傅里叶(Fourier)级数的指数形式与傅里叶变换

合集下载

傅里叶级数和傅里叶变换

傅里叶级数和傅里叶变换

第九章 傅里叶级数和傅里叶变换在自然界中广泛地存在各种各样的周期性运动(即相隔一定时间间隔往复循返的过程)。

例如,日月星球的运动,海洋潮汐的运动,电磁波与声波的运动,工厂里机器部件的往复运动,时钟摆的摆动以及人体心脏的跳动等等,都是周期性运动。

为了描述周期性的运动过程,数学上是借助某类函数来描述的。

当然这类函数也要体现出周期性。

这类函数称为周期函数。

在前面几章中,为了研究函数的性质,常常采用分析表示法,将这些函数在某区域展开成幂级数的形式,如泰勒级数或罗朗级数。

但是,这种幂级数形式的展开式是体现不出周期性来的,那么,对于周期性函数应采取怎样的分析表示法呢?这就是本章要讨论的内容。

9.1 周期函数和傅里叶级数9.1.1 周期函数 凡满足以下关系式:)()(x f T x f =+ (T 为常数) (9.1.1) 的函数,都称为周期函数。

周期的定义(1) 满足式(9.1.1)的T 值中的最小正数,即为该函数的周期; (2) 一个常数以任何正数为周期。

9.1.2 基本三角函数系按某一规律确定的函数序列称为函数系。

如下形式的函数系:1,x l πcos,x l πsin,x l π2cos ,x l π2sin ,…,x l k πcos ,x lk πsin ,… (9.1.2)称为基本三角函数系。

所有这些函数具有各自的周期,例如x l k πcos 和x lk πsin 的周期为kl2,但它们的共有周期为l 2(即所有周期的最小公倍数)。

通常这个周期命名为函数系的周期。

所以式(9.1.2)的三角函数系的周期为l 2。

如果我们将基本三角函数系中的函数,任意取n 个组合,则我们可以得到一个较复杂的函数。

例如图9.1(a )是两个函数的组合x lx l x f ππ2sin 21sin )(-=;图9.1(b )是三个函数的组合x lx l x l x f πππ3sin 312sin 21sin )(+-=。

第一节傅立叶级数与傅里叶积分

第一节傅立叶级数与傅里叶积分
Fourier变换是一种对连续时间函数的 积分变换,通过特定形式的积分建立函数之 间的对应关系. 它既能简化计算(如解微分 方程或化卷积为乘积等),又具有明确的物
理意义(从频谱的角度来描述函数的特征),
因而在许多领域被广泛地应用.离散和快速
Fourier变换在计算机时代更是特别重要.
Fourier 变换是在周期函数的 Fourier
6. 离散频谱与频谱图 a n jbn a0 a n jbn , , c n 分析 由 c0 , cn 2 2 2
An 1 2 2 a n bn , 得 c0 A0 , | cn | | c n | 2 2
arg cn arg c n θn , ( n 0) .
1 j t j t (D) f (t ) [ f ( t ) e d t ] e dω 2π 1 在 f (t ) 的间断处,公式的左端应为 [ f ( t 0) f ( t 0)] . 2
级数的基础上发展起来的。在微积分课程
中已经学习了Fourier 级数的有关 内容,
因此本节将先简单地回顾一下 Fourier
级数展开。
§8.1 Fourier 级数与Fourier 积分
一、周期函数的 Fourier 级数 二、非周期函数的 Fourier级数即
Fourier积分
一、周期函数的 Fourier 级数
n 1
A0 a n cos n 0 t bn sin n 0 t
n 1

A0 An cos(n 0 t n ) .
n 1
3. Fourier 级数的三角形式 定理 ( Dirichlet 定理)设 fT (t )是以 T 为周期的实值函数,且在 区间 [T /2 , T /2] 上满足如下条件(称为 Dirichlet 条件): (1) 连续或只有有限个第一类续点处有

傅里叶级数和傅里叶变换

傅里叶级数和傅里叶变换

傅里叶级数和傅里叶变换傅里叶级数和傅里叶变换是数学中常见且重要的概念,它们在信号处理、图像处理、电路分析以及物理学等领域中起着重要的作用。

本文将介绍傅里叶级数和傅里叶变换的基本原理、应用以及它们之间的关系。

一、傅里叶级数傅里叶级数是将一个周期性函数表示为正弦函数和余弦函数的无限级数。

在数学上,一个周期为T的函数f(t)可以表示为傅里叶级数的形式:f(t) = a0/2 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0表示直流分量,an和bn分别表示函数f(t)在一个周期内的cosine分量和sine分量,n为正整数,ω0为角频率,ω0 = 2π/T。

傅里叶级数的基本原理是,任何一个函数都可以用一系列基本的正弦和余弦函数来表示。

通过计算函数f(t)在一个周期内的各种正弦和余弦分量的系数,我们可以将函数f(t)展开成傅里叶级数的形式。

傅里叶级数在信号处理中有广泛的应用,例如音频信号的分析与合成、图像压缩等。

通过对信号进行傅里叶级数分解,我们可以得到信号的频率成分,从而对信号进行频域分析和处理。

二、傅里叶变换傅里叶变换是将一个非周期性函数或一个有限区间内的函数表示为连续频谱的方法。

傅里叶变换可以将一个时域上的函数转换为频域上的函数,从而能够更方便地观察信号在不同频率上的分量。

函数f(t)的傅里叶变换定义为:F(ω) = ∫f(t) * exp(-jωt) dt其中,F(ω)表示函数f(t)的频域表示,ω为频率。

傅里叶变换将函数f(t)从时域转换到频域,提供了频域上对信号进行分析和处理的方法。

傅里叶变换在信号处理中有广泛的应用,例如频率滤波、信号去噪、图像处理等。

通过对信号进行傅里叶变换,我们可以将信号表示为一系列复指数函数的线性组合,从而得到信号的频谱信息。

三、傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换之间存在着密切的关系。

事实上,傅里叶级数可以看作是傅里叶变换的一种特殊形式,即周期为T的函数的傅里叶级数可以看作是傅里叶变换在频率上的离散表示。

傅里叶级数与傅里叶变换关系与应用

傅里叶级数与傅里叶变换关系与应用

论文题目傅里叶级数与傅里叶变换的关系与应用目录摘要: 0关键词 0Abstract 01绪论 (1)2傅里叶级数的概念 (1)2.1周期函数 (2)2.2傅里叶级数的定义 (2)3 傅里叶变换的概念及性质 (10)3.1傅里叶变换的概念 (10)3.2傅立叶变换的性质 (11)4傅里叶变换与傅里叶级数之间的区别与联系 (12)5傅里叶级数和傅里叶变换的应用 (12)5.1傅里叶级数的应用 (12)5.2傅里叶变换的应用 (13)参考文献 (15)傅里叶级数与傅里叶变换的关系与应用摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。

除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。

很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。

在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。

傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。

关键词:傅里叶级数;傅里叶变换;周期性Fourier series And Fourier TransformsAbstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms.Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications.Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features.Key words: Fourier series; Fourier Transform; Periodic1绪论傅里叶级数是法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出来的,从而极大的推动了偏微分方程理论的发展,在数学物理以及工程中都具有重要的应用。

傅里叶变换及其应用

傅里叶变换及其应用

傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种将一个函数(或信号)从时域(时间域)转换为频域的数学技术。

它是由法国数学家傅里叶(Jean-Baptiste Joseph Fourier)提出的,因此得名。

傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用,并且为这些领域的发展做出了重大贡献。

一、傅里叶变换的定义和性质傅里叶变换可以将一个连续函数表示为正弦和余弦的加权和,它的数学公式如下:F(ω) = ∫[f(t) * e^(-iωt)] dt其中,F(ω)表示频域上的函数,f(t)表示时域上的函数,e^(-iωt)是复指数函数。

傅里叶变换有一些重要的性质,如线性性、时移性、频移性、对称性等。

这些性质使得傅里叶变换成为一种非常有用的工具,在信号处理中广泛应用。

二、傅里叶级数与傅里叶变换的关系傅里叶级数是傅里叶变换的一种特殊形式,主要用于分析周期性信号。

傅里叶级数可以将一个周期为T的函数展开成正弦和余弦函数的和。

而傅里叶变换则适用于非周期性信号,它可以将一个非周期性函数变换为连续的频谱。

傅里叶级数和傅里叶变换之间存在着密切的关系,它们之间可以相互转换。

傅里叶级数展开的周期函数可以通过将周期延拓到无穷大,得到其对应的傅里叶变换。

而傅里叶变换可以通过将频谱周期化,得到其对应的傅里叶级数。

三、傅里叶变换的应用1. 信号处理傅里叶变换在信号处理中有着重要的应用。

通过将信号从时域转换到频域,我们可以分析信号的频谱特性,如频率成分、幅度、相位等。

这对于音频、图像、视频等信号的处理非常有帮助,例如音频信号的降噪、图像的去噪、视频的压缩等。

2. 图像处理傅里叶变换在图像处理中也有广泛的应用。

通过对图像进行傅里叶变换,可以将图像从时域转换为频域,进而进行频域滤波和频域增强等操作。

这些操作可以实现图像的模糊处理、边缘检测、纹理分析等。

3. 通信在通信领域中,傅里叶变换是无线通信、调制解调、信道估计等技术的基础。

复变函数第1节 傅氏积分,傅氏变换

复变函数第1节 傅氏积分,傅氏变换

解. 由Fourier变换的定义
F (w) F [ f (t)] f (t) e-iw td t -
1 e-iw t d t e-iwt 1 2sinw
-1
-iw -1
w
再求F(w)的Fourier逆变换即得 f(t)的积分表达式,
f (t) F -1[F (w)] 1 F (w) eiwtd w
1
1/2
t
二、单位脉冲函数及其傅氏变换
在物理学和工程技术中,除了连续分布量之外, 还有集中作用在一点的量. 例如,点电荷、点热源、 质点、单位脉冲等. 下面分析在原点处的单位脉冲.
设矩形电流脉冲:
(t
)
1
/
0
0t
其它
- (t)dt 1
(t)
1/
O
t
lim
0
(
t
)
0
t 0 t 0
引进狄拉克(Dirac)的函数,
i
-
f
( ) sin w(t
-
)d
dw
1
2p
-
-
f
(
)
cos w (t
-
)
d
d
w
(1.5)

f (t) 1
2p
-
-
f
(
)
cos w (t
-
)
d
d
w
(1.5)
可得
f (t) 1
p
0
-
f ( ) cosw(t
-
)
d
d
w
(1.6)
傅氏积分公式的三角形式
-
)
d
d

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。

老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。

(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。

所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。

至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。

但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。

这样的例子太多了,也许几年后你都没有再打开这个页面。

无论如何,耐下心,读下去。

这篇文章要比读课本要轻松、开心得多……一、嘛叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。

这种以时间作为参照来观察动态世界的方法我们称其为时域分析。

而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。

但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。

先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢?这是我们对音乐最普遍的理解,一个随着时间变化的震动。

但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:好的!下课,同学们再见。

第4(5)章 傅里叶级数和变换

第4(5)章  傅里叶级数和变换

t0

2 2
f (t ) cos( n1t )dt

2 T1



2
E cos( n1t )dt

4 T1

0
E cos( n1t )dt

2
4E 1 sin n1t T1 n1

0
不 变
2E n an sin n T1
n sin 2E n T1 n n T1 T1 2 E n Sa ( ) T1 T1
§4.1 引言 信号与系统的时域分析→变换域分析(频域分析)
第四章 连续系统的频域分析P116
任一周期信号都可以用三角函数的线性组合来表示
1822年,法国数学家傅里叶提出;
Poisson、Gauss等将其应用到电学中;
20世纪后,谐振电路、滤波器、正弦振荡器等为傅立 叶分析的应用开辟了广阔的前景 周期信号——傅里叶级数 非周期信号——傅里叶变换
T 2 T 2 T 2 T 2
(3) 半波重迭信号 fT(t)=f(t±T/2)
f (t )
-T/2
T/2
t
半波重叠周期信号只含有正弦与余弦 的偶次谐波分量,而无奇次谐波分量。
(4) 半波镜像信号 fT(t)=f(t±T/2)
f (t )
T/2 0 T
t
半波镜像周期信号只含有正弦与余弦的奇 次谐波分量,而无直流分量与偶次谐波分量。
④ t =±π,±2π,…±nπ;Sa(t)=0
正弦分量的幅度: bn
2 T1

t 0 T1

2 2
t0
f (t ) sin( n1t )dt

2 T1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

傅里叶(Fourier )级数的指数形式与傅里叶变换
专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。

在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。

通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。

这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。

所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。

而傅里叶变换的理论基础是傅里叶积分定理。

傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。

不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。

因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。

我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。

傅里叶级数的指数形式
一个以T 为周期的函数)(t f ,在]2
,2[T
T 上满足狄里克莱条件:1o
)(t f 连续或只有有限个第一类间断点;2o
只有有限个极值点。

那么)(t f 在]2
,2[T
T -
上就可以展成傅里叶级数。

在连续点处 ∑∞
=++=1
)sin cos (2)(n n n t n b t n a a t f ωω, (1)
其中 T
πω2=
, ),2,1,0(,cos )(2
22Λ==⎰-n dt t n t f T a T
T n ω, (2)
),3,2,1(,sin )(2
22
Λ==⎰-n dt t n t f T b T
T n ω, (3)
根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为
∑∞=--⎥⎦
⎤⎢⎣⎡-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω
∑∞=-⎥⎦

⎢⎣⎡++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令
dt t f T c T
T ⎰-=22
0)(1
Λ,3,2,1,)(1
]sin )[cos (1
sin )(1cos )(1222
2222
22==-=-=-=⎰⎰⎰⎰-----n dt e t f T dt t n j t n t f T dt
t n t f T j dt t n t f T jb a c T
T t jn T
T T
T T T n n n ωωωωω
Λ,3,2,1,)(1
22
==⎰--n dt e t f T c T
T t jn n
ω 综合n n c c c -,,0,可合并成一个式子
Λ,2,1,0,)(1
22
±±==⎰--n dt e t f T c T
T t jn n ω, (5)
若令Λ,2,1,0,±±==n n n ωω,则(1)式可写为
∑∑+∞
-∞
=∞
=--=
++=n t
j n
n t
j n t
j n n n n e c e
c e
c c t f ω
ωω10)()(, (6)
这就是傅里叶(Fourier)级数的指数形式。

或写成
∑⎰+∞-∞=--⎥⎦
⎤⎢⎣⎡=n t j T
T j n n e d e f T t f ωτωττ2
2
)(1)(。

(7)
傅里叶积分定理
因为任何一个非周期函数)(t f 都可以看成是由某个周期函数)(t f T 当+∞→T 时转化而来的,即)()(lim t f t f T T =+∞
→。

于是有
∑⎰+∞-∞=--+∞→⎥⎦
⎤⎢⎣⎡=n t j T
T j T T n n e d e f T t f ωτ
ωττ22)(1lim )(。

可以证明(详细过程可参阅文[46]),当+∞→T 时,有
ωττπ
ωωτd e d e f t f t j j ⎰⎰∞
+∞-∞+∞--⎥⎦
⎤⎢⎣⎡=
)(21
)(, (8) 公式(8)称为傅里叶积分公式。

从而得到一个非周期函数可用傅里叶积分公式表示的傅里叶积分定理。

傅里叶变换
根据傅里叶积分定理,设
dt e t f F t j ⎰
+∞∞
--=ωω)()(, (9)

ωωπ
ωd e F t f t j ⎰

+∞
-=
)(21)(, (10)
从上两式可以看出,)(t f 和)(ωF 通过指定的积分运算可以相互表达。

(9)式叫做)(t f 的傅里叶变换,记为
=)(ωF F )]([t f .
)(ωF 叫做)(t f 的象函数,(10)式叫做)(ωF 的傅里叶逆变换,记为
)(t f = F -1
)]([ωF .
)(t f 叫做)(ωF 的原象函数。

(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。

相关文档
最新文档