第8章输入滤波器的设计
第8章模拟滤波器的设计

h(t) F 1 H () 1 e jtD e jtD d
2
1
2
cos(t
tD)
j sin (t
tD )d
1
0
cos
(t
tD
)d
1
C 0
cos
(t
t
D
)d
C sin C (t tD ) C (t tD )
第15页/共65页
8.3.2 滤波器的理想特性与实际特性
(8-24)
H(
j)
2
A(2 )
1
1 C
2n
巴特沃思滤波器的MATLAB调用函数为:[Z,P,K]=buttap(n)
n:阶数
z,p,k: 滤波器零点、极点和增益。其幅度平方函数随Ω
变化的曲线如下图所示 :
第24页/共65页
8.4.2 模拟滤波器的设计
由上图可知,巴特沃思滤波器的幅度平方函数具有下列特点:
第17页/共65页
8.4 模拟滤波器的设计
8.4.1 模拟滤波器的一般设计方法 :
• 根据设计的技术指标即滤波器的幅频特性,确定滤波器的传递
•
函数H(S);
• 设计实际网络(通常为电网络)实现这一传递函数.
第18页/共65页
8.4 模拟滤波器的设计
幅度特性函数|H(Ω)|的确定:
由于
而 则 又 那么 从而
第8页/共65页
8.2 模拟和数字滤波器的基本概念
模拟滤波器的重要用途: 模拟滤波器是现代控制系统中的重要部件。最常见的应用例子,是传感器输出
信号中混有噪声干扰的情况,在传感器及测试电路中,可以在工艺上使布线尽量合理, 元件布局合理,并采用屏蔽技术等措施来防止噪声进入系统,但信号中仍可能含有不可 忽略的噪声,此时常采用模拟滤波器抑制这些噪声,使有用信号能通过而输出。
8_Mixer(第八章)

三阶截点 下变频三 次互调项 IP1dB 射频输入功率
» 混频器在接收机中处于射频信号幅 度最高的位臵,而且许多干扰信号 未得到有效的抑制,因此线性度是 一个非常重要 (甚至是最重要 )的指 标。
» 衡量混频器线性度指标有 1dB压缩点(输入 1dB 压缩点IP1dB,输出 1dB压 缩点OP1dB)和三阶截点(输入三阶截点IIP3,输出三阶截点OIP3)。
1 (n) n f (VQ v1 )v2 n!
» 若v2足够小,可以忽略v2的二次方及其以上各次方项,则上式可简化为
i f (VQ v1 ) f '(VQ v1 )v2 式中 f (VQ v1 ) 和 f '(VQ v1 ) 与v2无关,它们都是v1的非线性函数,随时
其中
f ( n ) (VQ ) 1 d n f (v ) an n n ! dv v V n!
Q
上式可以改写为
i
n! m an v1n m v2 n 0 m 0 m !( n m)!
Z. Q. LI 8
n
第八章
Institute of RF- & OE-ICs
第八章
Z. Q. LI
10
Institute of RF- & OE-ICs
Southeast University
混频的基本原理
线性时变状态
» 将非线性器件的伏安特性 i f (VQ v1 v2 ) 在(VQ+v1)上进行泰勒级数 展开,得
i f (VQ v1 v2 ) f (VQ v1 ) f '(VQ v1 )v2
Institute of RF- & OE-ICs
现代信号处理教程 - 胡广书(清华)

- 230 -第8章 M 通道滤波器组8.1 M 通道滤波器组的基本关系图8.1.1是一个标准的M 通道滤波器组。
图8.1.1 M 通道滤波器组由第五章~第七章的讨论,我们不难得到图中各处信号之间的如下相互关系: ()()()k k X z X z H z = (8.1.1)1101111()()1 ()() (8.1.2)M lMk kM l M l lMMMk M l V z XW z M X Wz H W z M-=-===∑∑及 101()()()() M l lMk k Mk M l U z V z X zWH zW M-===∑ (8.1.3)滤波器组的最后输出111ˆ()()()1()()() (8.1.4)M k kk M M llM k M k l k X z G z U z X zW H zW G z M-=--====∑∑∑. . . ˆ()z (X- 231 -令 101()()() (8.1.5)M ll kM k k A z HzW G z M-==∑则 10ˆ()()() (8.1.6)M l l Ml X z A z X zW -==∑ 这样,最后的输出ˆ()X z 是()lMX zW 的加权和。
由于 (2/)()()j lj l M M z e X zW X e ωωπ-== (8.1.7)在0l ≠时是()j X e ω的移位,因此,ˆ()j Xe ω是()j X e ω及其移位的加权和。
由上一章的讨论可知,在0l ≠时,(2/)()j l M X e ωπ-是混迭分量,应想办法去除。
显然,若保证()0 1~1l A z l M ==- (8.1.8)则可以去除图8.1.1所示滤波器组中的混迭失真.再定义1001()()()()M kk k T z A z Hz G z M-==∑ (8.1.9)显然,()T z 是在去除混迭失真后整个系统的转移函数。
这时,ˆ()Xz 是否对()X z 产生幅度失真和相位失真就取决于()T z 的性能。
《数字信号处理教程》程佩青(第三版)清华大学出版社课后答案

结果 y (n ) 中变量是 n ,
∞
∞
∑ ∑ y (n ) =
x ( m )h (n − m ) =
h(m)x(n − m) ;
m = −∞
m = −∞
②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,
(4)相加,求得一个 n 的 y(n) 值 ,如此可求得所有 n 值的 y(n) ;
10
T [ax1(n)+ bx2 (n)] =
n
∑
[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
(3) y(n) = δ (n − 2) * 0.5n R3(n) = 0.5n−2 R3(n − 2) (4) x(n) = 2n u(−n −1) h(n) = 0.5n u(n)
当n ≥ 0 当n ≤ −1
∑ y(n) = −1 0.5n−m 2m = 1 ⋅ 2−n
m = −∞
3
y(n) = ∑n 0.5n−m 2m = 4 ⋅ 2n
+ 1)
−
x1 (n
+ 1)]
=
−a n
综上 i) , ii) 可知: y1 (n) = −a nu(−n − 1)
(b) 设 x(n) = δ (n − 1)
i)向 n > 0 处递推 ,
数字信号处理学习指导与课后答案第8章

jns )
第8章 上机实验
(2) 采样频率Ωs必须大于等于模拟信号最高频率的两倍 以上, 才能使采样信号的频谱不产生频谱混叠。
利用计算机计算 Xˆ ( j ) 并不方便, 下面我们导出另
外一个公式, 以便在计算机上进行实验。
理想采样信号 xˆa (t)和模拟信号xa(t)之间的关系为
x1(n)=R8(n) x2(n)=u(n)
第8章 上机实验
① 分别求出x1(n)=R8(n)和x2(n)=u(n)的系统响应y1(n)和 y2(n), 并画出其波形。
② 求出系统的单位脉冲响应, 画出其波形。 (3) 给定系统的单位脉冲响应为 h1(n)=R10(n) h2(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) 用线性卷积法求x1(n)=R8(n)分别对系统h1(n)和h2(n)的输 出响应y21(n)和y22(n), 并画出波形。
%调用函数tstem
title(′(f) 系统单位脉冲响应h2(n)′)
subplot(2, 2, 4); y=′y22(n)′; tstem(y22n, y);
title(′(g) h2(n)与R8(n)的卷积y22(n)′)
%=====================================
第8章 上机实验
(4) 给定一谐振器的差分方程为 y(n)=1.8237y(n-1)-0.9801y(n-2)+b0x(n)-b0x(n-2) 令b0=1/100.49, 谐振器的谐振频率为0.4 rad。 ① 用实验方法检查系统是否稳定。 输入信号为u(n) 时, 画出系统输出波形y31(n)。 ② 给定输入信号为
第8章 上机实验
微波工程-第8章微波滤波器

微波工程基础 第八章 微波滤波器
第8章
微波滤波器
* 微波滤波器是可以用来控制系统的频率响应的二端口无源微波器件。
微波工程基础
第八章 微波滤波器
* 典型的滤波器相应包括低通、高通、带通和带阻。 * 滤波器在通带内提供信号的传输,在阻带内提供信号的衰减。 * 微波滤波器的两种设计方法——镜像参量法和插入损耗法。 * 实现微波滤波器的两种手段——理查德变换和科洛达恒等关系。
低通原型电路→低通、高通、带通和带阻滤波器 滤波器的转换之阻抗定标/频率定标 ——源阻抗 R
0
实际低通
1
时,
c
1
滤波器的元件值
源阻抗定标后
频率定标后的元件值
L R0 L C C / R0
频率定标?
Rs R0
R0 RL RL
L / c Lk
g0 1
c 1
k2 1
8-16
微波工程基础 第八章 微波滤波器 最平坦低通滤波器原型的衰减与归一化频率的关系曲线
微波工程基础 第八章 微波滤波器
8.3.3 等波纹低通滤波器的原型
等波纹低通滤波器原型的元件值
8-18
微波工程基础 第八章 微波滤波器 等波纹低通滤波器原型的衰减与归一化频率的关系曲线
8-40
微波工程基础 第八章 微波滤波器 用电容性耦合并联谐振器的带通滤波器
微波工程基础 第八章 微波滤波器
利用 K, J 变换器变换成只有一种电抗元件的方法
8-41
8-42
PLR 1 k 2 c
第8章应用系统设计举例

B 1
C sin(T )
其振荡频率由系数A、B和C来决定。因此,设计振荡器主要就
第8章:应用系统设计举例—— 正弦信号发生器 设初始值为0,数字振荡器的二阶差分方程形式为:
y[k ] Ay[k 1] By[k 2] Cx[k 1]
利用单位冲击函数性质,即仅当k=1时,x[k-1]=1,得:
为了便于定点DSP处理, 将所有系数除以2,用16位定点表示:
第8章:应用系统设计举例—— 正弦信号发生器
定时器的初值计算
要求:定时器产生25s时间间隔,获得40kHz的采样频率。
定时器的初值计算由下式决定
f clk fS (TDDR 1)(PRD 1)
式中 f clk 为DSP时钟频率, f S 为采样频率。
第8章:应用系统设计举例—— 正弦信号发生器
内存定位文件清单如下:
MEMORY { PAGE 0: VEC: origin = 1000h, length = 0ffh PROG: origin = 1100h, length = 8000h PAGE 1: DATA: origin = 080h, length = 0807fh
第8章:应用系统设计举例——设计基本步骤
第8章:应用系统设计举例——设计基本步骤
8.1 DSP应用系统设计基本步骤
一个DSP应用系统设计包括硬件设计和软件设计两 部分。 硬件设计又称为目标板设计,考虑算法需求分析和 成本、体积、功耗核算等。 软件设计是指设计包括信号处理算法的程序,用DSP 汇编语言或通用的高级语言(C/C++)编写出来并进行调 试。这些程序要放在DSP片内或片外存储器中运行,在 程序执行时,DSP会执行与DSP外围设备传递数据或互相 控制的指令。 DSP的软件与硬件设计调试是密不可分的。
第8章FIR滤波器和IIR滤波器原理及实现

x(k-N+2) x(k-N+1)
W0
W1
W2
......
WN-2
WN-1
y(k)
FIR数字滤波器的模型
低通FIR数字滤波器的结构如下图所示:
x(k)
x(k-1) x(k-2) x(k-3)
x(k-N+2) x(k-N+1)
W0
W1
W2
......
WN-2
WN-1
y(k)
图8.4 一个低通FIR滤波器的结构
FIR数字滤波器的z域分析
FIR数字滤波器可以由三个一阶的滤波器级联构成。如图8.18所示。
FIR数字滤波器的线性相位及群延迟特性
如果滤波器的N个实值系数为对称或者反对称结构,该滤波器具有 线性相位。
W (n) W (N 1n )
线性滤波器特性,如图8.19所示。
经过滤波器的信号 均被延迟了Δ 秒
() g r a d H (e j ) d dg r a d H (e j )
如果群延迟为常量,则相位响应一定是线性的。 线性相位滤波器将各种输入频率分量延迟了相同的量,所以对称
FIR滤波器具有恒定的群延迟。
FIR数字滤波器的最小线性相位特性
模拟到数字滤波器的转换
从模拟滤波器到数字滤波器的两种常用方法: 微分方程近似法 双线性变换法
思考: 设计IIR数字低通滤波器的两种方法分别是什么?
模拟到数字滤波器的转换
——微分方程近似法
一个最简单形式的模拟到数字转换是后向差分运算,即
S 1 1- z-1 TS
无法保证z域滤波 器是稳定的
FIR数字滤波器的冲激响应特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vˆ(s) Gvd (s) dˆ(s)
vˆg (s)0
vˆg (s) 电压源 短路
Zo(s)
Z0(s) 输入滤波器输出阻抗
根据Middlebrook理论,新组成系统 控制输入输出传递函数可写作
变换器 v
Gvd (S )
d
Gvd (s)
Gvd (s) Zo (s)0
1
Zo (s) ZN (s)
引入低通滤波器
iin
Lf
ig 1
iL
2
ig (t)
vg (t)
Cf
C vR
iin (t)
输入滤波器
0
0
t
输入电流谐波的幅值和相角可通过输入滤波器传递函数表达为:
iin(t) H (0)DI
k 1
|| H (kj) || 2I k
sin(kD) cos(kt H (kj))
通常要求输入滤波器消除电流谐波的能力为80dB或者更高。
原始无阻尼滤 波器(Qf =∞)
次优化阻尼 (Qf =5Qopt)
优化阻尼 (Qopt=0.93)
-20dB
-30dB
0.1
1
f
f0
电力电子技术基础
无阻尼滤 波器(Qf =0)
次优化阻尼 (Qf =0.2Qopt)
举例: n Lb L 0.516
10
第8章输入滤波器的设计
8.4.1 Rf Cb并联阻尼
iˆtest
vˆtest ZN(s)
1:D
Idˆ
i null 0 L
Vg dˆ
vˆs null 0 C
v R
null 0
iˆtest (s) Idˆ(s)
vˆtest
(s)
Vg
dˆ(s) D
dˆ
ZN (s)
Vg dˆ(s) D
Idˆ(s)
R D2
无阻尼输入滤波器的 Z0
Lf Cf
40dBΩ 30dBΩ 20dBΩ
为满足阻抗不等式 ,R f 应选择尽 量小 ,Rf ZN 可被表达为:
R R f D2
电阻上 R f 的损耗功率为:Vg2 / Rf 该损耗比负载损耗还要大!
解决方案:添加隔直电容 Cb 电容 Cb 的值应选择的尽量大,以 使在滤波器谐振频率处,支路阻抗 远小于R f
Lf
Cf
Rf
Rf Lf
Cf
阻尼输入滤波器
给定输出阻尼峰值能解出上面含n的方程,优化阻尼电阻的
关系式为:
Qopt
Rf R0 f
(2 n)(4 3n) 2n2 (4 n)
输出阻尼峰值对应的频率为:
fm f f
2 2n
举例:Buck变换器
n
Rof Z2
0 mm
1
1 4
Z2 0 mm
Rof 2
2.5
(2 n)(4 3n)
Lf
Rf Cf
Cb
(a)
Cb 极大时的 Z0
Rf
R0 f
1
ωLf
C f
(b)
阻尼输入滤波器的设计标准
40dBΩ 30dBΩ 20dBΩ 10dBΩ 0dBΩ -10dBΩ -20dBΩ
Qf f1=530Hz 12
f0=1.59kHz
L
D2
||ZD||
||ZN||
1 D 2C
||Z0||
Rf=1Ω ωLf
说明了输入滤波器的添加如何改变
在满足以下不等式时,修正系数的幅值大小约等于1.
|| Zo (s) |||| ZN (s) || || Zo (s) |||| ZD (s) ||
这些提供了设计标准,应用起来相对容易。
输入滤波器对变换器输出阻抗的影响
另一种等价不等式也能得出下面的不等式,此时,能保证输 入滤波器不再影响变换器的输出阻抗。
8.1 EMI和输入滤波器
buck变换器举例:
输入脉冲电流:
ig 1
iL
ig (t)
i
i
2
vg (t)
C
vR
ig (t) 的傅里叶展开式:
0
0
DTs
Ts
t
ig (t) DI
k 1
2I k
sin(kD) cos(kt)
电压源 vg (t) 中被注入大量高次电流谐波,这些谐波会干
扰附近设备的运转。 通常将其幅值限制在10 A到100 A。
Qf
Zo(s)
10dBΩ
||Z0||
1
Z0 (s) sLf
|| sC f
0dBΩ -10dBΩ -20dBΩ
ωLf f f 2
R0 f 1 400Hz Lf Cf
Lf 0.84 Cf
1
C f
100Hz
1kHz f
输入滤波器无阻尼,品质因数理想值为无穷,实际上,
损耗限制了Q-因子,尽管如此,Q f 仍然非常大。
R f R0 f
0.67 2n2 (4 n)
比较: 优化阻尼设计以极 小的 Cb 达到了相同 的输出阻抗峰值。
20dBΩ 10dBΩ 0dBΩ -10dBΩ -20dBΩ
无阻尼
优化阻尼 Cb=1200μF Rf=1.67Ω
次优化阻尼 Cb=4700μF Rf=1Ω
-30dBΩ 100Hz
1kHz f
R0 f
f f 400 Hz
R0/D2 Q3
1 C f
100Hz
1kHz f
10kHz
绘制传递函数
40dB ||Gvd||
30dB 20dB
10dB 0dB
-10dB
||Gvd|| ∠Gvd
∠Gvd
0° -90°
100Hz
虚线:无输入滤波器
1kHz f
-180° 10kHz
实线:有输入滤波器
8.4 阻尼输入滤波器设计
0°
-180° 虚线:原始幅值和相角 实线:带输入滤波器时
-360°
的幅值和相角
-540° 10kHz
8.2 输入滤波器的影响
H (S )
vg
输入滤 波器
Zo(s)
Zi(s)
变换器
v
d
T( s )
控制输入输出传递函数: 控制器
vˆ(s) Gvd (s) dˆ(s)
vˆg (s)0
Gvd (s)的测定
输入滤波器设计问题
经典设计方法:
1.工程师设计的开关调节器需要符合规范(稳定性、瞬态
响应、输出阻抗等)。 在执行这个设计,采用基本变换器模
型,例如下图:
变换器模型
1:D
iL
无输入滤波器
buck变换器举例: vg
Vg d
Id
C
Rv
d
输入滤波器设计问题p.2
2.接下来,导通EMI问题不得不考虑。变换器输入端引入LC 低通滤波器可以有效消除EMI的影响 3.一个新的问题是产生了,低通滤波器改变了控制系统的动 态特性,甚至会使控制系统不稳定。
330μH
Cf
470μF
变换器模型
1
Li
2
100μH
C
100μF
Rv
3Ω
小信号等效模型
vg
输入滤波器
Lf
330μH
Cf
470μF
Z Zo(s) i(s)
(a)
Id
D 0.5
变换器模型 1:D
vg d
iL
100μH
C
100μF
(b)
d
R
3Ω
v
ZD 的测试
Z D (s)
1 D2
(sL
R ||
1) sC
f
10kHz
除了在谐振频 率 f f 处,阻 抗不等式都能 被满足吗? 需要阻尼输入 滤波器。
绘制修正系数
1 Zo 10dB ZN
1 Zo 0dB ZD -10dB 100Hz
1kHz f
0°
1 Zo
-180°
1
ZN Zo ZD
-360° 10kHz
绘制传递函数
40dB ||Gvd||
sDL D'2R
D'2R
1
s
L D'2R
s2
LC D'2
D2
1 sRC
Ze (s)
sL D2
sL
sL D2
阻抗不等式
Gvd (s)
Gvd (s) Zo (s)0
1
Zo (s) ZN (s)
1
Zo (s) ZD (s)
修 传正递系函数 数。1
Zo (s) ZN (s)
1
Zo (s) ZD (s)
带输入滤波
器的交流变
换器模型
vg
输入滤波器 Lf Cf
变换器模型 1:D
iL
Vg d
Id
C
R
v
d
输入滤波器设计问题p.3
40dB ||Gvd||
30dB
||Gvd||
20dB
10dB 0dB
∠Gvd
-10dB
100Hz
1kHz f
∠Gvd
L-C低通滤波器对控制 输入输出传递函数的影 响,buck变换器举例
第8章 输入滤波器设计
8.1 EMI和输入滤波器 8.2 输入滤波器的影响
8.3含输入滤波器的Buck变换器
8.3.1 无阻尼输入滤波 8.3.2 阻尼输入滤波 8.4 阻尼输入滤波器设计 8.4.1 Rf Cb 并联阻尼 8.4.2 Rf Lb 并联阻尼 8.4.3 Rf Lb 串联阻尼 8.4.4 级联滤波器部分