度和精密度是无 法相比的。
5.光电倍增管:检测设定范围内的光信号,并将光信号转换成 电 信号,相当于相机中的CCD或胶卷。 PMT只能检测到信号的强弱,不能记录信号的颜色,记录 的 结果通过信号强度和填充颜色表示。PMT单位用电压值V 表示,数值越大代表信号倍增越大,提高倍增会同时增加图 像的正常信号强度和噪声信号强度,使图像的信噪比下降。
共聚焦激光扫描荧光显微镜

激发波长
464nm 507nm 507nm 420/480nm 494nm
发射波长
526nm 530nm 535nm 637nm 520nm
Kd 390nM 190nM 550nM 140nM 20,000nM
KCL诱导的细胞外Ca++内流测量
培养/分离的细胞 20M Fluo 3-AM负载液30-60min 清洗、换液 扫描
激发光(EXCITATION):
能特异性地激发某种荧光素的一定波长范围内的 光线称为该荧光素的激发光。激发/吸收光谱;吸 收波峰(最大吸收波长)
488nm 520nm
发射光(EMISSION): 发射光谱;发射波峰(最大发射波长)
异硫氰酸荧光素(FITC)
荧光探针:
能产生荧光的特异性生物染料(PI, Dapi)、标有荧光素的特异性蛋白结合物(荧光抗体)
武汉大学医学院结构生物学研究中心
Centre for Structural Biology Wuhan University School of Medicine
共聚焦激光扫描荧光显微镜
— 基本原理、应用及样本制备原则
宋健
什么是共聚焦激光扫描荧光显微镜?
共聚焦激光扫描荧光显微镜(Confocal Laser Scanning
II.荧光能量共振转移的条件
488nm 520nm
540nm 650nm
1.供体与受体间的距离 <10nm或=1-7nm
2.供体的发射光谱与受体的吸收光谱 有实质性的重叠
供体荧光素 (Cy2)
受体荧光素 (Cy3)
供体荧光素 受体荧光素
488nm 520nm
650nm
供体荧光素 (Cy2)
医学实验技术 共聚焦显微镜

上海交通大学医学院 郭强苏副主任技师
激光扫描共聚焦显微镜
• 激光扫描共聚焦显微镜是80年代逐渐得到广泛应 用,比较先进的细胞生物学分析仪器
• 用激光扫描装置,通过计算机控制和处理获得细 胞和组织内部微细结构的荧光图像
• 观察细胞形态和细胞器及细胞内各种成分的细微 变化,并可动态的检测胞内Ca2+、PH值、膜电位 等生理信号
光活化 Photoactivation
解笼锁 Uncaging
激光扫描共聚焦显微镜在医学 中的应用举例
激光扫描共聚焦显微镜在细胞 凋亡中应用
• 激光扫描共聚焦显微镜不但可用于凋亡细胞亚细胞水平的观察,还可 以观察到细胞内某些超微结构的变化,在培养的K562细胞中加入放 线菌素诱导细胞凋亡,并对细胞内DNA片断进行3‘--末端标记,经观察 发现该细胞凋亡早期有大量DNA片断出现
大鼠附睾组织(AO)染色
动脉内皮细胞三标记染色
培养细胞的免疫组化
细胞内离子和膜电位的实时 定量测定
利用多种特异的荧光探针,激光扫描共聚 焦显微镜可对细胞内各种离子(Ca2+、 K+、Na+、Mg2+)的浓度和膜电位及 PH值动态变化作毫秒级的实时定量检测 和分析,因此激光扫描共聚焦显微镜能 完成对活细胞生理信号的动态检测
激光扫描共聚焦显微镜种类
1、台阶式激光扫描共聚焦显微镜 2、狭缝式激光扫描共聚焦显微镜 3、光束式激光扫描共聚焦显微镜 4、双光子和多光子激光扫描共聚
焦显微镜
激 光 扫 描 共 聚 焦 显 微 镜 原 理
激光扫描共聚焦显微镜的组成
低噪音光电倍增 管
共焦针 孔
激光
发射滤光 片
共聚焦显微镜实验报告

一、实验目的1. 熟悉共聚焦显微镜的基本原理和操作方法。
2. 利用共聚焦显微镜观察细胞结构、细胞器和细胞内分子的分布情况。
3. 掌握共聚焦显微镜在生物学研究中的应用。
二、实验原理共聚焦显微镜(Confocal Microscopy)是一种利用激光光源、共聚焦光学系统和计算机图像处理技术进行细胞和组织结构观察的显微镜。
其基本原理是利用激光光源在样品上形成点光源,通过物镜聚焦到样品的焦平面上,激发荧光物质发出荧光。
由于照明针孔与探测针孔相对于物镜焦平面是共轭的,只有焦平面上的光才能通过探测针孔,从而实现对焦平面的荧光信号采集,同时抑制了背景光的干扰。
三、实验材料与仪器1. 实验材料:细胞样品(如酵母细胞、植物细胞等)、荧光染料(如DAPI、FITC 等)、荧光标记抗体等。
2. 实验仪器:共聚焦显微镜、激光光源、物镜、扫描模块、探测器、计算机等。
四、实验步骤1. 样品制备:将细胞样品固定、染色,并进行适当处理,使其适合共聚焦显微镜观察。
2. 设定共聚焦显微镜参数:包括激光光源的波长、扫描速度、扫描范围等。
3. 观察细胞结构:使用共聚焦显微镜观察细胞的结构,如细胞核、细胞质、细胞器等。
4. 观察细胞器:使用荧光染料和荧光标记抗体对细胞器进行染色,观察其分布和形态。
5. 观察细胞内分子:使用荧光标记抗体对细胞内分子进行染色,观察其分布和动态变化。
6. 图像采集与处理:使用共聚焦显微镜采集图像,并通过计算机图像处理技术进行图像分析和三维重建。
五、实验结果与分析1. 观察到细胞核、细胞质、细胞器等细胞结构清晰可见,荧光染料和荧光标记抗体在细胞内分布均匀。
2. 观察到线粒体、内质网、高尔基体等细胞器在细胞内的分布和形态,为细胞器功能研究提供依据。
3. 观察到细胞内分子在细胞内的分布和动态变化,为细胞信号传导和分子调控研究提供线索。
六、实验讨论1. 共聚焦显微镜具有较高的分辨率和信噪比,能够观察细胞内部精细结构,为生物学研究提供有力工具。
激光扫描共聚焦显微镜(LaserScanningConfocalMicroscopy

激光扫描共聚焦显微镜(Laser Scanning Confocal Microscopy, LSCM)成像技术目的结构是用荧光探针标记的,都可以用激光共聚焦显微镜观察形态学研究:组织细胞标本的抗原免疫荧光检测,凋亡检测…分子生物学:荧光原位杂交对DNA和RNA定量,外源基因在真核细胞的表达及定位,蛋白质相互作用(FRET)…活细胞动态荧光测量:细胞内Ca2+、Cl-等离子的动态分布及定量,细胞连接间的信息传递(FRAP)…成像基础:荧光成像主要原理:利用放置在光源后的照明针孔和放置在检测器前的探测针孔实现点照明和点探测。
z sections = imagesyzx激光共聚焦显微镜的设计特点:Laser:经过照明针孔后形成点光源,光源方向性强、发散小、亮度高、颜色纯、单色性强Beamsplitter(光束分离器):将样品激发荧光与其他非信号光线分开。
Pinhole (照明针孔和探测针孔):最大限度的阻挡非聚焦平面以及聚焦平面上非焦点斑以外的散射光,以保证探测器针孔所接受到的荧光信号全部来自于样品焦点位置PMT (PhotoMultiplier Tube, 光电倍增管):检测设定范围内的光信号,并将光信号转换成电信号,相当于相机中的CCD或胶卷PMT只能检测到信号的强弱,不能记录信号的颜色,记录的结果通过信号强度和填充颜色表示PMT单位用电压值V表示,数值越大代表信号倍增越大,提高倍增会同时增加图像的正常信号强度和噪声信号强度,使图像的信噪比下降激光扫描共聚焦与传统荧光显微镜的主要区别: 激光扫描共聚焦显微镜只接收共焦点处荧光。
普通荧光显微镜不仅接收焦平面上的光,来自焦平面上方或下方的散射荧光也被物镜接收。
影响来自焦平面以外的荧光使观察到的图像反差和分辨率(焦平面以外的荧光结构模糊、发虚)。
CCDPMTFV1000 (Olympus):多个荧光通道(405, 458, 488, 515, 543, 633),可同时检测多个荧光标记一个透射光通道,透射光图像为非共焦图像激光扫描共聚焦显微镜的主要应用No.1 免疫荧光染色(单标、双标、多标)细胞浆、核、膜抗原的分布、半定量分析 几种抗原的共定位抗原与细胞器的共定位抗原转位No. 2 荧光标记活细胞内成分:氯离子荧光探针:MQAE[N -(Ethoxycarbonylmethyl)-6-methoxyquinolinium bromide]细胞内pH的荧光探针:BCECF AM[2’,7’-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester]活性氧荧光探针:DCFH-DANO荧光探针:DAF-FM DA[3-Amino,4-aminomethyl-2’,7’-difluorescein, diacetateNo. 3 荧光标记各种亚细胞结构:细胞内微丝:荧光染料标记的毒蕈肽(phalloidin)细胞膜荧光探针:DiI 即DiIC18(3) [1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate,红]和DiO即DiOC18(3) [dioctadecyloxacarbocyanine perchlorate,绿] 内质网探针:荧光标记的glibenclamide高尔基体探针:荧光标记的C5-ceramide。
共聚焦显微镜

共聚焦显微镜
共聚焦显微镜,最常见的是共聚焦激光扫描显微镜(CLSM)或激光共聚焦扫描显微镜(LCSM),是一种光学成像技术,可通过使用空间针孔来阻挡散焦光来提高显微图像的光学分辨率和对比度。
在图像形成中。
捕获样品中不同深度的多个二维图像可重建三维结构(此过程称为光学切片)。
该技术广泛用于科学和工业界,典型的应用是生命科学、半导体检查和材料科学。
共聚焦显微镜利用照明点与探测点共轭特性,可有效yi 制同一焦点平面上非测量点的杂散荧光及来自样品中非焦平面的荧光,从而获得普通光镜无法达到的分辨率。
共聚焦显微镜是激光共聚焦扫描显微镜LCSM 的简称,它显微成像主要采用3D 捕获的成像技术,使其具有较高的三维图像分辨率。
这些都是通过构建显微照片来实现的。
在荧光显微镜使用过程中,由于需要高强度紫外光辅助成像,所以显微镜内的汞弧灯产生的强光可能会导致令人不安的背景噪音,甚至会导致光漂白。
共聚焦显微镜以一个微动步进马达控制载物台的升降,可以逐层获得高反差、高分辨率、高灵敏度的二维光学横断面图像,从而对活的或固定的细胞及组织进行无损伤的系列“光学切片”,得到各个层面的信息。
这种功能也被称为细
胞CT或显微CT。
激光扫描共聚焦显微镜(LSCM)技术简介

生物秀论坛-学术交流、资源共享与互助社区
生物秀-专心做生物
Introduction
ž LSCM 是一种高科技显微镜
ž
ž ž
荧计光像无细光算探。损胞显机针伤三,微进的维镜 行得“ 立成图到光体生像像细学机物w为处胞构切秀w基理或片w-础组,”.专b织,使b心i内加用o做o部装紫.生c微了 外o物m细激 或结光 可构扫 见的描 光荧装 激光置 发,图荧
在生命科学领域的分子水平,细胞
及组织水平的研究中得到广泛应 用.
生物秀论坛-学术交流、资源共享与互助社区
生物秀-专心做生物
ž 在细胞原位用特异探针标
ž 记激并 镜子出素用成的核,激像定磷酸光,位脂从,扫,蛋,而定多描白实性糖共质现及生,受聚,上定物多体w焦述量肽秀等w显大 检,w酶分-微分 测.专,子bb心io做o.生co物m
集(左图) ,这样的装置完全与传统的荧光显微镜一样使用激发波长滤片和吸收波长滤片来完成对不同的
荧光标记进行选择性的成像。
ž 最新一代激光扫描共聚焦显微镜可以用棱镜狭缝分光的新技术(右图),配上合适的激光源后,能够摆脱 传统的波长滤片组的限制,连续和自由地选择最佳波长) ,这一特点对于现在和未来开发出的各种新的荧 光标记物(特别是各种荧光蛋白和荧光染料) 和研究动植物的自发荧光物质有很高的价值,从某种意义上,
②用荧光标记细胞内的离子,可以单标记一种离子也可以多标记几种离子,检测细胞内如pH 和钠、 钙、镁等离子浓度的比率及动态变化。
③用荧光标记探头标记的活细胞或切片标本的活细胞生物物质,通过对膜上、胞浆内多种免疫物质 的标记, 可以实现在同一张样品上同时进行多重物质标记,同时观察这些物质;
④对细胞检测无损伤、精确、准确、可靠、重复性优良; 数据图像可及时输出或长期储存。
激光扫描共聚焦荧光显微镜原理

激光扫描共聚焦荧光显微镜原理激光扫描共聚焦荧光显微镜原理一、概述激光扫描共聚焦荧光显微镜(LSCM)是一种高分辨率、高灵敏度的生物成像技术,它通过激光和荧光探针相互作用,实现对生物样品的高清晰成像。
本文将详细介绍LSCM的原理。
二、激发荧光信号的原理LSCM是基于荧光成像技术的,因此了解荧光信号的产生机制非常重要。
在LSCM中,通常使用的探针为有机染料或蛋白质标记物。
这些探针受到激发波长(通常为紫外线或蓝色激光)后会被“激发”到一个高能态,并在短时间内返回基态时释放出能量,即产生荧光信号。
三、扫描共聚焦显微镜系统结构1. 激光器:LSCM中通常使用的激光器为氩离子激光器和氦氖激光器。
它们可以提供不同波长的激发波长,以满足不同探针的需求。
2. 光学系统:光学系统包括激光束聚焦、激光扫描和探测系统。
其中,激光束聚焦是将激光束聚焦到样品上的过程,通常使用的是物镜;激光扫描是将激光束在样品表面移动的过程,通常使用的是振镜;探测系统用于收集荧光信号,并将其转化为数字信号。
3. 样品台和样品固定装置:样品台用于放置样品,通常可以进行XYZ三向移动。
样品固定装置可以确保样品不会在成像过程中移动或震动。
4. 计算机:计算机用于控制整个系统,并处理、分析和显示成像数据。
四、扫描共聚焦显微镜成像原理1. 感应体积:感应体积是指在LSCM中能够产生荧光信号的三维区域。
它由两个因素决定:一个是物镜的数值孔径(NA),另一个是激发波长。
感应体积越小,则分辨率越高。
2. 扫描方式:LSCM采用的是点扫描或线扫描方式。
点扫描方式是将激光束聚焦到样品上的一个点,然后在样品表面移动,重复这个过程直到整个样品成像完毕;线扫描方式是将激光束聚焦成一条线,然后在样品表面移动,重复这个过程直到整个样品成像完毕。
3. 探测方式:LSCM采用的是共聚焦探测方式。
共聚焦探测可以减少背景信号和散射信号的干扰,提高成像信噪比。
五、LSCM应用LSCM广泛应用于生物学研究中,如细胞生物学、神经科学、分子生物学等领域。