傅里叶分析之一 傅里叶级数
傅里叶级数和函数公式

傅里叶级数和函数公式
傅里叶级数的研究为我们提供了很多关于现代数学的宝贵资源。
它使数学家们可以利用加法、乘法和函数来表达复杂的数学模型。
这篇文章将介绍傅里叶级数和函数公式,包括傅里叶级数的定义,它的特征,以及函数公式。
**傅里叶级数的定义**
傅里叶级数(Fourier series)是一种代表周期性函数的函数和级数。
它可以描述周期性函数的形状和行为,并用简单的正弦和余弦级数来表示它,它的级数形式为:
a_0 + (a_1*sin(x) + b_1*cos(x)) + (a_2*sin(2x) +
b_2*cos(2x)) + ... + (a_n*sin(nx) + b_n*cos(nx))。
其中a_0表示直流分量,a_n和b_n表示振幅和相位移动,n表示频率。
**傅里叶级数的特征**
傅里叶级数具有三个重要的特点:
1.以用来表示任意周期性函数,并且只需要使用一组正弦和余弦函数。
2.度会随着频率的增加而减小,因此低频信号的振幅比高频信号的振幅大得多。
3.个频率成分都有其独特的相位移动。
**函数公式**
函数公式是傅里叶级数的一种更为一般的表示法。
它用函数公式
来表示傅里叶级数,公式为:
A(t) =(a_n*cos(n*ω*t +_n))
其中A(t)表示时域函数,a_n表示振幅,ω表示角频率,t表示时间,θ_n表示相位移动。
**结论**
傅里叶级数和函数公式是一种用来表示周期性函数的数学工具,它们可以有效地表示周期性函数的形状和行为。
傅里叶级数的研究为我们提供了大量的宝贵知识,使得数学家们能够更好地分析和理解复杂的数学模型。
数学分析课件 傅里叶级数

证 由定理条件, 函数 f 在 [ , ] 上连续且可积. 对 (9)式逐项积分得
π
π
f ( x )dx
π π a0 π dx (an cos nxdx bn sin nxdx ). π π 2 π n 1
由关系式(6)知, 上式右边括号内的积分都等于零. 所以
f ( x t ) f ( x 0) lim f ( x 0), t 0 t f ( x t ) f ( x 0) lim f ( x 0), t 0 t
(13)
前页 后页 返回
(iii) 在补充定义 f 在[a , b]上那些至多有限个不存在 导数的点上的值后 ( 仍记为 f ), f 在[a, b]上可积.
n 1
即
从第十三章§1 习题4知道, 由级数(9)一致收敛,可 得级数(11)也一致收敛. 于是对级数(11)逐项求积, 有
前页 后页 返回
π
π
f ( x )cos kxdx π a0 π cos kxdx (an cos nx cos kxdx π 2 π n 1 bn sin nx cos kxdx ).
π
π
cos nxdx sin nxdx 0,
π
π
(6)
cos mx cos nx d x 0 ( m n ), ππ (7) ππ sin mx sin nxdx 0 (m n), π cos mx sin nxdx 0 . 而(5)中任何一个函数的平方在 [-π, π] 上的积分都
所以
A0 An sin( nx n )
n 1
A0 ( An sin n cos nx An cos n sin nx ).
数学分析课件 傅里叶级数

03
工程学
在工程学中,傅里叶级数可以用于分析和设计各种周期性结构,例如在
机械工程和土木工程等领域中,可以通过傅里叶级数来描述和分析周期
性振动和波动等问题。
02
傅里叶级数的基本性质
三角函数的正交性
三角函数的正交性是指在一周期内,任何两个不同的三角函 数都不相交,即它们的乘积在全周期内的积分值为零。这一 性质在傅里叶级数的展开和重构中起到关键作用,确保了频 谱的纯净性和分离性。
三角函数的周期性使得我们能够将无限长的信号转化为有限长的频谱,从而方便 了信号的分析和处理。
傅里叶级数的收敛性
傅里叶级数的收敛性是指一个信号的傅里叶级数展开在一 定条件下能够无限接近原信号。这一性质保证了傅里叶级 数展开的精度和可靠性,使得我们能够通过有限项的级数 展开来近似表示复杂的信号。
收敛性的判定是数学分析中的重要问题,涉及到级数的收 敛半径、收敛域等概念。在实际应用中,我们需要根据信 号的特性和精度要求来选择合适的收敛域和级数项数,以 保证傅里叶级数展开的准确性。
首先,确定函数的周期和定义域;其次,计算正弦和余弦函数的系数;最后,将得到的系数代入正弦和余弦函数的线 性组合中,得到函数的傅里叶级数表示。
傅里叶级数的表示方法的优缺点
傅里叶级数具有简洁、易计算等优点,能够将复杂的周期函数分解为简单的正弦和余弦函数。然而,傅 里叶级数也存在着一些缺点,例如在非周期函数的情况下,傅里叶级数可能无法得到正确的结果。
图像增强
利用傅里叶级数,可以对图像进行增 强处理,如锐化、降噪等,提高图像 的视觉效果。
数值分析中的傅里叶级数
数值逼近
傅里叶级数可以用于求解某些函数的 数值逼近问题,如求解函数的零点、 极值等。
《傅里叶级数》课件

FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。
傅里叶级数介绍

傅⾥叶级数介绍傅⾥叶变换能将满⾜⼀定条件的某个函数表⽰成三⾓函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅⾥叶变换具有多种不同的变体形式,如连续傅⾥叶变换和离散傅⾥叶变换。
最初傅⾥叶分析是作为热过程的解析分析的⼯具被提出的。
要理解傅⽴叶变换,确实需要⼀定的耐⼼,别⼀下⼦想着傅⽴叶变换是怎么变换的,当然,也需要⼀定的⾼等数学基础,最基本的是级数变换,其中傅⽴叶级数变换是傅⽴叶变换的基础公式。
变换提出让我们先看看为什么会有傅⽴叶变换?傅⽴叶是⼀位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了⼀篇论⽂,运⽤正弦曲线来描述温度分布,论⽂⾥有个在当时具有争议性的决断:任何连续周期信号可以由⼀组适当的正弦曲线组合⽽成。
当时审查这个论⽂的⼈,其中有两位是历史上著名的数学家拉格朗⽇(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论⽂时,拉格朗⽇坚决反对,在近50年的时间⾥,拉格朗⽇坚持认为傅⽴叶的⽅法⽆法表⽰带有棱⾓的信号,如在⽅波中出现⾮连续变化斜率。
法国科学学会屈服于拉格朗⽇的威望,拒绝了傅⽴叶的⼯作,幸运的是,傅⽴叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国⼤⾰命后因会被推上断头台⽽⼀直在逃避。
直到拉格朗⽇死后15年这个论⽂才被发表出来。
谁是对的呢?拉格朗⽇是对的:正弦曲线⽆法组合成⼀个带有棱⾓的信号。
但是,我们可以⽤正弦曲线来⾮常逼近地表⽰它,逼近到两种表⽰⽅法不存在能量差别,基于此,傅⽴叶是对的。
为什么我们要⽤正弦曲线来代替原来的曲线呢?如我们也还可以⽤⽅波或三⾓波来代替呀,分解信号的⽅法是⽆穷的,但分解信号的⽬的是为了更加简单地处理原来的信号。
傅里叶级数

∫πcos nxdx = 0,
π
π
∫πsin nxdx = 0,
π
( n = 1,2,3,L)
0, m ≠ n ∫ πsin mx sin nxdx = π, m = n, 0, m ≠ n ∫ πcos mx cos nxdx = π, m = n,
π
∫π
π
sin mx cos nxdx = 0.
右端级数收敛吗?若收敛是否收敛于 右端级数收敛吗?若收敛是否收敛于f(x)?
f ( x)在 a, b]光滑: f ′( x )在[a , b]连续. [ 光滑: 连续. f ( x)在 a, b]按段光滑: [ 按段光滑:
f ( x )在[a , b]有定义,且至多有有限 个第一类 有定义, 间断点, 间断点, f ′( x )在 [a , b] 除有限个点外有定义且 连续,在这有限个点上 f ′( x ) 左右极限存在. 左右极限存在. 连续,
第, 古今往来,众多数学家一直在寻找用简单函数较好 地近似代替复杂函数的途径,除了理论上的需要外, 地近似代替复杂函数的途径,除了理论上的需要外, 它对实际应用的领域的意义更是不可估量. 它对实际应用的领域的意义更是不可估量. 在微积分发明之前,这个问题一直没有本质上的 在微积分发明之前, 突破. 突破. 熟知的简单函数:幂函数,三角函数. 熟知的简单函数:幂函数,三角函数.
π π
1 π bn = ∫π f ( x)sinnxdx π
( n = 1,2,3,L)
f(x)的傅里叶系数 的傅里叶系数
1 π ) an = π ∫π f ( x)cos nxdx, (n = 0,1,2,L 1 π bn = ∫π f ( x)sinnxdx, (n = 1,2,L) π 1 2π ) an = π ∫0 f ( x)cos nxdx, (n = 0,1,2,L 或 2 bn = 1 π f ( x)sin nxdx, (n = 1,2,L ) ∫0 π
傅里叶级数分析范文

傅里叶级数分析范文在傅里叶级数分析中,我们首先将一个周期为T的函数表示为以下级数形式:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an和bn是系数,n为正整数,ω为基频,ω=2π/T。
分析傅里叶级数的过程包括求解系数a0、an和bn的值。
根据傅里叶级数的公式,可以通过对周期函数f(t)在一个周期内的积分来计算系数的值。
具体而言,可以利用函数的正交性质,将f(t)乘以正弦或余弦函数,再在一个周期内进行积分,即可得到相应系数的值。
在傅里叶级数分析中,还需要考虑函数f(t)的奇偶性。
如果函数f(t)是偶函数,即满足f(t) = f(-t),则所有的bn项都为零,只有an项存在;如果函数f(t)是奇函数,即满足f(t) = -f(-t),则所有的an项都为零,只有bn项存在。
对于一般的周期函数,既包含偶函数分量又包含奇函数分量。
由于傅里叶级数是一个无限项的级数,实际计算中无法计算出所有的项。
通常情况下,只需计算前几个重要的项,即可近似表示原函数。
根据采样定理,选择足够高的采样频率,可以减小近似误差。
傅里叶级数分析的结果对于理解信号频谱特性和滤波器设计非常重要。
通过傅里叶级数,我们可以得到信号的频谱图,了解信号中各个频率分量的强度和相位。
在通信系统中,傅里叶级数分析可以帮助我们设计滤波器来去除不需要的频率分量,实现信号的解调和调制。
总之,傅里叶级数分析是一种重要的信号处理技术,通过将周期函数表示为正弦和余弦函数的无限和,可以获得信号的频谱特性,用于信号处理、图像处理和通信等领域。
傅里叶级数的定理

傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。
它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。
傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。
傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。
a0是直流分量,对应于频率为0的分量。
傅里叶级数的定理是基于正交函数的思想而来。
正交函数是指在某个区间上两两内积为0的函数。
在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。
傅里叶级数的定理在实际应用中具有重要意义。
首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。
其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。
此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。
傅里叶级数的定理具有一些重要的性质。
首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。
其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。
此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。
傅里叶级数的定理虽然强大,但也有一些限制。
首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。
其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。
傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fourier Series
Analysis and Synthesis
Fourier analysis
The process of decomposing a musical instrument sound or any other periodic function into its constituent sine or cosine ves is called Fourier analysis
Linear Operation
Fourier synthesis and analysis based on Linear Operation: Integration and series. Fourier Transform is part of linear systems.
Fourier Series
F ( x ) = a /2 + a 1 cos x + b 1 sin x + a 2 cos 2 x + b 2 sin 2 x + ... + a n cos nx + b n sin nx + ...
Fourier synthesis
Fourier synthesis works by combining a sine wave signal and sine-wave or cosine-wave harmonics (signals at multiples of the lowest, or fundamental, frequency) in certain proportions. F ( x ) = a /2 + a 1 cos x + b 1 sin x + a 2 cos 2 x + b 2 sin 2 x + ... + a n cos nx + b n sin nx + ...
周期性是一种物理属性。 为什么能用数学描述呢?
因为有一种简单的函数能表示周期的性质,利用 这种简单的函数,就可以对周期性进行建模。 sine and cosine
Fourier Series
Trigonometric Function
History of sine and cosine
Using Euler’s Formula
Complex Form
In this final form of the sum, the coefficients cn are complex numbers, and they satisfy
Therefore the sum is real:
T 2m 3 T 2 n 4
T 6 m T 8n T 24 smallest T
Example1:
f (t ) cos1t cos2t
f (t ) f (t T )
Find its period.
cos1t cos2t cos1 (t T ) cos2 (t T )
Periodic Phenomenon & Functions
Periodic Phenomenon
Generally speaking we think about periodic phenomena according to whether they are periodic in time or periodic in space.
Periodic Phenomenon in time
Time For example, you stand at a fixed point in the ocean wash over you with a regular, recurring pattern of crests and troughs. The height of the wave is a periodic function of time.
y
o
A T
t
波具有时间周期(T ) 盯住一点拍电影
periodicity in time is measured by the frequency ν, with dimension 1/sec
(2) Fixed t =to, corresponding to the wave pattern curve (波形曲线) at time to.
sine(正弦)一词始于阿拉伯人雷基奥蒙坦。他 是十五世纪西欧数学界的领导人物,他于1464 年完成的著作《论各种三角形》,1533年开始 发行,这是一本纯三角学的书,使三角学脱离天 文学,独立成为一门数学分科。 cosine(余弦) 及cotangent(余切)为英国人根日尔首先使用, 最早在1620年伦敦出版的他所著的《炮兵测量 学》中出现
Example:
t t f (t ) cos cos 3 4
f (t ) f (t T )
Find its period.
t t 1 1 cos cos cos (t T ) cos (t T ) 3 4 3 4
Fact: cos cos( 2m)
It’s more common to write a general trigonometric sum as:
if we include a constant term (n= 0), as
Notes:
The constant term with the fraction 1/2 is because it simplifies the computation. In electrical engineering the constant term is often referred to as the DC components in “direct current”. The other terms, being periodic, “alternate”, as in AC.
Periodic Phenomenon in space
Wave motion: Temporal and spatial periodicity
come together.
(1) Fixed x= xo, corresponding to the
oscillating curve (振动曲线) of medium element at position xo , i.e. y(t, xo).
f(t)
t
A periodic sequence
T
2T
3T
Question is Solving for these coefficients. A direct approach:
Another idea is needed, and that idea is integrating both sides from 0 to 1.
1T 2m 2T 2n
1 m 2 n
1 must be a 2 rational number
Example2:
f (t ) cos10t cos(10 )t
Is this function a periodic one?
1 10 2 10
Fourier Series
Fourier Series
Introduction
Suppose we have a complicated looking periodic signal f(t). Decompose a periodic input signal into primitive periodic components. Can we?
Fourier Series
Fourier Series and Fourier Transform
Fourier
Fourier Series Almost periodic phenomenon Fourier Transform Non-periodic phenomenon 一些概念上是通用的,一些则不通用
This is important!
One
period, many frequencies.
Idea2: How complicate signal is?
How general a periodic phenomena can this formula express ?
Alternative formula:
The Mathematic Formulation
Any function that satisfies
f (t ) f (t T )
where T is a constant and is called the period of the function.
Why mathematics come?
y
x1 A o
x2
波具有空间周期( )
x 广镜头拍照片
periodicity in space is measured by the wave length λ
λ and v
The frequency and wavelength are related through the equation v = λν where v is the speed of propagation — this is nothing but the wave version of speed = distance/time. Thus the higher the frequency the shorter the wavelength, and the lower the frequency the longer the wavelength.