傅里叶级数课程习题讲解
奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级

则
(1)弼 x(t)为实函数时,由亍 x(t)=x*(t),傅里叶级数系数一定是共轭对称的,即
(2)若 x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。 (3)若 x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。 7.连续时间周期信号的帕斯瓦尔定理 (1)连续时间周期信号的帕斯瓦尔定理:
8.连续时间傅里叶级数性质列表 表 3-1 连续时间傅里叶级数性质
/ 106
圣才电子书 十万种考研考证电子书、题库规频学习平台
1.成谐波关系的复指数信号的线性组合 一般的周期序列的线性组合就有如下:
序列φk[n]只在 k 的 N 个相继值的匙间上是丌同的,因此上式的求和仅仅需要包括 N 项。 因此将求和限表示成 k=(N),即离散时间傅里叶级数为
三、傅里叶级数的收敛 连续时间信号的傅里叶级数收敛的条件——狄里赫利条件: 1.条件 1 在仸何周期内,x(t)必须绝对可积,即
这一条件保证了每一系数 ak 都是有限值。 2.条件 2 在仸意有限匙间内,x(t)具有有限个起伏发化;也就是说,在仸何单个周期内,x(t)的
最大值和最小值的数目有限。 3.条件 3 在 x(t)的仸何有限匙间内,只有有限个丌连续点,而丏在这些丌连续点上,函数是有限
则
(1)施加亍连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反 转。
(2)若 x(t)为偶函数,则其傅里叶级数系数也为偶,若 x(t)为奇函数,则其傅里叶级 数系数也为奇。
4.时域尺度发换 时间尺度运算是直接加在 x(t)的每一次谐波分量上的,傅里叶系数仍是相同的。 x(αt)的傅里叶级数表示:
清华大学微积分A习题课11内容_傅里叶级数习题解答

a0 = 0 , an =
π 2 x2 (−1) n −1 − nxdx = = cos , ∀n ≥ 1 。 π ∫−π n2 12 4 1
π
∞
由于 f ( x) 在 (−π , π ) 上连续可微,故由 Dirichlet 收敛定理可知等式成立。证毕。 5.设 f ( x) = x 2 , ∀x ∈ [0, 1] ,且记 S ( x) 函数 f ( x) 在 [0, 1] 上的正弦级数 的和函数。求 S (− 1 ) 的值. 2 解: 由于正弦级数
x cos(nx)dx = π∫
0
1
cos nπ − 1 , ∀n ≥ 1 。 πn 2
π∫
1
π
0
x sin(nx)dx =
− cos nπ , ∀n ≥ 1 。 n
于是所求 Fourier 级数为
f ( x) ~
π
4
+∑
− 2 cos(2n − 1) x +∞ (−1) n +1 sin nx +∑ 。 π (2n − 1) 2 n n =1 n =1
∀x ∈ (0, π ) 按下列要求展开成 Fourier 级数, 6. 将函数 f ( x) = x 2 , 并求出和函数在 [0, π ]
上的值。(1) 按余弦 Fourier 展开; (2) 按正弦 Fourier 展开. 解: (1)对 f ( x) 偶延拓,故系数 b n = 0 , ∀n ≥ 1 。简单计算得
∞
解答完毕。 2.设 f ( x) =
ax, x ∈ [−π , 0] ,求 f ( x) Fourier 级数。 bx, x ∈ [0, π ]
解:经过计算得 f ( x) 的 Fourier 级数为
(整理)第十五章 傅里叶级数

第十五章 傅立叶级数§1 傅立叶级数1.在指定区间内把下列函数展开成傅立叶级数: (1)f(x)=x (i),x p p -<<(ii) 02;x p << (2) f(x)=x 2 (i),x p p -<<(ii) 02;x p << (3) ax 0,x p -<?f(x)= (a,b 为不等于0的常数,且a ≠b) bx 0x p <<解:(1)(i )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
011()0,a f x dx xdx p p p p p p--===蝌1n ³时,有11cos sin sin 0n xa x nxdx nxnxdx n n p p ppp pp pp---==-=蝌2,1sin 2,n nb x nxdx n p pp -ìïï-ïï==íïïïïïîò所以在(,)p p -上11sin ()2(1)n n nx f x n ¥+==-å(ii )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
20012,a xdx pp p ==ò1n ³时,有201cos 0,n a x nxdx pp ==ò2012sin ,n b x nxdx np p ==-ò所以在(0,2)p 上1sin ()2n nxf x n p ¥==-å(2)(i )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
22012,3a x dx p p p p -==ò1n ³时,有22241cos 4n n a x nxdx np pp -ìïïïï==íïï-ïïïîò 21sin 0n b x nxdx p pp -==ò所以在(,)p p -上221cos ()4(1)3n n nx f x n p ¥==+-å (ii )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
第十五章 傅里叶级数

第十五章 傅立叶级数§1 傅立叶级数1.在指定区间内把下列函数展开成傅立叶级数: (1)f(x)=x (i),x p p -<<(ii) 02;x p << (2) f(x)=x 2 (i),x p p -<<(ii) 02;x p << (3) ax 0,x p -<?f(x)= (a,b 为不等于0的常数,且a ≠b) bx 0x p <<解:(1)(i )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
011()0,a f x dx xdx p p p pp p --===蝌1n ³时,有11cos sin sin 0n xa x nxdx nx nxdx n n p p ppp pp pp---==-=蝌2,1sin 2,n nb x nxdx n p pp -ìïï-ïï==íïïïïïîò所以在(,)p p -上11sin ()2(1)n n nx f x n ¥+==-å(ii )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
20012,a xdx pp p ==ò1n ³时,有201cos 0,n a x nxdx pp ==ò2012sin ,n b x nxdx np p ==-ò所以在(0,2)p 上1sin ()2n nxf x n p ¥==-å(2)(i )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
22012,3a x dx p p p p -==ò1n ³时,有22241cos 4n n a x nxdx n p pp -ìïïïï==íïï-ïïïîò21sin 0n b x nxdx p pp -==ò所以在(,)p p -上221cos ()4(1)3nn nxf x n p ¥==+-å (ii )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
数学分析15.1傅里叶级数

第十5章 傅里叶级数1傅里叶级数一、三角级数·正交函数系概念1:由正弦函数y=Asin(ωx+φ)表示的周期运动称为简谐振动,其中A 为振幅,φ为初相角,ω为角频率,其周期T=ω2π.常用几个简谐振动y k =A k sin(k ωx+φk ), k=1,2,…,n 的叠加来表示较复杂的周期运动,即:y=∑=n 1k k y =∑=n1k k k )φ+ x sin(k ωA ,其周期为T=ω2π.若由无穷多个简谐振动叠加得函数项级数A 0+∑∞=1n n n )φ+ x sin(n ωA 收敛,当ω=1时,sin(nx+φn )=sin φn cosnx+cos φn sinnx ,所以 A 0+∑∞=1n n n )φ+sin(nx A = A 0+∑∞=1n n n n n sinnx )cos φA +cosnx sin φ(A ,记A 0=2a 0,A n sin φn =a n ,A n cos φn =b n ,n=1,2,…,则该级数可以表示为: 2a 0+∑∞=1n n n sinnx )b +cosnx (a . 它是由三角函数列(或称为三角函数系) 1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…构成一般形式的三角级数.定理15.1:若级数2a 0+∑∞=+1n n n |)b ||a (|收敛,则三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上绝对收敛且一致收敛.证:对任何实数x ,∵|a n cosnx+b n sinnx|≤|a n |+|b n |, 由魏尔斯特拉斯M 判别法得证.概念2:若两个函数φ与ψ在[a,b]上可积,且⎰ba φ(x )ψ(x )dx=0,则 称函数φ与ψ在[a,b]上是正交的, 或称它们在[a,b]上具有正交性,若有一系列函数两两具有正交性,则称其为正交函数系.注:三角函数列:1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…有以下性质: 1、所有函数具有共同的周期2π;2、任何两个不相同的函数在[-π, π]上具有正交性,即为在 [-π, π]上的正交函数系. 即有:⎰ππ-cosnx dx=⎰ππ-sinnx dx=0;⎰ππ-cosmx cosnx dx=0 (m ≠n);⎰ππ-sinmx sinnx dx=0 (m ≠n);⎰ππ-cosmx sinnx dx=0 (m ≠n).3、任何一个函数的平方在[-π, π]上的积分都不等于零,即⎰ππ-2nx cos dx=⎰ππ-2nx sin dx=π;⎰ππ-21dx=2π.二、以2π为周期的函数的傅里叶级数定理15.2:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则:a n =⎰ππ-f(x)cosnx π1dx, b n =⎰ππ-f(x)sinnx π1dx, n=1,2,…. 证:由定理条件可知,f(x)在[-π, π]上连续且可积,∴⎰ππ-f(x )dx=2a⎰ππ-dx +∑⎰⎰∞=1n ππ-n ππ-n )sinnx dx b +dx cosnx (a =2a 0·2π=a 0π.即a 0=⎰ππ-f(x)π1dx. 对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以coskx(k 为正整数),可得:f(x)coskx=2a 0coskx +∑∞=1n n n )sinnx coskx b +cosnx coskx (a ,则新级数收敛,有coskx f(x )ππ-⎰dx=2a 0⎰ππ-coskx dx +∑⎰⎰∞=1n ππ-n ππ-n )dx sinnx coskx b +coskx dx cosnx a (.由三解函数的正交性,等式右边除了以=a k 为系数的那一项积分kx cos a 2ππ-k ⎰dx= a k π外,其余各项积分都为0,∴coskx f(x )ππ-⎰dx= a k π,即a k =⎰ππ-f(x)coskx π1dx (k=1,2,…). 同理,对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以sinkx(k 为正整数),可得:b k =⎰ππ-f(x)sinkx π1dx (k=1,2,…).概念3:若f 是以2π为周期且在[-π, π]上可积的函数,则按定理15.2中所求a n , b n 称为函数f(关于三角函数系)的傅里叶系数,以f 的傅里叶系数为系数的三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 称为f(关于三角函数系)的傅里叶级数,记作f(x)~2a 0+∑∞=1n n n sinnx )b +cosnx (a .注:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则,f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a .三、收敛定理概念4:若f 的导函数在[a,b]上连续,则称f 在[a,b]上光滑. 若定义在[a,b]上除了至多有限个第一类间断点的函数f 的导函数在[a,b]上除了至多有限个点外都存在且连续,在这有限个点上导函数f ’的左右极限存在,则称f 在[a,b]上按段光滑.注:若函数f 在[a,b]上按段光滑,则有: 1、f 在[a,b]上可积;2、在[a,b]上每一点都存在f(x ±0),且有t 0)f(x -t)f(x lim 0t +++→=f ’(x+0),t-0)f(x -t)f(x lim 0t ---→=f ’(x-0);3、补充定义f ’在[a,b]上那些至多有限个不存在点上的值后,f ’在[a,b]上可积.定理15.3:(傅里叶级数收敛定理)若周期为2π的函数f 在[-π, π]上按段光滑,则在每一点x ∈[-π, π],f 的傅里叶级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 收敛于f 在点x 的左右极限的算术平均值,即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a ,其中a n , b n 为傅里叶系数.注:当f 在点x 连续时,则有20)-f(x 0)f(x ++=f(x),即f 的傅里叶级数收敛于f(x).推论:若周期为2π的续连函数f 在[-π, π]上按段光滑,则f 的傅里叶级数在(-∞,+∞)上收敛于f.注:由f 周期为2π,可将系数公式的积分区间[-π, π]任意平移,即:a n =⎰+2πc c f(x)cosnx π1dx, b n =⎰+2πc c f(x)sinnx π1dx, n=1,2,….c 为任意实数. 在(-π, π]以外的部分,按函数在(-π, π]上的对应关系作周期延拓,如 f 通过周期延拓后的函数为:,2,1k ],1)π(2k , 1)π-(-(2k x ,) 2π-f(x ]π, (-πx ,f(x)(x)f ˆ⎩⎨⎧⋯±±=+∈∈= 函数f 的傅里叶级数就是指函数(x)fˆ的傅里叶级数.例1:设f(x) )0, (-πx ,0]π[0,x x ,⎩⎨⎧∈∈=,求f 的傅里叶级数展开式.解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰ππ-f(x)π1dx=⎰π0x π1dx=2π. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx=⎰π0xcosnx π1dx=⎰-π0π0sinnx n π1|xsinnx n π1dx=π2|cosnx πn 1 =πn 12(cosn π-1)=πn 1(-1)2n -;b n =⎰ππ-f(x)sinnx π1dx=⎰π0xsinnx π1dx=-⎰+π0π0cosnx n π1|xcosnx n π1dx=n (-1)1n +.∴在(-π, π)上,f(x)=4π+∑∞=⎥⎦⎤⎢⎣⎡+-1n n2n sinnx n (-1)cosnx πn 1-)1(.当x=±π时,该傅里叶级数收敛于20)πf(0)πf(+±+-±=20π+=2π.∴f 在[-π, π]上的傅里叶级数图象如下图:例2:把函数f(x)= π2x πx πx 0πx 0 x 22⎪⎩⎪⎨⎧≤<-=<<,,,展开成傅里叶级数. 解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰2π0f(x)π1dx=⎰π02x π1dx-⎰2ππ2x π1dx =-2π2. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx =⎰π02cosnx x π1dx-⎰2ππ2cosnx x π1dx ; 又⎰π02cosnx x π1dx=⎰-π0π02xsinnx n π2|sinnx x n π1dx=21n n 2(-1)+-;⎰2ππ2cosnx x π1dx=⎰-2ππ2ππ2xsinnx n π2|sinnx x n π1=21n 2n 2(-1)n 4++; ∴a n =21n 221n n 2(-1)n 4n 2(-1)++---=2n4[(-1)n -1]. b n =⎰2π0f(x)sinnx π1dx=⎰π02sinnx x π1dx-⎰2ππ2sinnx x π1dx ;又⎰π02sinnx x π1dx=-⎰-π0π02xcosnx n π2|cosnx x n π1dx=πn ](-1)-2[1n π)1(3n 1n --+;⎰2ππ2sinnx x π1dx=-⎰-2ππ2ππ2xcosnx n π2|cosnx x n π1dx=-πn ](-1)-2[1n π)1(n 4π3n 1n +--+; ∴b n =πn ](-1)-2[1n π)1(3n 1n --++πn ](-1)-2[1n π)1(n 4π3n 1n --++ =πn ](-1)-4[1n 2π)1(n 4π3n n ---=πn ](-1)-4[1n (-1)]-[1 2πn 2π3n n -+ =⎪⎭⎫ ⎝⎛-+πn 4n 2π](-1)-[1n 2π3n ;∴当x ∈(0, π)∪(π, 2π]时, f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4 .当x=π时,该傅里叶级数收敛于20)f(π0)f(π++-=2)π(π22-+=0;当x=0或2π时,该傅里叶级数收敛于20)f(00)f(0++-=204π-2+=-2π2.注:由当x=2π时,有f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4=-π2+∑∞=1n n 21]-[(-1)n4=-π2-8∑∞=+0n 21)(2n 1=-2π2. 可求得∑∞=+0n 21)(2n 1=8π2.例3:在电子技术中经常用到矩形波,用傅里叶级数展开后,就可以将巨形波看成一系列不同频率的简庇振动的叠加,在电工学中称为谐波分析。
数学分析傅立叶级数习题讲解

第十五章 傅里叶级数一.填空题1. 设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎪⎪⎩⎪⎪⎨⎧<<=<≤--=ππππx x x x f 0,2,0,0,0,2)(,则)(x f 的傅里叶系数=n a .2.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数()=++∑∞=1sin cos 2n n n nx b nx a a . 3. 设,0(),0,0x x f x x ππ≤≤⎧=⎨-≤<⎩则此函数的傅里叶级数在π=x 处收敛于 .4. 设⎪⎩⎪⎨⎧≤<=<<--=ππx x x x x x f 0,,0,0,0,)(22,则此函数的傅里叶级数在0=x 处收敛于 .5. 设⎩⎨⎧<≤<≤-50,3,05,0)(x x x f ,则此函数的傅里叶级数在0=x 处收敛于 .6. )(x f 是以π2为周期的连续函数,且在],[ππ-上按段光滑,则()=++∑∞=1sin cos 2n n n nx b nx a a . 二.选择题1.下列说法正确的是( ).A 若)(x f 是以π2为周期的函数,且在],[ππ-上可积,则)(x f 的傅里叶系数中的⎰-=ππnxdx x f b n sin )(, ,3,2,1=n.B 若)(x f 是以l 2为周期的函数,且在],[l l -上可积,则)(x f 的傅里叶系数中的⎰-=ll n dx lxn x f a πcos)(, ,3,2,1=n .C 若)(x f 是以π2为周期的偶函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可展开成余弦级数∑∞=1cos n n nx a ..D 若)(x f 是以π2为周期的奇函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可展开成正弦级数∑∞=1sin n n nx b .2.设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎪⎪⎩⎪⎪⎨⎧<<=<≤--=ππππx x x x f 0,4,0,0,0,4)(,则下列说法错误的是( ).A )(x f 在),(ππ-上可以展开成傅里叶级数..B )(x f 的傅里叶展式在π=x 处收敛于4π. .C )(x f 的傅里叶展式在0=x 处收敛于0. .D )(x f 的傅里叶系数0=n a .3.设函数)(x f 满足)()(x f x f -=+π,则该函数的傅里叶级数具有性质( ).A 0=n a .B 0=n b .C 022==n n b a .D 01212==--n n b a4.设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎩⎨⎧<≤<<--=ππx x x f 0,4,0,4)(,则下列说法正确的是( ).A )(x f 的傅里叶展式在0=x 处收敛于4..B )(x f 的傅里叶展式在π-=x 处收敛于-4. .C )(x f 的傅里叶展式在π=x 处收敛于4. .D )(x f 的傅里叶展式在π±=x 处均收敛于0.5.将⎩⎨⎧<<-≤<-=42,3,20,1)(x x x x x f 在)4,0(上展开成余弦级数,则下面关说法错误的是( ).A )(x f 的傅里叶展式在2=x 处收敛于-1..B )(x f 的傅里叶展式在0=x 处收敛于1. .C )(x f 的傅里叶展式在4=x 处收敛于1. .D )(x f 的傅里叶展式在3=x 处收敛于1.6. 若将函数x x f =)(在)2,0(内展成正弦级数,则下列说法正确的是( ).A 40=a.B )(x f 的正弦级数展式在2=x 处收敛于2. .C 当)2,0(∈x 时,展成的正弦级数收敛于)(x f 本身. .D )(x f 在)2,0(内不能展成余弦级数 三.判断题1. ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x 是],[ππ-上的正交函数系. ( )2.若)(x f 是以π2为周期的函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数收敛于)(x f 本身. ( )3.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上可以展成傅里叶级数. ( )4.函数)(x f 是在],[ππ-上的周期函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可以展成正弦级数. ( )5.函数)(x f 的傅里叶级数在连续点处收敛于该点的函数值. ( )6.设函数,0(),0,0x x f x x ππ≤≤⎧=⎨-≤<⎩则此函数的傅里叶级数在x π=-处收敛于0.( )7. ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x 是],0[π上的正交函数系. ( ) 8.x x f =)(在)2,0(上不能展成余弦级数. ( )9.2cos )(xx f =在],0[π上不能展成正弦级数. ( )10.若级数()∑∞=++10||||2||n n n b a a 收敛,则级数()∑∞=++10sin cos 2n n n nx b nx a a 在整个数轴上一致收敛. ( ) 四.计算题1.(1)将2)(xx f -=π在]2,0[π上展开成傅里叶级数;(2)利用展开式证明: +-+-=71513114π2.将x x f =)(在)1,1(-上展开成傅里叶级数.3.(1)将x x f =)(在]1,0[上展开成余弦级数; (2)根据展开式求()211.21n n ∞=-∑4.将x e x f =)(在],0[π上展开成正弦级数.5.求⎩⎨⎧<≤<<-=T x x T C x f 0,0,0,)((C 是常数)在),[T T -上的傅里叶展开式.五.证明题1.设)(x f 在],[ππ-上可积或绝对可积,若对],[ππ-∈∀x ,成立)()(x f x f =+π,证明:01212==--n n b a .2.设周期为π2的可积函数)(x f 在],[ππ-的傅里叶系数为n n b a ,,函数)(x g 的傅里叶系数为n n b a ~,~,且)()(x f x g -=,证明:n n n n b b a a ==~,~.3.根据2)1()(-=x x f 在)1,0(的余弦级数展开式证明631211222π=+++ .4.已知帕萨瓦尔等式为∑⎰∞=-++=122202)(2)]([1n n n b a a dx x f πππ,(n n b a ,为)(x f 的傅里叶系数),利用),(,cos )1(431222πππ-∈-+=∑∞=x nx n x n n 证明9031211444π=+++ . 5.已知),(,cos )1(431222πππ-∈-+=∑∞=x nx nx n n,利用逐项积分法证明3x 在),(ππ-的傅里叶级数为x n n n n sin )6()1(21322∑∞=--π第十六章——第十七章一、判断题1、设平面点集{}(,),D x y x y Z =∈,则(0,0)为其内点。
数学分析2部分习题解析(傅里叶级数部分)

数学分析2部分习题解析傅里叶级数部分第3节部分习题1、设f 以2π为周期且具有二阶连续的导数,证明f 的傅里叶级数在(),-∞+∞上一致收敛于f 。
证明由条件知,f 一定是以2π为周期的连续函数且在一个周期区间[],ππ-上按段光滑,所以由收敛定理得,在(),-∞+∞上有()011cos sin ()2n n n a a nx b nx f x ∞=++=∑,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。
由三角级数一致收敛的判别法,下证()0112n n n a a b ∞=++∑收敛即可。
事实上,记0a ',n a ',nb '为导函数()f x '的傅里叶系数,由()f x 与()f x '的傅里叶系数的关系得0a '=,n n a nb '=,n n b na '=-。
所以,()()22211112n n n n n n a b b a a b n n n ⎛⎫''''+=+≤++ ⎪⎝⎭。
又由傅里叶系数满足的贝塞尔不等式得,()()()221nn n a b ∞=''+∑收敛,再注意到211n n∞=∑收敛,所以()0112n n n a a b ∞=++∑收敛,故结论成立。
2、设f 为[],ππ-上的可积函数,证明:若f 的傅里叶级数在[],ππ-上一致收敛于f ,则成立帕塞瓦尔等式:()22220111()d 2n n n f x x a a b πππ∞-==++∑⎰,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。
证明由f 在[],ππ-上可积得,f 在[],ππ-上有界,从而由题设可得()2011()()cos ()sin ()2n n n a f x a f x nx b f x nx f x ∞=++=∑,在[],ππ-上一致成立。
第十五章 傅里叶级数习题课

第十五章 傅里叶级数习题课一 疑难解析与注意事项1.如何求一周期函数的傅立叶级数? 答 一般可按下列步骤进行:1)确定函数的奇偶性,连续点与不连续点;2)根据周期为2π或2l ,是否奇,偶函数,计算相应的傅里叶系数; 3 写出相应的傅立叶级数; 4)应用收敛定理.(1)将()f x 在[,]ππ-上展开成傅里叶级数的步骤: 1)求系数;()dx x f a ⎰-=πππ10; ()⎰-=πππnxdx x f a n cos 1, ()⎰-=πππnxdx x f b n sin 1,2)写展开式()()∑∞=++10sin cos 2n n n nx b nx a a x f ~;3)用收敛定理(2)将()f x 在[0,2]π上展开成傅里叶级数的步骤: 1)求系数;2001()a f x dx ππ=⎰, 201()cos n a f x nxdx ππ=⎰, 201()sin n b f x nxdx ππ=⎰,2)写展开式()()∑∞=++10sin cos 2n n n nx b nx a a x f ~;3)用收敛定理(3)奇函数()f x 在[](),,ππππ--展开成傅里叶级数的步骤: 1)求系数;()010a f x dx πππ-==⎰;()1cos 0n a f x nxdx πππ-==⎰,()()012sin sin n b f x nxdx f x nxdx πππππ-==⎰⎰,2)写展开式()1sin n n f x b nx ∞=∑~;3)用收敛定理()()1,sin 0 n n f x x b nx x πππ∞=⎧∈-⎪=⎨=±⎪⎩∑(4)偶函数()f x 在[](),,ππππ--展开成傅里叶级数的步骤: 1)求系数;()()0012a f x dx f x d πππππ-==⎰⎰;()()012cos cos n a f x nxdx f x nxdx πππππ-==⎰⎰,()1sin 0n b f x nxdx πππ-==⎰,2)写展开式()01cos 2n n a f x a nx ∞=+∑~;3)用收敛定理()[]01cos ,,2n n a a nx f x x ππ∞=+=∈-∑ (5)奇函数()f x 在[](),,l l l l --展开成傅里叶级数的步骤: 1)求系数;()010lla f x dx l -==⎰; ()1cos 0l n l n xa f x dx l lπ-==⎰, ()()012sin sin l l n l n x n xb f x dx f x dx l l l lππ-==⎰⎰,2)写展开式()1sinn n n xf x b lπ∞=∑~; 3)用收敛定理()()1,sin0 n n f x x l l n x b l x l π∞=⎧∈-⎪=⎨=±⎪⎩∑ (6)偶函数()f x 在[](),,l l l l --展开成傅里叶级数的步骤: 1)求系数;()()0012l l l a f x dx f x dx l l -==⎰⎰; ()()012cos cos l l n l n x n xa f x dx f x dx l l l l ππ-==⎰⎰, ()1sin 0l n l n x b f x dx l lπ-==⎰, 2)写展开式()01cos 2n n a n xf x a lπ∞=+∑~;3)用收敛定理()[]01cos ,,2n n a n xa f x x l l lπ∞=+=∈-∑2.如何将函数展开成正弦级数,余弦级数? (1)将()f x 在[]0,π展开成正弦级数的步骤: 1)求系数;()02sin n b f x nxdx ππ=⎰,2)写展开式()1sin n n f x b nx ∞=∑~;3)用收敛定理()()10,sin 0 0,n n f x x b nx x ππ∞=⎧∈⎪=⎨=⎪⎩∑(2)将()f x 在[]0,π展开成余弦级数的步骤: 1)求系数;()002a f x dx ππ=⎰; ()02cos n a f x nxdx ππ=⎰,2)写展开式()01cos 2n n a f x a nx ∞=+∑~;3)用收敛定理()[]01cos ,0,2n n a a nx f x x π∞=+=∈∑ (3)将()f x 在[]0,l 展开成正弦级数的步骤: 1)求系数;()02sin l n n xb f x dx l lπ=⎰, 2)写展开式()1sin n n n xf x b lπ∞=∑~; 3)用收敛定理()()1 0,sin0 0,n n f x x l n x b l x l π∞=⎧∈⎪=⎨=⎪⎩∑ (4)将()f x 在[]0,l 展开成余弦级数的步骤: 1)求系数;()002la f x dx l =⎰; ()02cos l n n xa f x dx l lπ=⎰, 2)写展开式()01cos 2n n a n xf x a lπ∞=+∑~;3)用收敛定理()[]01cos ,0,2n n a n xa f x x l lπ∞=+=∈∑.[][](),(,)()1()(0)(0),(,)()21(0)(0),2f x x l l f x S x f x f x x l l f x f l f l x l⎧⎪∈-⎪⎪=++-∈-⎨⎪⎪-++-=±⎪⎩当为的连续点当为的第一类间断点当 3.如何应用傅立叶级数求数项级数的和?答:选择合适的函数,将其展开为傅立叶级数,然后求傅立叶级数在某个特殊点的值. 二 典型例题1.设(),0,40,0,02x f x x x ππππ⎧-≤<⎪⎪==⎨⎪⎪-<≤⎩,则由收敛定理1)()f x 的傅里叶级数在2x π=-处收敛于 ;2)()f x 的傅里叶级数在2x π=处收敛于 ;3)()f x 的傅里叶级数在0x =处收敛于 ; 4)()f x 的傅里叶级数在x π=-处收敛于 ; 5)()f x 的傅里叶级数在x π=处收敛于 .解 因为1)2x π=-是连续点,收敛于4π;2) 2x π=是连续点,收敛于2π-;3)0x =是间断点,收敛于()()000028f f π++-=-;4) x π=-是端点,收敛于()()0028f f πππ-++-=-;5) x π=是端点,收敛于()()0028f f πππ-++-=-.2.1)将()f x x =在[],ππ-展开成傅里叶级数; 2)将()f x x =在[],ππ-展开成傅里叶级数; 3)将()f x x =在[]0,π展开成余弦级数; 4)将()f x x =在[]0,π展开成正弦级数.解 1)因为()f x x =在[],ππ-上奇,因此00a =,0n a =,()()()0122sin sin sin n b x nx dx x nx dx x nx dx πππππππ-===⎰⎰⎰()()()()()000122cos cos cos 12.n xd nx x nx nx dx n n nπππππ+⎡⎤=-=--⎢⎥⎣⎦-=⎰⎰因此()()()11,12sin 0,n n f x x f x nx nx πππ+∞=-<<⎧-⎪=⎨=±⎪⎩∑.2) 因为()f x x =在[],ππ-上偶,因此0n b =,00122a xdx xdx xdx ππππππππ-====⎰⎰⎰,()()()0122cos cos cos n b x nx dx x nx dx x nx dx πππππππ-===⎰⎰⎰()()()()()00022022sin sin sin 22cos 11nxd nx x nx nx dx n n nx n n ππππππππ⎡⎤==-⎢⎥⎣⎦⎡⎤==--⎣⎦⎰⎰因此()()()21211cos ,2nn f x nx f x x n ππππ∞=⎡⎤+--=-≤≤⎣⎦∑. 3)()0022a f x dx xdx πππππ===⎰⎰;()()20222cos cos 11nn a f x nxdx x nxdx n πππππ⎡⎤===--⎣⎦⎰⎰, ()()()21211cos ,02nn f x nx f x x n πππ∞=⎡⎤+--=≤≤⎣⎦∑. 4)()()112222sin sin sin n n b f x nxdx x nxdx x nxdx nππππππ+-====⎰⎰⎰,()()()11,012sin 0,0,n n f x x f x nx nx ππ+∞=<<⎧-⎪=⎨=⎪⎩∑.3. 将()⎩⎨⎧≤<-≤<=32,321,1x x x x f 展成以2为周期的傅立叶级数,并写出]3,1[上的函数表达式.解 因为区间长度2312l =-= ,因此1l =.(),23)3(3221310=-+==⎰⎰⎰dx x dx dx x f a ()dx x n x dx x n xdx n x f a n ⎰⎰⎰-+==322131cos )3(cos cos πππ32223221)sin (cos 1sin 3sin 1x n x n x n n x n n x n n ππππππππ+-+=.),3,2,1(,])1(1[122 =--=n n n π ()dx x n x dx x n xdx n x f b n ⎰⎰⎰-+==322131sin )3(sin sin πππ32223221)cos (sin 1cos 3cos 1x n x n x n n x n n x n n ππππππππ----= 1(1),(1,2,3,).n n n π=-= ()2211,1231(1)(1)~[cos sin ]3,23412,1,3.nnn x f x n x n x x x n n x ππππ∞=<≤⎧---⎪++=-<<⎨⎪=⎩∑.4. ()2(11)2,f x x x =+-≤≤将函数展成以为周期的傅里叶级数并由此求级数211.n n ∞=∑的和解 因为()2f x x =+为偶函数,则0n b =,因为1l =,因此1002(2)51a x dx =+=⎰,()()1122002112(2)cos()2cos (1,2,)1nn a x n x dx x n xdx n n πππ--=+===⎰⎰ ,()()()2212115cos()2nn f x n x n ππ∞=--+∑22054cos(21)2(21)k k xk ππ∞=+=-+∑ []2,1,1x =+-.当0x =,上式222200541122(21)(21)8k k k k ππ∞∞==⇒=-⇒=++∑∑,又 2222210101111111(21)(2)(21)4n k k k n n k k k n ∞∞∞∞∞======+=+++∑∑∑∑∑ 因此 22221014143(21)386n k nk ππ∞∞====⨯=+∑∑. 5.证明(1)1,cos ,cos 2,...,cos ,...x x nx ; (2)sin ,sin 2,...,sin ,...x x nx 是[0,]π的正交系;(3)1,cos ,sin ,cos 2,sin 2...,cos ,sin ,...x x x x nx nx 不是[0,]π上的正交系. 证明:(1)因为1cos 0(1,2,...)kxdx k π⋅==⎰,00,1cos cos [cos()cos()]2,2m nmx nxdx m n x m n x dx m n πππ≠⎧⎪⋅=++-=⎨=⎪⎩⎰⎰,所以(1)是[0,]π上的正交系.(2)00,1sin sin [cos()cos()]2,2m n mx nxdx m n x m n x dx m n πππ≠⎧⎪⋅=--+=⎨=⎪⎩⎰⎰,所以(2)也是[0,]π上的正交系.(3)1sin 20xdx π⋅=≠⎰,故1,c o s ,sin ,c o s2,sin2...,c o s ,sin ,...x x x x n x n x 不是[0,]π上的正交系.6.设()f x 可积或绝对可积,证明:(1) 如果函数()f x 在[,]ππ-上满足()()f x f x π+=,那么21210m m a b --== (2) 如果函数()f x 在[,]ππ-上满足()()f x f x π+=-,那么220m m a b == 证明:(1)当()f x 在[,]ππ-上满足()()f x f x π+=,且()f x 可积或绝对可积时有,2101()cos(21)11()cos(21)()cos(21)m a f x m xdx f x m xdx f x m xdx πππππππ---=-=-+-⎰⎰⎰在右端第一个积分作变换x y π=+得11()cos(21)()cos(21)f x m xdx f y m ydy ππππ--=--⎰⎰,故210m a -=,同理可证210m b -=.(2)当()f x 在[,]ππ-上满足()()f x f x π+=-,且()f x 可积或绝对可积时有,201()cos(2)11()cos(2)()cos(2)m a f x mx dx f x mx dx f x mx dx πππππππ--==+⎰⎰⎰在右端第一个积分作变换x y π=+得11()cos(2)()cos(2)f x mx dx f y my dy ππππ-=-⎰⎰,故20m a =,同理可证20m b =.7. 如果()()x x ϕφ-=,问()x ϕ与()x φ的傅里叶系数之间有什么关系. 解:函数()x ϕ与()x φ的傅里叶系数分别为1()cos n a x nxdx ππϕπ-=⎰,1()sin nbx nxdx ππϕπ-=⎰,1()cos n A x nxdx ππφπ-=⎰,1()sin n B x nxdx ππφπ-=⎰,由于 001[()cos ()cos ]n a x nxdx x nxdx ππϕϕπ-=+⎰⎰,在上式右端两个积分中作x y -=,并将()()x x ϕφ-=代入,即得001[()cos ()cos ]n a x nxdx x nxdx ππφφπ-=+⎰⎰1()cos nx nxdx A ππφπ-==⎰,同理1()sin n b x nxdx ππϕπ-=⎰=1()sin nx nxdx B ππφπ--=-⎰,因此得出()x ϕ与()x φ的傅里叶系数之间得关系为(1,2,...)n n a A n ==,(1,2,...)n n b B n =-=8.设()f x 在[],ππ-上可积,,n n a b 为()f x 的傅里叶系数,试证:2222011()()2N n n n a a b f x dx πππ-=++≤∑⎰ 证:令01()(cos sin )2NN n n n a S x a nx b nx ==++∑()220()()N f x S x dx f x dx ππππ--≤-=⎡⎤⎣⎦⎰⎰22()()()N N f x S x dx S x dx ππππ---+⎰⎰ 22222220011()2()()22N Nn n n n n n a a f x dx a b a b ππππ-==⎡⎤⎡⎤=-+++++⎢⎥⎢⎥⎣⎦⎣⎦∑∑⎰2222011()()2Nn n n a a b f x dx πππ-=∴++≤∑⎰.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系21, , , , , n x x x L L 线性表出而得.不妨称2{1,,,,,}nx x x L L 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:L 为正交系. 由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数()01cos sin 2n n n a a nx b nx ∞=++∑称为三角级数,其中011,,,,,,n n a a b a b L L 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =L ;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =L ,称为函数()f x 的傅里叶系数,而三角级数()01cos sin 2n n n a a nx b nx ∞=++∑称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑, 其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π]上按 段光滑,则x R ∀∈,有 ()1()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,] ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩L称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰, 所以 11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求. (ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰220011sin sin d 0|x nx nx x n n ππππ=-=⎰,220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2)2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx xn n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰ 222224cos cos d (1)|n x nx nx x n n n ππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰212cos cos d |x nx x nx x n n ππππππ---=+⎰22d(sin )x nx n πππ-=⎰ 2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x π∈其按段光滑,故可展开为傅里叶级数. 由系数公式得222200118()d d 3a f x x x x πππππ===⎰⎰.当1n ≥时,22220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰ 2222200224cos cos d |x nx nx x n n n ππππ=-=⎰,22220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx xn n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰, 所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求.(3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a b n π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n ++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n ca f x nx x f x nx x n πππππ+-===⎰⎰L , 2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰L.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰ c+2 c+2 11()cos d ()cos d f t nt t f x nx x ππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+211()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+L ;(2) 111111357111317π=+--+-+L;(3)11111157111317=-+-+-+L.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,11cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑U 为所求.(1) 取2x π=,则11114357π=-+-+L; (2) 由11114357π=-+-+L得111112391521π=-+-+L ,于是111111341257111317πππ=+=+--+-+L;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭L ,所以11111157111317=-+-+-+L.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰101(1)()cos d n f x nx x ππ++-=⎰ 02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰0011()d ()d f t t f x x πππππ=-+⎰⎰0011(2)d ()d f t t f x x ππππππ=-++⎰⎰000112()d ()d ()d f t t f x x f x x πππππππ=++=⎰⎰⎰. 当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =L 和sin , 1,2,nx n =L 都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx L L , 因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx L L 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx L L , 因为n ∀,201sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx L L 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx L L 不是 [0, ]π上的正交系. 实因:01,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1) (),022xf x x ππ-=<<; 解:(),02x f x x ππ-=<<其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 02xa f x x x πππππ-===⎰⎰.当1n ≥时,220011cos d d(sin )22n x xa nx x nx n ππππππ--==⎰⎰22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011sin d d(cos )22n xxb nx x nx n ππππππ---==⎰⎰220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰, 所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求. (2)()f x x ππ=-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<==⎨⎪≤≤⎪⎩,所以由系数公式得01()d a f x xπππ-=⎰00sin d sin d 22x x x x πππππ-=+=⎰. 当1n ≥时,0sin cos d sin cos d 22n x xa nx x nx x ππ-=+20sin cos d 2(41)x nx x n πππ==--.0sin sin d sin sin d 022n x x b nx x nx x ππ-=+=.所以211()cos 41n f x nxn∞==-,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3) 2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<; 解:(i)由系数公式得2001()d a f x xππ=⎰22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,2201()cos d n a ax bx c nx xππ=++⎰ 2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24an =, 2201()sin d n b ax bx c nx x ππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n n ππ=--,故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23a ax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n an =-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn -=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4) ()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx xn n ππππππ--=-⎰21sh d(cos )x nx n πππ-=⎰ 2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)n na n n ππ=--,所以22sh (1)(1)n n a n ππ=-+.11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰ 2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx xn n ππππππ--=-+⎰121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰ 122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n n b n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑得 221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-=L .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积. 由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =L . 则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos n n n u x n a nx n b nx '≤+n n n a n b ≤+22M n ≤.而 22Mn∑收敛,所以()()cos sin n n n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是 ()01()cos sin 2n n n a F t a nt b nt ∞=++∑:,其中 1()cos d ,n a F t nt t πππ-=⎰ 1()sin d n b F t nt tπππ-=⎰.令x t l π=得 ()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑:. 其中 1()cos ,l n l n x a f x dx l l π-=⎰ 1()sin l n l n x b f x dxl l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数.同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n xa f x x l l π-==⎰, 012()sin d ()sin d l l n l n x n x b f x x f x xl l l l ππ-==⎰⎰. 从而01()sin 2n n a n x f x a l π∞=+∑:其只含正弦项,故称为由此可知,函数(),(0,)f x x l ∈要展开为余弦级数必须作偶延拓.偶延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩%函数(),(0,)f x x l ∈要展 开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩%.二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π);解:函数()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得22002244cos d cos d a x x x x ππππππ-===⎰⎰. 当1n ≥时,222cos cos 2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰202[cos(21)cos(21)]d n x n x xππ=++-⎰220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数. 因12l =,所以由系数公式得()()1112100022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,2222()()1121022[]cos 2d 2[]cos 2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin 2)x n x x x n x n πππ==⎰⎰110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰. ()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰101d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos 2d 2x x ππ-⎛⎫= ⎪⎝⎭⎰ 24311cos 2cos 4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=. 当1n ≥时,24311cos2cos4cos2d 828n a x x nx x ππ⎛⎫=-+⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩.222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.2222(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,2sgn(cos )cos d n a x nx x ππ=⎰202224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰ 4sin 2n n ππ=024(1)21(21)kn kn k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得 31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n x x x π+-⎰21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰ 3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰ 10121214sin sin d sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n xn n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-. 2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.当1n ≥时,2cos d 2n a x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数. 解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==L .02cos sin d 2n x b nx x ππ=⎰ 0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰11cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n x a f x xπ=⎰240211(1)cos d (3)cos d 2424n x n x x x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰ 442222(3)sin sind 44n xn xx x n n ππππ--⎰22208cos 4n xn ππ=42228cos 4n xn ππ+ 2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩ 所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n x n ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++ ⎪⎝⎭L .解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰1120022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==L .2arcsin(sin )sin d n b x nx x ππ=⎰20222sin d ()sin d x nx x x nx xππππππ=+-⎰⎰22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰2cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==L .所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.2()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x f x nx xπππππ=+⎰⎰202()[cos cos()]d f x nx n nx xπππ=--⎰204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下. ()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.由于按段光滑,所以可展开为傅里叶级数,又)x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰2()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰ 202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑ 1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b n n n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n ∞=∑收敛,从而()012n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x , 所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而(),()(),()2(),,m m m m m f x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m mn n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰()2 2220 1()d 2m n n n a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故 ()2222011()d 2n n n a a b f x x πππ∞-=++=∑⎰.3 由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.(1) 22118(21)n n π∞==-∑;(2) 22116n n π∞==∑; (3) 44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑U .由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰,即22118(21)n n π∞==-∑.(2) 取(),(,)f x x x ππ=∈-,由§1习题1 (1)得11sin ()2(1),(,)n n nxf x x n ππ∞+==-∈-∑.由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑. (3) 取2(),[,]f x x x ππ=∈-,由§1习题1 (2)得2221cos 4(1),(,)3n n x x x n πππ∞==+-∈-∑.由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰,故44190n π=∑.。