2018年湖南省郴州市中考数学试卷

合集下载

2018年湖南省郴州市中考数学试卷及答案

2018年湖南省郴州市中考数学试卷及答案

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前湖南省郴州市2018年初中学业水平考试数学 ...................................................................... 1 湖南省郴州市2018年初中学业水平考试数学答案解析 (4)湖南省郴州市2018年初中学业水平考试数学(本试卷满分130分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列实数:3,0,12,0.35,其中最小的实数是( )A .3B .0C.D .0.352.郴州市人民政府提出:在2 018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125 000( ) A .51.2510⨯ B .60.12510⨯ C .412.510⨯D .61.2510⨯ 3.下列运算正确的是( )A .326 a a a =⋅B .221a a -=-C.-D .()()2224a a a +-=+4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a b ( ) A .24∠=∠ B .14180∠+∠=︒ C .54∠=∠D .13∠=∠5.如图是由四个相同的小正方体搭成的立体图形,它的主视图是( )ABCD6.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( ) A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市7.如图,60AOB ∠=︒,以点O 为圆心,以任意长为半径作弧交OA ,OB 于C ,D 两点;分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为 ( ) A .6B .2C .3D.8.如图,A ,B 是反比例函数4y x=在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则OAB △的面积是( ) A .4B .3C .2D .1第Ⅱ卷(非选择题共106分)二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.计算:(2=__________.10.因式分解:3222a a b ab +-=__________.11.一个正多边形的每个外角为60︒,那么这个正多边形的内角和是__________. 12.在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是__________. 13.已知关于x 的一元二次方程260x kx +-=有一个根为3-,则方程的另一个根为__________.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)14.则这个厂生产的瓷砖是合格品的概率估计值是__________.(精确到0.01) 15.如图,圆锥的母线长为10 cm ,高为8 cm ,则该圆锥的侧面展开图(扇形)的弧长为__________cm .(结果用π表示)16.如图,在平面直角坐标系中,菱形OABC 的一个顶点在原点O 处,且60AOC ∠=︒,A 点的坐标是()0,4,则直线AC 的表达式是__________.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分6分)计算1201812sin4|521--︒+-(-)-.18.(本小题满分6分)解不等式组:()3221 423 2 x x x x ⎧+-⎪⎨-≤-⎪⎩>①②并把解集在数轴上表示出来.19.(本小题满分6分)如图,在ABCD 中,作对角线BD 的垂直平分线EF ,垂足为O ,分别交AD ,BC 于E ,F ,连接BE ,DF .求证:四边形BFDE 是菱形.20.(本小题满分8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果(1)这次随机抽取的献血者人数为__________人,m=__________; (2)补全上表中的数据;(3)若这次活动中该市有3 000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A 型的概率是多少?并估计这3 000人中大约有多少人是A 型血?21.(本小题满分8分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A 、B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B种10件,共需280元. (1)A 、B 两种奖品每件各多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件? 22.(本小题满分8分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD ,小亮通过操控器指令无人机测得桥头B ,C 的俯角分别为60EAB ∠=︒,30EAC ∠=︒,且D ,B ,C 在同一水平线上.已知桥30BC =米,求无人机飞行的高度AD (精确到0.01米.参考数1.414≈ 1.732)23.(本小题满分8分) 已知BC 是O 的直径,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,数学试卷 第5页(共16页) 数学试卷 第6页(共16页)30AEC ∠=︒.(1)求证:直线AD 是O 的切线;(2)若AE BC ⊥,垂足为M ,O 的半径为4,求AE 的长.24.(本小题满分8分)参照学习函数的过程与方法,探究函数()20x y x x-=≠的图象与性质. 因为221x y x x -==-,即21y x =-+,所以我们对比函数2y x=-来探究.描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y x=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当0x <时,y 随x 的增大而__________;(填“增大”或“减小”) ②2x y x -=的图象是由2y x=-的图象向________平移________个单位而得到;③图象关于点__________中心对称.(填点的坐标)(3)设()11,A x y ,()22,B x y 是函数2x y x -=的图象上的两点,且120x x +=,试求123y y ++的值.25.(本小题满分10分)如图1,已知抛物线2y x bx c =-++与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由. (3)如图2,连接BC ,PB ,PC ,设PBC △的面积为S . ①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.26.(本小题满分12分)在矩形ABCD 中,AD AB >,点P 是CD 边上的任意一点(不含C ,D 两端点),过点P 作PF BC ∥,交对角线BD 于点F .(1)如图1,将PDF △沿对角线BD 翻折得到QDF △,QF 交AD 于点E . 求证:DEF △是等腰三角形;(2)如图2,将PDF △绕点D 逆时针方向旋转得到''P DF △,连接'P C ,'F B .设旋转角为()0180αα︒︒<<.①若0BDC α︒∠<<,即'DF 在BDC ∠的内部时,求证:''DP C DF B △∽△. ②如图3,若点P 是CD 的中点,'DF B △能否为直角三角形?如果能,试求出此时tan 'DBF ∠的值,如果不能,请说明理由.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

湖南省郴州市2018年中考数学试题(word版,无答案)

湖南省郴州市2018年中考数学试题(word版,无答案)

2018年郴州市初中学业水平考试试卷数 学 (试题卷)第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数:3,0,12,2-,0.35,其中最小.的实数是( ) A .3 B .0 C .2- D .0.352.郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000( )A .51.2510⨯ B .60.12510⨯ C .412.510⨯ D .61.2510⨯ 3.下列运算正确的是( )A .326a a a ⋅=B .221aa-=-C .33233-=-D .()()2224a a a +-=+ 4.如图,直线a ,b 被直线c 所截,下列条件中,不能..判定//a b ( )A .24∠=∠B .14180∠+∠= C.54∠=∠ D .13∠=∠ 5.如图是由四个相同的小正方体搭成的立体图形,它的主视图是( )A .B . C. D .6.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确...的是( )A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市7.如图,60AOB ∠=,以点O 为圆心,以任意长为半径作弧交OA ,OB 于C ,D 两点;分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A .6B .2 C.3 D .33 8.如图,A ,B 是反比例函数4y x=在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则OAB △的面积是( )A .4B .3 C.2 D .1第Ⅱ卷(共106分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.计算:()23-= .10.因式分解:3222a a b ab -+= .11.一个正多边形的每个外角为60,那么这个正多边形的内角和是 .12.在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是 .13.已知关于x 的一元二次方程260x kx +-=有一个根为3-,则方程的另一个根为 .14.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000 合格品数m 96 282 382 570 949 1906 2850 合格品频率m n0.9600.9400.9550.9500.9490.9530.950则这个厂生产的瓷砖是合格品的概率估计值是 .(精确到0.01)15.如图,圆锥的母线长为10cm ,高为8cm ,则该圆锥的侧面展开图(扇形)的弧长为 cm .(结果用π表示)16.如图,在平面直角坐标系中,菱形OABC 的一个顶点在原点O 处,且60AOC ∠=,A 点的坐标是()0,4,则直线AC 的表达式是 .三、解答题 (本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17. 计算()20181122sin 4521---+--.18. 解不等式组:()3221,4232x x x x +>-⎧⎪⎨-≤-⎪⎩①②并把解集在数轴上表示出来.19. 如图,在ABCD Y 中,作对角线BD 的垂直平分线EF ,垂足为O ,分别交AD ,BC 于E ,F ,连接BE ,DF .求证:四边形BFDE 是菱形.20. 6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 ABABO人数105(1)这次随机抽取的献血者人数为 人,m = ; (2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答: 从献血者人群中任抽取一人,其血型是A 型的概率是多少? 并估计这3000人中大约有多少人是A 型血?21. 郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A 、B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元. (1)A 、B 两种奖品每件各多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件? 22.小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD ,小亮通过操控器指令无人机测得桥头B ,C 的俯角分别为60EAB ∠=,30EAC ∠=,且D ,B ,C 在同一水平线上.已知桥30BC =米,求无人机飞行的高度AD .(精确到0.01米.参考数据:2 1.414≈,3 1.732≈)23.已知BC 是O 的直径,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,30AEC ∠=. (1)求证:直线AD 是O 的切线;(2)若AE BC ⊥,垂足为M ,O 的半径为4,求AE 的长.24.参照学习函数的过程与方法,探究函数()20x y x x-=≠的图象与性质. 因为221x y x x -==-,即21y x =-+,所以我们对比函数2y x=-来探究. 列表:x… -4 -3 -2 -1 12-121 -234 … 2y x =-… 12 23 1 2 4 -4 -1 1 23-12-… 2x y x -=…32 53235-3-11312…描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以2x y x-=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来; (2)观察图象并分析表格,回答下列问题:①当0x <时,y 随x 的增大而 ;(填“增大”或“减小”) ②2x y x -=的图象是由2y x=-的图象向 平移 个单位而得到; ③图象关于点 中心对称.(填点的坐标) (3)设()11,A x y ,()22,B x y 是函数2x y x-=的图象上的两点,且120x x -=,试求123y y ++的值. 25.如图1,已知抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t . (1)求抛物线的表达式;(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由. (3)如图2,连接BC ,PB ,PC ,设PBC △的面积为S . ①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.26.在矩形ABCD 中,AD AB >,点P 是CD 边上的任意一点(不含C ,D 两端点),过点P 作//PF BC ,交对角线BD 于点F .(1)如图1,将PDF △沿对角线BD 翻折得到QDF △,QF 交AD 于点E . 求证:DEF △是等腰三角形;(2)如图2,将PDF △绕点D 逆时针方向旋转得到P DF ''△,连接P C ',F B '.设旋转角为()0180αα<<.①若0BDC α<<∠,即DF '在BDC ∠的内部时, 求证:DP C DF B ''∽△△.②如图3,若点P 是CD 的中点,DF B '∠能否为直角三角形?如果能,试求出此时tan DBF '∠的值,如果不能,请说明理由.。

湖南省郴州市2018年中考数学真题试题(含解析)

湖南省郴州市2018年中考数学真题试题(含解析)

湖南省郴州市2018年中考数学真题试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C.D.0.352.(3.00分)郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000()A.1.25×105B.0.125×106C.12.5×104D.1.25×1063.(3.00分)下列运算正确的是()A.a3•a2=a6B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+44.(3.00分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠35.(3.00分)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.6.(3.00分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市7.(3.00分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D 两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.8.(3.00分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3.00分)计算:= .10.(3.00分)因式分解:a3﹣2a2b+ab2= .11.(3.00分)一个正多边形的每个外角为60°,那么这个正多边形的内角和是.12.(3.00分)在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是.13.(3.00分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为.14.(3.00分)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000合格品数m 96 282 382 570 949 1906 2850合格品频率0.960 0.940 0.955 0.950 0.949 0.953 0.950则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)15.(3.00分)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)16.(3.00分)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17.(6.00分)计算|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018.18.(6.00分)解不等式组:并把解集在数轴上表示出来.19.(6.00分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.20.(8.00分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21.(8.00分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A 种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?22.(8.00分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)23.(8.00分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.24.(10.00分)参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:x …﹣4 ﹣3 ﹣2 ﹣1 ﹣ 1 2 3 4 …y=﹣… 1 2 4 ﹣4 ﹣1 1 ﹣﹣…y=… 2 3 5 ﹣3 ﹣1 0 …描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.25.(10.00分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.26.(12.00分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C.D.0.35【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣<0<0.35<<3,所以最小的实数是﹣.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3.00分)郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000()A.1.25×105B.0.125×106C.12.5×104D.1.25×106【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:125000=1.25×105,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3.00分)下列运算正确的是()A.a3•a2=a6B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法则、平方差公式分别计算得出答案.【解答】解:A、a3•a2=a5,故此选项错误;B、a﹣2=,故此选项错误;C、3﹣2=,故此选项正确;D、(a+2)(a﹣2)=a2﹣4,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.(3.00分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠3【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【解答】解:由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.5.(3.00分)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.【分析】找到几何体的上面看所得到的图形即可.【解答】解:从几何体的上面看可得,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.6.(3.00分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【解答】解:A、甲超市的利润逐月减少,此选项正确;B、乙超市的利润在1月至4月间逐月增加,此选项正确;C、8月份两家超市利润相同,此选项正确;D、乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.【点评】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.7.(3.00分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D 两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.【分析】直接利用角平分线的作法得出OP是∠AOB的角平分线,再利用直角三角形的性质得出答案.【解答】解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.【点评】此题主要考查了基本作图以及含30度角的直角三角形,正确得出OP是∠AOB的角平分线是解题关键.8.(3.00分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S△AOB=3.【解答】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故选:B.【点评】本题考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3.00分)计算:= 3 .【分析】原式利用平方根的定义化简即可得到结果.【解答】解:原式=3.故答案为:3【点评】此题考查了二次根式的乘除法,熟练掌握平方根的定义是解本题的关键.10.(3.00分)因式分解:a3﹣2a2b+ab2= a(a﹣b)2.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣2ab+b2)=a(a﹣b)2.故答案为:a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3.00分)一个正多边形的每个外角为60°,那么这个正多边形的内角和是720°.【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后根据内角和公式求解.【解答】解:这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°.故答案为720°.【点评】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.12.(3.00分)在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是8 .【分析】根据众数的定义即可判断.【解答】解:这组数据8出现的次数最多,所以众数为8,故答案为8.【点评】本题考查众数的定义,记住在一组数据中次数出现最多的数是这组数据的众数.13.(3.00分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为 2 .【分析】根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【解答】解:设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=2,故答案为:2.【点评】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.14.(3.00分)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000合格品数m 96 282 382 570 949 1906 2850合格品频率0.960 0.940 0.955 0.950 0.949 0.953 0.950则这个厂生产的瓷砖是合格品的概率估计值是0.95 .(精确到0.01)【分析】根据表格中实验的频率,然后根据频率即可估计概率.【解答】解:由击中靶心频率都在0.95上下波动,所以这个厂生产的瓷砖是合格品的概率估计值是0.95,故答案为:0.95.【点评】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.15.(3.00分)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为12πcm.(结果用π表示)【分析】根据圆锥的展开图为扇形,结合圆周长公式的求解.【解答】解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为:12π.【点评】此题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.16.(3.00分)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是y=﹣x+4 .【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17.(6.00分)计算|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018=﹣1﹣2×+0.5﹣1=﹣1.5【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6.00分)解不等式组:并把解集在数轴上表示出来.【分析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6.00分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.【解答】证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.【点评】此题主要考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.20.(8.00分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数12 10 5 23(1)这次随机抽取的献血者人数为50 人,m= 20 ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,3000×=720,估计这3000人中大约有720人是A型血.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了统计图.21.(8.00分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A 种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,找出关于a的一元一次不等式.22.(8.00分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)【分析】由∠EAB=60°、∠EAC=30°可得出∠CAD=60°、∠BAD=30°,进而可得出CD=AD、BD=AD,再结合BC=30即可求出AD的长度.【解答】解:∵∠EAB=60°,∠EAC=30°,∴∠CAD=60°,∠BAD=30°,∴CD=AD•tan∠CAD=AD,BD=A D•tan∠BAD=AD,∴BC=CD﹣BD=AD=30,∴AD=15≈25.98.【点评】本题考查了解直角三角形的应用中的仰角俯角问题,通过解直角三角形找出CD=AD、BD=AD是解题的关键.23.(8.00分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.【分析】(1)先求出∠ABC=30°,进而求出∠BAD=120°,即可求出∠OAB=30°,结论得证;(2)先求出∠AOC=60°,用三角函数求出AM,再用垂径定理即可得出结论.【解答】解:(1)如图,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,连接OA,∴OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)连接OA,∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.【点评】此题主要考查了等腰三角形的性质,垂径定理,切线的判定,锐角三角函数,三角形内角和定理,圆周角定理,求出∠AOC=60°是解本题的关键.24.(10.00分)参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:x …﹣4 ﹣3 ﹣2 ﹣1 ﹣ 1 2 3 4 …y=﹣… 1 2 4 ﹣4 ﹣1 1 ﹣﹣…y=… 2 3 5 ﹣3 ﹣1 0 …描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而增大;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向上平移 1 个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【分析】(1)用光滑曲线顺次连接即可;(2)利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题;【解答】解:(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)故答案为增大,上,1,(0,1)(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点评】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(10.00分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t ≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC 的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).【点评】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.26.(12.00分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【解答】解:(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形,(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴,∴△DP'C∽△DF'B②当∠F′DB=90°时,如图所示,。

2018年湖南省郴州市中考数学试卷及答案解析7

2018年湖南省郴州市中考数学试卷及答案解析7

2018年湖南省郴州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C.D.0.352.(3.00分)郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000()A.1.25×105B.0.125×106C.12.5×104D.1.25×1063.(3.00分)下列运算正确的是()A.a3•a2=a6 B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4 4.(3.00分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠35.(3.00分)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.6.(3.00分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市7.(3.00分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.8.(3.00分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3.00分)计算:=.10.(3.00分)因式分解:a3﹣2a2b+ab2=.11.(3.00分)一个正多边形的每个外角为60°,那么这个正多边形的内角和是.12.(3.00分)在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是.13.(3.00分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为.14.(3.00分)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n100300400600100020003000合格品数m9628238257094919062850合格品频率0.9600.9400.9550.9500.9490.9530.950则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)15.(3.00分)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)16.(3.00分)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17.(6.00分)计算|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018.18.(6.00分)解不等式组:并把解集在数轴上表示出来.19.(6.00分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.20.(8.00分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数105(1)这次随机抽取的献血者人数为人,m=;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21.(8.00分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?22.(8.00分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)23.(8.00分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.24.(10.00分)参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:x…﹣4﹣3﹣2﹣1﹣1234…y=﹣…124﹣4﹣11﹣﹣…y=…235﹣3﹣10…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.25.(10.00分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P 的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.26.(12.00分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.2018年湖南省郴州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C.D.0.35【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣<0<0.35<<3,所以最小的实数是﹣.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3.00分)郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000()A.1.25×105B.0.125×106C.12.5×104D.1.25×106【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:125000=1.25×105,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3.00分)下列运算正确的是()A.a3•a2=a6 B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法则、平方差公式分别计算得出答案.【解答】解:A、a3•a2=a5,故此选项错误;B、a﹣2=,故此选项错误;C、3﹣2=,故此选项正确;D、(a+2)(a﹣2)=a2﹣4,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.(3.00分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠3【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【解答】解:由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.5.(3.00分)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.【分析】找到几何体的上面看所得到的图形即可.【解答】解:从几何体的上面看可得,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.6.(3.00分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【解答】解:A、甲超市的利润逐月减少,此选项正确;B、乙超市的利润在1月至4月间逐月增加,此选项正确;C、8月份两家超市利润相同,此选项正确;D、乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.【点评】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.7.(3.00分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.【分析】直接利用角平分线的作法得出OP是∠AOB的角平分线,再利用直角三角形的性质得出答案.【解答】解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.【点评】此题主要考查了基本作图以及含30度角的直角三角形,正确得出OP 是∠AOB的角平分线是解题关键.8.(3.00分)如图,A ,B 是反比例函数y=在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =(BD +AC )•CD=(1+2)×2=3,从而得出S △AOB =3.【解答】解:∵A ,B 是反比例函数y=在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1).如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =×4=2. ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =(BD +AC )•CD=(1+2)×2=3,∴S △AOB =3.故选:B .【点评】本题考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3.00分)计算:=3.【分析】原式利用平方根的定义化简即可得到结果.【解答】解:原式=3.故答案为:3【点评】此题考查了二次根式的乘除法,熟练掌握平方根的定义是解本题的关键.10.(3.00分)因式分解:a3﹣2a2b+ab2=a(a﹣b)2.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣2ab+b2)=a(a﹣b)2.故答案为:a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3.00分)一个正多边形的每个外角为60°,那么这个正多边形的内角和是720°.【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后根据内角和公式求解.【解答】解:这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°.故答案为720°.【点评】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.12.(3.00分)在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是8.【分析】根据众数的定义即可判断.【解答】解:这组数据8出现的次数最多,所以众数为8,故答案为8.【点评】本题考查众数的定义,记住在一组数据中次数出现最多的数是这组数据的众数.13.(3.00分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为2.【分析】根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【解答】解:设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=2,故答案为:2.【点评】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.14.(3.00分)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n100300400600100020003000合格品数m9628238257094919062850合格品频率0.9600.9400.9550.9500.9490.9530.950则这个厂生产的瓷砖是合格品的概率估计值是0.95.(精确到0.01)【分析】根据表格中实验的频率,然后根据频率即可估计概率.【解答】解:由击中靶心频率都在0.95上下波动,所以这个厂生产的瓷砖是合格品的概率估计值是0.95,故答案为:0.95.【点评】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.15.(3.00分)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为12πcm.(结果用π表示)【分析】根据圆锥的展开图为扇形,结合圆周长公式的求解.【解答】解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为:12π.【点评】此题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.16.(3.00分)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是y=﹣x+4.【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C 点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17.(6.00分)计算|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018=﹣1﹣2×+0.5﹣1=﹣1.5【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6.00分)解不等式组:并把解集在数轴上表示出来.【分析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6.00分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD 是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE 为菱形.【解答】证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.【点评】此题主要考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.20.(8.00分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数1210523(1)这次随机抽取的献血者人数为50人,m=20;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,3000×=720,估计这3000人中大约有720人是A型血.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了统计图.21.(8.00分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,找出关于a的一元一次不等式.22.(8.00分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)【分析】由∠EAB=60°、∠EAC=30°可得出∠CAD=60°、∠BAD=30°,进而可得出CD=AD、BD=AD,再结合BC=30即可求出AD的长度.【解答】解:∵∠EAB=60°,∠EAC=30°,∴∠CAD=60°,∠BAD=30°,∴CD=AD•tan∠CAD=AD,BD=AD•tan∠BAD=AD,∴BC=CD﹣BD=AD=30,∴AD=15≈25.98.【点评】本题考查了解直角三角形的应用中的仰角俯角问题,通过解直角三角形找出CD=AD、BD=AD是解题的关键.23.(8.00分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.【分析】(1)先求出∠ABC=30°,进而求出∠BAD=120°,即可求出∠OAB=30°,结论得证;(2)先求出∠AOC=60°,用三角函数求出AM,再用垂径定理即可得出结论.【解答】解:(1)如图,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,连接OA,∴OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)连接OA,∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.【点评】此题主要考查了等腰三角形的性质,垂径定理,切线的判定,锐角三角函数,三角形内角和定理,圆周角定理,求出∠AOC=60°是解本题的关键.24.(10.00分)参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:x…﹣4﹣3﹣2﹣1﹣1234…y=﹣…124﹣4﹣11﹣﹣…y=…235﹣3﹣10…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而增大;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【分析】(1)用光滑曲线顺次连接即可;(2)利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题;【解答】解:(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)故答案为增大,上,1,(0,1)(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点评】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(10.00分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P 的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).【点评】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.26.(12.00分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF 是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【解答】解:(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形,(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴,∴△DP'C∽△DF'B②当∠F′DB=90°时,如图所示,。

湖南省郴州市2018年中考数学真题试题(含解析)

湖南省郴州市2018年中考数学真题试题(含解析)

1拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。

2答题顺序:从卷首依次开始一般来讲,全卷大致是先易后难的排列。

所以,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。

但也不是坚决地“依次”做题,虽然考卷大致是先易后难,但试卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先做好有保证的题,才能尽量多得分。

3答题策略答题策略一共有三点: 1. 先易后难、先熟后生。

先做简单的、熟悉的题,再做综合题、难题。

2. 先小后大。

先做容易拿分的小题,再做耗时又复杂的大题。

3. 先局部后整体。

把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。

4学会分段得分。

不会做的会做的题目要特别注意表达准确、书写规范、语言科学,防止被“分段扣点分”题目我们可以先承认中间结论,往后推,看能否得到结论。

如果不能,说明这个途径不。

如对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”果题目有多个问题,也可以跳步作答,先回答自己会的问题。

5立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。

中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。

6确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。

不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。

试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。

7要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。

2018年湖南省郴州市中考数学试卷及答案解析(含答案解析)-精选

2018年湖南省郴州市中考数学试卷及答案解析(含答案解析)-精选

2018年湖南省郴州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C.D.0.352.(3.00分)郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000()A.1.25×105B.0.125×106C.12.5×104D.1.25×1063.(3.00分)下列运算正确的是()A.a3•a2=a6 B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+44.(3.00分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠35.(3.00分)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.6.(3.00分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市7.(3.00分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.8.(3.00分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3.00分)计算:= .10.(3.00分)因式分解:a3﹣2a2b+ab2= .11.(3.00分)一个正多边形的每个外角为60°,那么这个正多边形的内角和是.12.(3.00分)在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是.13.(3.00分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为.14.(3.00分)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n100300400600100020003000合格品数m9628238257094919062850合格品频率0.9600.940.9550.950.9490.9530.95则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)15.(3.00分)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)16.(3.00分)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17.(6.00分)计算|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018.18.(6.00分)解不等式组:并把解集在数轴上表示出来.19.(6.00分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC 于E,F,连接BE,DF.求证:四边形BFDE是菱形.20.(8.00分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数105(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21.(8.00分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A 种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?22.(8.00分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)23.(8.00分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.24.(10.00分)参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:x…﹣4﹣3﹣2﹣1﹣1234…y=﹣…124﹣4﹣11﹣﹣…y=…235﹣3﹣10…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.25.(10.00分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.26.(12.00分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.2018年湖南省郴州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C.D.0.35【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣<0<0.35<<3,所以最小的实数是﹣.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3.00分)郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000()A.1.25×105B.0.125×106C.12.5×104D.1.25×106【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:125000=1.25×105,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3.00分)下列运算正确的是()A.a3•a2=a6 B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法则、平方差公式分别计算得出答案.【解答】解:A、a3•a2=a5,故此选项错误;B、a﹣2=,故此选项错误;C、3﹣2=,故此选项正确;D、(a+2)(a﹣2)=a2﹣4,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.(3.00分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠3【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【解答】解:由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.5.(3.00分)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.【分析】找到几何体的上面看所得到的图形即可.【解答】解:从几何体的上面看可得,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.6.(3.00分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【解答】解:A、甲超市的利润逐月减少,此选项正确;B、乙超市的利润在1月至4月间逐月增加,此选项正确;C、8月份两家超市利润相同,此选项正确;D、乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.【点评】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.7.(3.00分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.【分析】直接利用角平分线的作法得出OP是∠AOB的角平分线,再利用直角三角形的性质得出答案.【解答】解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.【点评】此题主要考查了基本作图以及含30度角的直角三角形,正确得出OP是∠AOB的角平分线是解题关键.8.(3.00分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =(BD+AC )•CD=(1+2)×2=3,从而得出S △AOB =3.【解答】解:∵A ,B 是反比例函数y=在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2), 当x=4时,y=1,即B (4,1).如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =×4=2. ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =(BD+AC )•CD=(1+2)×2=3, ∴S △AOB =3. 故选:B .【点评】本题考查了反比例函数中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.(3.00分)计算:= 3 .【分析】原式利用平方根的定义化简即可得到结果. 【解答】解:原式=3. 故答案为:3【点评】此题考查了二次根式的乘除法,熟练掌握平方根的定义是解本题的关键.10.(3.00分)因式分解:a3﹣2a2b+ab2= a(a﹣b)2.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣2ab+b2)=a(a﹣b)2.故答案为:a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3.00分)一个正多边形的每个外角为60°,那么这个正多边形的内角和是720°.【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后根据内角和公式求解.【解答】解:这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°.故答案为720°.【点评】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.12.(3.00分)在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是8 .【分析】根据众数的定义即可判断.【解答】解:这组数据8出现的次数最多,所以众数为8,故答案为8.【点评】本题考查众数的定义,记住在一组数据中次数出现最多的数是这组数据的众数.13.(3.00分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为2 .【分析】根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【解答】解:设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=2,故答案为:2.【点评】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.14.(3.00分)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n100300400600100020003000合格品数m9628238257094919062850合格品频率0.9600.940.9550.950.9490.9530.95则这个厂生产的瓷砖是合格品的概率估计值是0.95 .(精确到0.01)【分析】根据表格中实验的频率,然后根据频率即可估计概率.【解答】解:由击中靶心频率都在0.95上下波动,所以这个厂生产的瓷砖是合格品的概率估计值是0.95,故答案为:0.95.【点评】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.15.(3.00分)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为12πcm.(结果用π表示)【分析】根据圆锥的展开图为扇形,结合圆周长公式的求解.【解答】解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为:12π.【点评】此题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.16.(3.00分)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是y=﹣x+4 .【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17.(6.00分)计算|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018=﹣1﹣2×+0.5﹣1=﹣1.5【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6.00分)解不等式组:并把解集在数轴上表示出来.【分析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6.00分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC 于E,F,连接BE,DF.求证:四边形BFDE是菱形.【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.【解答】证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.【点评】此题主要考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.20.(8.00分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数12 10523(1)这次随机抽取的献血者人数为50 人,m= 20 ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,3000×=720,估计这3000人中大约有720人是A型血.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了统计图.21.(8.00分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A 种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,找出关于a的一元一次不等式.22.(8.00分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)【分析】由∠EAB=60°、∠EAC=30°可得出∠CAD=60°、∠BAD=30°,进而可得出CD=AD、BD=AD,再结合BC=30即可求出AD的长度.【解答】解:∵∠EAB=60°,∠EAC=30°,∴∠CAD=60°,∠BAD=30°,∴CD=AD•tan∠CAD=AD,BD=AD•tan∠BAD=AD,∴BC=CD﹣BD=AD=30,∴AD=15≈25.98.【点评】本题考查了解直角三角形的应用中的仰角俯角问题,通过解直角三角形找出CD=AD、BD=AD是解题的关键.23.(8.00分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.【分析】(1)先求出∠ABC=30°,进而求出∠BAD=120°,即可求出∠OAB=30°,结论得证;(2)先求出∠AOC=60°,用三角函数求出AM,再用垂径定理即可得出结论.【解答】解:(1)如图,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,连接OA,∴OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)连接OA,∵∠AEC=30°,∴∠A OC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.【点评】此题主要考查了等腰三角形的性质,垂径定理,切线的判定,锐角三角函数,三角形内角和定理,圆周角定理,求出∠AOC=60°是解本题的关键.24.(10.00分)参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:x…﹣4﹣3﹣2﹣1﹣1234…y=﹣…124﹣4﹣11﹣﹣…y=…235﹣3﹣10…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x 的增大而增大;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向上平移 1 个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【分析】(1)用光滑曲线顺次连接即可; (2)利用图象法即可解决问题;(3)根据中心对称的性质,可知A (x 1,y 1),B (x 2,y 2)关于(0,1)对称,由此即可解决问题;【解答】解:(1)函数图象如图所示:(2)①当x <0时,y 随x 的增大而增大; ②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标) 故答案为增大,上,1,(0,1)(3)∵x 1+x 2=0, ∴x 1=﹣x 2,∴A (x 1,y 1),B (x 2,y 2)关于(0,1)对称, ∴y 1+y 2=2,∴y1+y2+3=5.【点评】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(10.00分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t ≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC 的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).【点评】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.26.(12.00分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【解答】解:(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形,(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,。

湖南省郴州市2018年中考数学试卷(解析版)

湖南省郴州市2018年中考数学试卷(解析版)

2018年湖南省郴州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列实数:3,0,,,0.35,其中最小的实数是()A. 3B. 0C.D. 0.35【答案】C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得﹣<0<0.35<<3,所以最小的实数是﹣,故选C.【点睛】本题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2. 郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000()A. 1.25×105B. 0.125×106C. 12.5×104D. 1.25×106【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】125000的小数点向左移动5位得到1.25,所以,125000用科学记数法表示为:1.25×105,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. a3•a2=a6B. a﹣2=﹣C. 3﹣2=D. (a+2)(a﹣2)=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、(a+2)(a﹣2)=a2﹣4,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4. 如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...A. ∠2=∠4B. ∠1+∠4=180°C. ∠5=∠4D. ∠1=∠3【答案】D【解析】【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【详解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故选D.【点睛】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键. 解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.5. 如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A. B. C. D.【答案】B【解析】【分析】根据主视图是从几何体正面看得到的图形即可得到答案.【详解】从正面看可以看到有3列小正方形,从左至右小正方体的数目分别为1、2、1,所以主视图为:,故选B.【点睛】本题考查了简单几何体的三视图,关键是掌握主视图所看的位置.6. 甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A. 甲超市的利润逐月减少B. 乙超市的利润在1月至4月间逐月增加C. 8月份两家超市利润相同D. 乙超市在9月份的利润必超过甲超市【答案】D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.7. 如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D 为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A. 6B. 2C. 3D.【答案】C【解析】【分析】直接利用角平分线的作法得出OP是∠AOB的角平分线,再利用直角三角形的性质得出答案.【详解】如图,过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3,故选C.【点睛】本题考查了基本作图——作角平分线、含30度角的直角三角形的性质,正确得出OP是∠AOB的角平分线是解题关键.8. 如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A. 4B. 3C. 2D. 1【答案】B【解析】【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=×(1+2)×2=3,从而得出S△AOB=3.【详解】∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=×(1+2)×2=3,∴S△AOB=3,故选B.【点睛】本题考查了反比例函数中k的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S与k的关系为S=|k|是解题的关键.二、填空题(每题3分,满分24分,将答案填在答题纸上)9. 计算:=_____.【答案】3【解析】【分析】原式利用平方根的定义化简即可得到结果.【详解】=3,故答案为:3【点睛】本题考查了二次根式的平方,熟练掌握平方根的定义是解本题的关键.10. 因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)2.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a2﹣2ab+b2)=a(a﹣b)2,故答案为:a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11. 一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为:720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.12. 在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是_____.【答案】8【解析】【分析】根据众数的定义进行求解即可得答案.【详解】这组数据中数据8出现了3次,出现的次数最多,所以众数为8,故答案为:8.【点睛】本题考查众数的定义,熟知在一组数据中次数出现最多的数是这组数据的众数是解题的关键.13. 已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为_____.【答案】2【解析】【分析】设方程的另一个根为a,根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【详解】设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=2,故答案为:2.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.14. 某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:合格品频率则这个厂生产的瓷砖是合格品的概率估计值是_____.(精确到0.01)【答案】0.95【解析】【分析】根据表格中实验的频率,然后根据频率即可估计概率.【详解】由生产的瓷砖是合格品的频率都在0.95上下波动,所以这个厂生产的瓷砖是合格品的概率估计值是0.95,故答案为:0.95.【点睛】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.15. 如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为_____cm.(结果用π表示)【答案】【解析】【分析】先求出圆锥的底面半径,然后根据圆锥的展开图为扇形,结合圆周长公式进行求解即可.【详解】设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为:12π.【点睛】本题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系.16. 如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是_____.【答案】【解析】【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,从而可得点C 坐标,然后再根据待定系数法,即可求得直线AC的表达式.【详解】如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4,又∵∠1=60°,∴∠2=30°,sin∠2=,∴CD=2,cos∠2=cos30°=,OD=2,∴C(2,2),设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点睛】本题考查了菱形的性质、待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17. 计算|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018.【答案】-1.5.【解析】【分析】按顺序先进行绝对值化简、特殊角的三角函数值、负指数幂的计算、乘方的运算,然后再按运算顺序进行计算即可得.【详解】|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018==-1.5.【点睛】本题考查了实数的混合运算,涉及到特殊角的三角函数值、负指数幂的运算等,熟练掌握特殊角的三角函数值以及各运算的运算法则是解题的关键.18. 解不等式组:,并把解集在数轴上表示出来.【答案】﹣4<x≤0,在数轴上表示见解析.【解析】【分析】先分别求出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19. 如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.【答案】证明见解析.【解析】【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.【详解】∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.20. 6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A 型血?【答案】(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.21. 郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【详解】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式. 22. 小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)【答案】25.98米.【解析】【分析】由∠EAB=60°、∠EAC=30°可得出∠CAD=60°、∠BAD=30°,进而可得出CD=AD、BD=AD,再结合BC=30即可求出AD的长度.【详解】∵∠EAB=60°,∠EAC=30°,∴∠CAD=60°,∠BAD=30°,∴CD=AD•tan∠CAD=AD,BD=AD•tan∠BAD=AD,∴BC=CD﹣BD=AD=30,∴AD=15≈25.98,答:无人机飞行的高度AD为25.98米.【点睛】本题考查了解直角三角形的应用——仰角俯角问题,通过解直角三角形找出CD=AD、BD=AD是解题的关键.23. 已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.【答案】(1)证明见解析;(2).【解析】【分析】(1)先求出∠ABC=30°,进而求出∠BAD=120°,即可求出∠OAB=30°,结论得证;(2)先求出∠AOC=60°,用三角函数求出AM,再用垂径定理即可得出结论.【详解】(1)如图,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,连接OA,∴OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)连接OA,∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.【点睛】本题考查了等腰三角形的性质,垂径定理,切线的判定,锐角三角函数,三角形内角和定理,圆周角定理等,熟练掌握和运用相关的定理与性质是解本题的关键.24. 参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【答案】(1)图象见解析;(2)增大,上,1,(0,1);(3)5.【解析】【分析】(1)用光滑曲线顺次连接即可;(2)观察图象,利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题.【详解】(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称,故答案为:①增大;②上,1;③(0,1);(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点睛】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题.25. 如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM 是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(3)P点到直线BC的距离的最大值为,此时点P的坐标为(,).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得,解得:,∴抛物线的表达式为y=﹣x2+2x+3;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得,解得:,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC=,∴P点到直线BC的距离的最大值为,此时点P的坐标为(,).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.26. 在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②或.【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形;(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴,∴△DP'C∽△DF'B;②当∠F′DB=90°时,如图所示,∵DF′=DF=BD,∴,∴tan∠DBF′=;当∠DBF′=90°,此时DF′是斜边,即DF′>DB,不符合题意;当∠DF′B=90°时,如图所示,∵DF′=DF=BD,∴∠DBF′=30°,∴tan∠DBF′=.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.。

湖南省郴州市中考数学真题试题(无答案)

湖南省郴州市中考数学真题试题(无答案)

湖南省郴州市2018年中考数学真题试题第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数:3,0,12,,0.35,其中最小.的实数是( )A .3B .0C .D .0.352.郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000( )A .51.2510⨯B .60.12510⨯C .412.510⨯D .61.2510⨯ 3.下列运算正确的是( )A .326a a a ⋅=B .221a a-=-C .=.()()2224a a a +-=+ 4.如图,直线a ,b 被直线c 所截,下列条件中,不能..判定//a b ( )A .24∠=∠B .14180∠+∠= C.54∠=∠ D .13∠=∠ 5.如图是由四个相同的小正方体搭成的立体图形,它的主视图是( )A .B . C. D .6.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确...的是( )A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市7.如图,60AOB ∠=,以点O 为圆心,以任意长为半径作弧交OA ,OB 于C ,D 两点;分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A .6B .2 C.3 D .8.如图,A ,B 是反比例函数4y x=在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则OAB △的面积是( )A .4B .3 C.2 D .1第Ⅱ卷(共106分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.计算:(2= .10.因式分解:3222a a b ab -+= .11.一个正多边形的每个外角为60,那么这个正多边形的内角和是 .12.在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是 .13.已知关于x 的一元二次方程260x kx +-=有一个根为3-,则方程的另一个根为 . 14.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:则这个厂生产的瓷砖是合格品的概率估计值是 .(精确到0.01)15.如图,圆锥的母线长为10cm ,高为8cm ,则该圆锥的侧面展开图(扇形)的弧长为 cm .(结果用π表示)16.如图,在平面直角坐标系中,菱形OABC 的一个顶点在原点O 处,且60AOC ∠=,A 点的坐标是()0,4,则直线AC 的表达式是 .三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17.计算()2018112sin4521--+--.18. 解不等式组:()3221,4232x xx x+>-⎧⎪⎨-≤-⎪⎩①②并把解集在数轴上表示出来.19. 如图,在ABCDY中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.20. 6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:(1)这次随机抽取的献血者人数为 人,m = ; (2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答: 从献血者人群中任抽取一人,其血型是A 型的概率是多少? 并估计这3000人中大约有多少人是A 型血?21. 郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A 、B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元. (1)A 、B 两种奖品每件各多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件? 22.小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD ,小亮通过操控器指令无人机测得桥头B ,C 的俯角分别为60EAB ∠=,30EAC ∠=,且D ,B ,C 在同一水平线上.已知桥30BC =米,求无人机飞行的高度AD .(精确到0.01米. 1.414≈ 1.732≈)23.已知BC 是O 的直径,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,30AEC ∠=.(1)求证:直线AD 是O 的切线;(2)若AE BC ⊥,垂足为M ,O 的半径为4,求AE 的长.24.参照学习函数的过程与方法,探究函数()20x y x x-=≠的图象与性质. 因为221x y x x -==-,即21y x =-+,所以我们对比函数2y x=-来探究.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y x=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来; (2)观察图象并分析表格,回答下列问题:①当0x <时,y 随x 的增大而 ;(填“增大”或“减小”)②2x y x -=的图象是由2y x=-的图象向 平移 个单位而得到; ③图象关于点 中心对称.(填点的坐标) (3)设()11,A x y ,()22,B x y 是函数2x y x-=的图象上的两点,且120x x -=,试求123y y ++的值. 25.如图1,已知抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t . (1)求抛物线的表达式;(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由. (3)如图2,连接BC ,PB ,PC ,设PBC △的面积为S . ①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.26.在矩形ABCD 中,AD AB >,点P 是CD 边上的任意一点(不含C ,D 两端点),过点P 作//PF BC ,交对角线BD 于点F .(1)如图1,将PDF △沿对角线BD 翻折得到QDF △,QF 交AD 于点E . 求证:DEF △是等腰三角形;(2)如图2,将PDF △绕点D 逆时针方向旋转得到P DF ''△,连接P C ',F B '.设旋转角为()0180αα<<.①若0BDC α<<∠,即DF '在BDC ∠的内部时, 求证:DP C DF B ''∽△△.②如图3,若点P 是CD 的中点,DF B '∠能否为直角三角形?如果能,试求出此时tan DBF '∠的值,如果不能,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖南省郴州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C.D.0.352.(3.00分)郴州市人民政府提出:在2018年继续办好一批民生实事,加快补齐影响群众生活品质的短板,推进扶贫惠民工程,实现12.5万人脱贫,请用科学记数法表示125000()A.1.25×105 B.0.125×106C.12.5×104D.1.25×1063.(3.00分)下列运算正确的是()A.a3•a2=a6 B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4 4.(3.00分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠35.(3.00分)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A B C D6.(3.00分)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市7.(3.00分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.8.(3.00分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3.00分)计算:=.10.(3.00分)因式分解:a3﹣2a2b+ab2=.11.(3.00分)一个正多边形的每个外角为60°,那么这个正多边形的内角和是.12.(3.00分)在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是.13.(3.00分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为.14.(3.00分)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n100300400600100020003000合格品数m9628238257094919062850合格品频率0.9600.9400.9550.9500.9490.9530.950则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)15.(3.00分)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)16.(3.00分)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.三、解答题(本大题共10小题,共82分.解答应写出文字说明、证明过程或演算步骤.)17.(6.00分)计算|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018.18.(6.00分)解不等式组:并把解集在数轴上表示出来.19.(6.00分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.20.(8.00分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数105(1)这次随机抽取的献血者人数为人,m=;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21.(8.00分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?22.(8.00分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)23.(8.00分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.24.(10.00分)参照学习函数的过程与方法,探究函数y=的图象与性质.因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.列表:x…﹣4﹣3﹣2﹣1﹣1234…y=﹣…124﹣4﹣11﹣﹣…y=…235﹣3﹣10…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.25.(10.00分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P 的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.26.(12.00分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.参考答案1.C.2.A.3.C.4.D.5.B.6.D.7.C.8.B.9.310.a(a﹣b)2.11.720°.12.8.13.2.14.0.95.15.12π.16.y=﹣x+4.17.解:|1﹣|﹣2sin45°+2﹣1﹣(﹣1)2018=﹣1﹣2×+0.5﹣1=﹣1.518.解:解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:19.证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.20.解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,3000×=720,估计这3000人中大约有720人是A型血.21.解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.22.解:∵∠EAB=60°,∠EAC=30°,∴∠CAD=60°,∠BAD=30°,∴CD=AD•tan∠CAD=AD,BD=AD•tan∠BAD=AD,∴BC=CD﹣BD=AD=30,∴AD=15≈25.98.23.解:(1)如图,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,连接OA,∴OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)连接OA,∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.24.解:(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)故答案为增大,上,1,(0,1)(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.25.解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t ﹣)2+.②∵﹣<0,∴当t=时,S 取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC 的距离的最大值为=,此时点P的坐标为(,).26.解:(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形,(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,第11页(共12页)∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴,∴△DP'C∽△DF'B②当∠F′DB=90°时,如图所示,∵DF′=DF=BD,∴=,∴tan∠DBF′==,当∠DBF′=90°,此时DF′是斜边,即DF′>DB,不符合题意,当∠DF′B=90°时,如图所示,∵DF′=DF=BD,∴∠DBF′=30°,∴tan∠DBF′=第12页(共12页)。

相关文档
最新文档