微流控ppt课件
合集下载
《微流控芯片》PPT幻灯片PPT

高效便捷的操作
• 荧光+微流控技术 • 支持全血样本 • 4~10分钟完成检测 • 美国原产试剂
Micropoint Confidential 微点公司内部文件,不得外传。
准确可靠的结果
• 结果与大型免疫测试
仪一致(如西门子、 贝克曼)
• mLabs®检测仪总体精 密度CV<10%;
Micropoint Confidential 微点公司内部文件,不得外传。
BBNNBPPNBBNPNBPPNBBPNNBPPNP
Micropoint Confidential 微点公司内部文件,不得外传。
mLabs微流控芯片的性能表现
• 精确控制(在CUTOFF时的CV为8%) • 提高检测速度(4~8分钟) • 适应不同的样品和试剂(成品率高) • 提供一个更好的参数控制反应(反应模型可设计) • 宽动态范围(pg/ml-μg/ml )
原来,在这种水母的体内有一种叫水母素的物质,在与钙离子结 合时会发出蓝光,而这道蓝光未经人所见就已被一种蛋白质吸收, 改发绿色的荧光。这种捕获蓝光并发出绿光的蛋白质,就是绿色 荧光蛋白。
Micropoint Confidential 微点公司内部文件M,icr不op得oi外nt传Co。nfidential 微点公司内部文件,不得外传。
Micropoint Confidential 微点公司内部M文ic件rop,oi不nt 得Co外nfi传de。ntial 微点公司内部文件,不得外传。
高效便捷的操作
• 德国设计 • 触摸屏设计 • 全中文界面
Micropoint Confidential 微点公司内部文件M,icr不op得oi外nt传Co。nfidential 微点公司内部文件,不得外传。
图解微流控芯片实验室课件PPT

PDMS气动微泵驱动
常规状态下,阀门敞开 施加动力鼓入空气,薄 膜在气体压力下发生形 变,堵塞通道。撤销压 力,恢复原状。三个阀 依次如图顺序开启闭合 便可驱动流体流动。
压电微泵驱动
向压电双晶片施加方波信号时,压电双晶片在电场的作用 下发生周期性弯曲变形,进而驱动PDMS泵膜改变腔体的 容积。当压电双晶片带动泵膜向上移动时,泵腔体积增大, 腔内流体的压强减小,使入口阀打开,同时出口阀关闭,流体 在压差的作用下流入泵腔。
非机械驱动包括:电渗驱动、热气微泵驱动、光学 捕获微泵
电渗驱动:电渗驱动是当前微流控芯片中应用最广 泛的一种流体驱动技术。
优势:构架简单、操作方便、流行扁平、无脉动等。 劣势:易受外加电场强度、通道表面、微流体性质
及传热效率等因素影响,稳定性相对较差。
2、微流体控制
微流体控制是微流控芯片实验室的操作核 心,在微流控芯片实验室所涉及的进样、 混合、反应、分离、检测等过程都是在可 控流体的运动中完成的。微流体控制主要
Байду номын сангаас
胶束电动芯片色谱
在含有胶束的缓冲溶液中,实际上存在 着类似于色谱的两相,一是流动的水相, 另一相是起到固定作用的胶束相,溶质在 两相之间分配,由其在胶束中不同的保留 能力而产生不同的保留值。
芯片自由流电泳
自由流电泳是指在样品随缓冲液连续流动的正交 方向加一直流电场,使被分离物质在流动的同时 顺电场方向作电迁移,按电泳倘度大小分离,并 在流体末端被接取的一种技术(图7-22 )。其分离 度取决于流体向下流动的速度和电场的大小。
微反应技术是一种将微结构内在的优势应用到反应过程的技术,体现这种技术的设备或器件被称为微反应器。
学性能,其表面具有良好的可修饰性。下 微型生物反应器主要的应用对象有:聚合酶链反应(PCR)、免疫反应、各类酶反应及DNA杂交反应等
常规状态下,阀门敞开 施加动力鼓入空气,薄 膜在气体压力下发生形 变,堵塞通道。撤销压 力,恢复原状。三个阀 依次如图顺序开启闭合 便可驱动流体流动。
压电微泵驱动
向压电双晶片施加方波信号时,压电双晶片在电场的作用 下发生周期性弯曲变形,进而驱动PDMS泵膜改变腔体的 容积。当压电双晶片带动泵膜向上移动时,泵腔体积增大, 腔内流体的压强减小,使入口阀打开,同时出口阀关闭,流体 在压差的作用下流入泵腔。
非机械驱动包括:电渗驱动、热气微泵驱动、光学 捕获微泵
电渗驱动:电渗驱动是当前微流控芯片中应用最广 泛的一种流体驱动技术。
优势:构架简单、操作方便、流行扁平、无脉动等。 劣势:易受外加电场强度、通道表面、微流体性质
及传热效率等因素影响,稳定性相对较差。
2、微流体控制
微流体控制是微流控芯片实验室的操作核 心,在微流控芯片实验室所涉及的进样、 混合、反应、分离、检测等过程都是在可 控流体的运动中完成的。微流体控制主要
Байду номын сангаас
胶束电动芯片色谱
在含有胶束的缓冲溶液中,实际上存在 着类似于色谱的两相,一是流动的水相, 另一相是起到固定作用的胶束相,溶质在 两相之间分配,由其在胶束中不同的保留 能力而产生不同的保留值。
芯片自由流电泳
自由流电泳是指在样品随缓冲液连续流动的正交 方向加一直流电场,使被分离物质在流动的同时 顺电场方向作电迁移,按电泳倘度大小分离,并 在流体末端被接取的一种技术(图7-22 )。其分离 度取决于流体向下流动的速度和电场的大小。
微反应技术是一种将微结构内在的优势应用到反应过程的技术,体现这种技术的设备或器件被称为微反应器。
学性能,其表面具有良好的可修饰性。下 微型生物反应器主要的应用对象有:聚合酶链反应(PCR)、免疫反应、各类酶反应及DNA杂交反应等
微流控芯片简介ppt课件

性聚合物。
Applied Physics Letters, 2002, 80, 3614-3616
Schematic representation of the
fabrication
method
involving
hotembossing of thermoplastic polymer
在两块玻璃板尚未键合时板间空气间隙承担了大部分电压降玻璃板可视为平行板电容器板间吸引力与电场强度的平方成正比因此键合从两块玻璃中那些最接近的点开始下板中可移动的正电荷主要是na与上板中的负电荷中和生成一层氧化物正是这层过渡层使两块玻璃板封接该点完成键合后周围的空气间隙相应变薄电场力增大从而键合扩散开来直至整块密合
现代科学仪器,2001,4,8-12
31
芯片的封装
2.阳极键合
在玻璃、石英与硅片的封接中已广泛采用阳极键合的方法。 即在键合过程中,施加电场,使键合温度低于软化点温度。
在500-760伏电场下,升温到500oC时,可使两块玻璃片 键合。在两块玻璃板尚未键合时,板间空气间隙承担了大部分 电压降,玻璃板可视为平行板电容器,板间吸引力与电场强度 的平方成正比,因此,键合从两块玻璃中那些最接近的点开始, 下板中可移动的正电荷(主要是Na+)与上板中的负电荷中和, 生成一层氧化物(正是这层过渡层,使两块玻璃板封接),该 点完成键合后,周围的空气间隙相应变薄,电场力增大,从而 键合扩散开来,直至整块密合。
3
生物医学领域:可以使珍贵的生物样品和试 剂消耗降低到微升甚至纳升级,而且分析速 度成倍提高,成本成倍下降
化学领域:它可以使以前需要在一个大实验 室花大量样品、试剂和很多时间才能完成的 分析和合成,将在一块小的芯片上花很少量 样品和试剂以很短的时间同时完成大量实验
Applied Physics Letters, 2002, 80, 3614-3616
Schematic representation of the
fabrication
method
involving
hotembossing of thermoplastic polymer
在两块玻璃板尚未键合时板间空气间隙承担了大部分电压降玻璃板可视为平行板电容器板间吸引力与电场强度的平方成正比因此键合从两块玻璃中那些最接近的点开始下板中可移动的正电荷主要是na与上板中的负电荷中和生成一层氧化物正是这层过渡层使两块玻璃板封接该点完成键合后周围的空气间隙相应变薄电场力增大从而键合扩散开来直至整块密合
现代科学仪器,2001,4,8-12
31
芯片的封装
2.阳极键合
在玻璃、石英与硅片的封接中已广泛采用阳极键合的方法。 即在键合过程中,施加电场,使键合温度低于软化点温度。
在500-760伏电场下,升温到500oC时,可使两块玻璃片 键合。在两块玻璃板尚未键合时,板间空气间隙承担了大部分 电压降,玻璃板可视为平行板电容器,板间吸引力与电场强度 的平方成正比,因此,键合从两块玻璃中那些最接近的点开始, 下板中可移动的正电荷(主要是Na+)与上板中的负电荷中和, 生成一层氧化物(正是这层过渡层,使两块玻璃板封接),该 点完成键合后,周围的空气间隙相应变薄,电场力增大,从而 键合扩散开来,直至整块密合。
3
生物医学领域:可以使珍贵的生物样品和试 剂消耗降低到微升甚至纳升级,而且分析速 度成倍提高,成本成倍下降
化学领域:它可以使以前需要在一个大实验 室花大量样品、试剂和很多时间才能完成的 分析和合成,将在一块小的芯片上花很少量 样品和试剂以很短的时间同时完成大量实验
微流控(课堂PPT)

32
固相萃取
固相萃取,可以很容易的将被分析物从复制 基质中提取出来,提高后续分析的可靠性, 同时还可以对样品进行富集,降低微流控芯 片对高灵敏度检测器的依赖。
33
Chip-Based Solid-Phase Extraction Pretreatment for Direct Electrospray Mass Spectrometry Analysis Using an Array of
43
色谱
色谱法利用不同物质在不同相态的选择性分 配,以固定相对流动相中的混合物进行洗脱, 混合物中不同的物质会以不同的速度沿固定 相移动,最终达到分离的效果。
44
Fabrication of Fritless Chromatographic Microchips Packed with Conventional Reversed-Phase Silica Particles
15
16
多通道辅助进样
多通道辅助进样指的是通过设置多条辅助通
道,后经样品源向芯片处理通道内输入样 品区带。
典型的多通道辅助进样方法有双十字静压力
电动进样,双十字电动进样,多T电动进样 法等。
17
18
19
激光辅助进样
若样品带有荧光且采用荧光法检测,可不设 置辅助通道,而利用强激光对样品的漂白作 用直接在分离通道内形成样品区带。这种方 法实质上是一种“门”进样, “门”为强 激光束。大功率的激光束被分光器分为能量 不同的两束,能量大的作为“门”光速被聚 集到通道上游靠近样品池处,能量小的光束 被聚集到通道下游作为检测光束。
1.2 气、固样品进样
3
1.1 液态样品进样
芯片进样的主流是液态样品进样,实际中主要有三种形式:区带样品进样、液滴样 品进样、连续样品进样。
固相萃取
固相萃取,可以很容易的将被分析物从复制 基质中提取出来,提高后续分析的可靠性, 同时还可以对样品进行富集,降低微流控芯 片对高灵敏度检测器的依赖。
33
Chip-Based Solid-Phase Extraction Pretreatment for Direct Electrospray Mass Spectrometry Analysis Using an Array of
43
色谱
色谱法利用不同物质在不同相态的选择性分 配,以固定相对流动相中的混合物进行洗脱, 混合物中不同的物质会以不同的速度沿固定 相移动,最终达到分离的效果。
44
Fabrication of Fritless Chromatographic Microchips Packed with Conventional Reversed-Phase Silica Particles
15
16
多通道辅助进样
多通道辅助进样指的是通过设置多条辅助通
道,后经样品源向芯片处理通道内输入样 品区带。
典型的多通道辅助进样方法有双十字静压力
电动进样,双十字电动进样,多T电动进样 法等。
17
18
19
激光辅助进样
若样品带有荧光且采用荧光法检测,可不设 置辅助通道,而利用强激光对样品的漂白作 用直接在分离通道内形成样品区带。这种方 法实质上是一种“门”进样, “门”为强 激光束。大功率的激光束被分光器分为能量 不同的两束,能量大的作为“门”光速被聚 集到通道上游靠近样品池处,能量小的光束 被聚集到通道下游作为检测光束。
1.2 气、固样品进样
3
1.1 液态样品进样
芯片进样的主流是液态样品进样,实际中主要有三种形式:区带样品进样、液滴样 品进样、连续样品进样。
微流控芯片PPT课件

湿法刻蚀是通过化学刻蚀液和被刻蚀物质之间的化学反应将被刻蚀 物质剥离下来的刻蚀方法。大多数湿法刻蚀是不容易控制的各向同性刻 蚀。
特点:选择性高、均匀性好、对硅片损伤少,几乎适用于所有的金属、 玻璃、塑料等材料。 缺点:图形保真度不强,刻蚀图形的最小线宽受到限制。
干法刻蚀的刻蚀剂是等离子体,是利用等离子体和表面薄膜反应, 形成挥发性物质,或直接轰击薄膜表面使之被腐蚀的工艺。
特点:能实现各向异性刻蚀,从而保证细小图形转移后的保真性。 缺点:设备价格昂贵,较少用于微流控芯片的制造。
2021
38
从所产生通道截面形状分类,刻蚀又可分为两类:各向同性 刻蚀和各向异性刻蚀。
11
聚合物材料的表面要有合适的修饰改性方法
用于制作微流控芯片的高分子聚合物主要有三类:热塑 性聚合物、固化型聚合物和溶剂挥发型聚合物。
热塑性聚合物有聚酰胺、聚甲基丙烯酰甲酯、聚碳酸酯、 聚丙乙烯等;
固化型聚合物有聚二甲基硅氧烷(PDMS)、环氧树脂 和聚氨酯等,它们与固化剂混合后,经过一段时间固化变 硬后得到微流控芯片;
31
光刻工艺具体操作步骤
(a) 洗净基片,在基片表面上 镀牺牲层,例如铬等。 (b)在牺牲层上均匀地甩上一层 光刻胶。 (c)将光掩模覆盖在基片上,用 紫外光照射,光刻胶发生光化学 反应。 (d)显影,除去经曝光的光刻胶 (正光胶)或未经曝光的光胶 (负光胶)。烘干后,光刻掩膜 上的二维图形被复制到光胶层上。
2021
21
掩模制备
通常的用于微电子行业的掩膜材料有镀 铬玻璃板或镀铬石英板,在它们表面均匀地 涂上一层对光敏感的光胶。用计算机制图软 件绘制微流控芯片的设计图形,再通过专用 的接口电路控制图形发生器进行光刻,可在 掩膜材料上得到所需的图形。图形发生器相 当于一架特殊的照相机。与一般照相机不同 的是这种照相机并不是由外界物体的光线通 过物镜在底片上成像,而是接受来自计算机 的输入数据成像。
特点:选择性高、均匀性好、对硅片损伤少,几乎适用于所有的金属、 玻璃、塑料等材料。 缺点:图形保真度不强,刻蚀图形的最小线宽受到限制。
干法刻蚀的刻蚀剂是等离子体,是利用等离子体和表面薄膜反应, 形成挥发性物质,或直接轰击薄膜表面使之被腐蚀的工艺。
特点:能实现各向异性刻蚀,从而保证细小图形转移后的保真性。 缺点:设备价格昂贵,较少用于微流控芯片的制造。
2021
38
从所产生通道截面形状分类,刻蚀又可分为两类:各向同性 刻蚀和各向异性刻蚀。
11
聚合物材料的表面要有合适的修饰改性方法
用于制作微流控芯片的高分子聚合物主要有三类:热塑 性聚合物、固化型聚合物和溶剂挥发型聚合物。
热塑性聚合物有聚酰胺、聚甲基丙烯酰甲酯、聚碳酸酯、 聚丙乙烯等;
固化型聚合物有聚二甲基硅氧烷(PDMS)、环氧树脂 和聚氨酯等,它们与固化剂混合后,经过一段时间固化变 硬后得到微流控芯片;
31
光刻工艺具体操作步骤
(a) 洗净基片,在基片表面上 镀牺牲层,例如铬等。 (b)在牺牲层上均匀地甩上一层 光刻胶。 (c)将光掩模覆盖在基片上,用 紫外光照射,光刻胶发生光化学 反应。 (d)显影,除去经曝光的光刻胶 (正光胶)或未经曝光的光胶 (负光胶)。烘干后,光刻掩膜 上的二维图形被复制到光胶层上。
2021
21
掩模制备
通常的用于微电子行业的掩膜材料有镀 铬玻璃板或镀铬石英板,在它们表面均匀地 涂上一层对光敏感的光胶。用计算机制图软 件绘制微流控芯片的设计图形,再通过专用 的接口电路控制图形发生器进行光刻,可在 掩膜材料上得到所需的图形。图形发生器相 当于一架特殊的照相机。与一般照相机不同 的是这种照相机并不是由外界物体的光线通 过物镜在底片上成像,而是接受来自计算机 的输入数据成像。
[课件]微流控技术汇总PPT
![[课件]微流控技术汇总PPT](https://img.taocdn.com/s3/m/ac19083859eef8c75fbfb39b.png)
C、液滴的捕获[5,6]
在没有通电时,液滴会沿着主通道流向下游; 通电时,液滴会 产生极化现象,在介电电泳力的作用下液滴被捕获到微孔中
注意: ITO 铟锡氧化物 In2O3 - SnO2 它们的氧化物 具有半导体特 点,通常用它们 做成膜电极.
28
2015年4月1日
液滴技术 4、液滴的应用
随着液滴技术的发展 成熟,对液滴的研究逐步 转向应用,比较成功的例 子包括:蛋白质结晶研究 、酶分析、细胞分析、材 料制备和复杂过程模拟等 。
15
2015年4月1日
微混合和微反应技术
微混合器的分类汇总[3]
并行叠片 被动式 串联叠片
混沌对流
液滴 磁力搅拌型
微混合器
主动式
声场促进型
电场促进型 其他类型
16
2015年4月1日
微混合和微反应技术
17
2015年4月1日
液滴技术
一种在微尺度通道内,利用流动剪切力与表面张力之间的相互作 用将连续流体分割分离成离散的纳升级及以下体积的液滴的微纳 技术。它是近年来发展起来的一种全新的操纵微小液体体积的技 术[3]。主要有气-液相液滴和液-液相液滴两种。气-液相液滴由于 容易在微通道中挥发和造成交叉污染而限制了其应用。液-液相液 滴根据连续相和分散相的不同又分为水包油( O/W) ,油包水 ( W/O) ,油包水包油( O/W/O) 以及水包油包水( W/O/W) 等,可以 克服液滴挥发、交叉污染等缺点,因而是微流控液滴技术发展的 侧重所在。
18
2015年4月1日
液滴技术
水动力法
水动力法
T型通道法
微液滴生成
气动力法 光控法
电动法
液滴技术
微液滴裂分 微液滴融合 微液滴操控 混合 微液滴分选 微液滴捕获
第1-4章-微流控芯片PPT课件

在两块玻璃板尚未键合时板间空气间隙承担了大部分电压降玻璃板可视为平行板电容器板间吸引力与电场强度的平方成正比因此键合从两块玻璃中那些最接近的点开始下板中可移动的正电荷主要是na与上板中的负电荷中和生成一层氧化物正是这层过渡层使两块玻璃板封接该点完成键合后周围的空气间隙相应变薄电场力增大从而键合扩散开来直至整块密合
第13页/共70页
• The concept of "miniaturized total chemical analysis system" or TAS was proposed by Manz et al.
• the main reason for miniaturization was therefore to enhance the analytical performance of the device rather than to reduce its size.
微流控芯片
• Micro Total Analysis System
(MicroTAS, TAS)
微全分析系统
第3页/共70页
Why miniaturization?
Research into miniaturization is primarily driven by the need to reduce costs by reducing the consumption of expensive reagents and by increasing throughput and automation.
• A novel concept of high pressure liquid chromatog.
• a silicon chip with an open-tubular column and a conductometric detector.
第13页/共70页
• The concept of "miniaturized total chemical analysis system" or TAS was proposed by Manz et al.
• the main reason for miniaturization was therefore to enhance the analytical performance of the device rather than to reduce its size.
微流控芯片
• Micro Total Analysis System
(MicroTAS, TAS)
微全分析系统
第3页/共70页
Why miniaturization?
Research into miniaturization is primarily driven by the need to reduce costs by reducing the consumption of expensive reagents and by increasing throughput and automation.
• A novel concept of high pressure liquid chromatog.
• a silicon chip with an open-tubular column and a conductometric detector.
微流控芯片PPT课件

在化学分析领域的应用
化学合成
药物分析
微流控芯片可用于小规模和高通量的化学 合成,提高合成效率和产物纯度。
用于药物的分离、纯化和分析,提高药物 分析的准确性和灵敏度。
环境监测
食品安全
用于检测水、土壤、空气等环境中的有害 物质和污染物。
用于检测食品中的农药残留、重金属等有 害物质。
在环境监测领域的应用
感谢您的观看
THANKS
食品安全
用于快速检测食品中的有害物质,提高食品安全监管效率。
微流控芯片面临的挑战与解决方案
制造工艺
目前微流控芯片制造工艺成本较高,需要进一步降低成本,提高 生产效率。
流体控制
微流控芯片中的流体控制精度和稳定性有待提高,需要加强相关技 术研发。
交叉污染
不同样本间的交叉污染问题需引起重视,应加强清洗和隔离技术的 研究。
柔性电子技术的不断发展,将推动微 流控芯片在可穿戴设备、生物医学等 领域的应用。
智能化
通过与人工智能、机器学习等技术结 合,微流控芯片将具备更强的数据处 理和决策能力。
微流控芯片在未来的应用前景
生物医学研究
用于疾病诊断、药物筛选和个性化医疗等领域。
环境监测
用于实时监测空气、水质等环境参数,保障公共卫生安全。
04 微流控芯片的应用实例
在生物医学领域的应用
疾病诊断
微流控芯片可用于快速检测和诊断各 种疾病,如癌症、传染病等。
药物筛选
通过微流控芯片技术,可以快速筛选 和测试新药的有效性和安全性。
细胞培养和分化
微流控芯片可以模拟细胞生长和分化 的微环境,用于研究细胞生物学和再 生医学。
基因检测
利用微流控芯片进行基因突变、基因 表达等检测,有助于疾病的预防、诊 断和治疗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据上样和取样的方式不同分为完全电动, 完全压力、压力电动单通道辅助进样。
6
完全电动单通道辅助进样
完全电动单通道辅助进样简称电动进样,指 的是以电动力作为其上样、取样的驱动力, 通过电压切换,在十字交叉口处形成样品区 带并将其引入芯片样品处理通道的方法。
依据电压施加策略的不同,分为简单、悬浮、 门、夹流进样。
缺点:存在进样歧视效应,即由于样品中 各组分的电动淌度不一样,电动淌度大的 进样量大,导致区全压力单通道辅助进样
完全压力单通道辅助进样指的是仅利用压力将样品 区带引入样品处理通道的方法,简称压力进样。
在压力作用下流体的行为与样品组成、管壁带电状 态等基本无关,因此压力进样方法所引入的样品区 带在很大程度上可代表样品中各组分的真实组成, 但向微通道内施加压力操作繁琐,所需设备较精密、 较昂贵,所以该方法实际应用面较窄,主要集中于 芯片液相色谱类操作。
液滴的形成是水、油两相表面张力和剪切力 共同作用的结果。通过改变油相和水相的流 速,即改变表面张力和剪切力的相对大小, 可得到大小不同的液滴。
22
23
反应物的引入
直接进样:当反应比较简单时,可用注射泵 直接将反应物包入液滴,以液滴形成时的条 件作为反应的初始条件,若反应步骤较多, 可以在芯片下游利用旁路通道向液滴内加入 另一种反应物,开始下一步反应。
26
27
一次性试样引入
28
1.3 气/固样品进样
气态样品也可以直接进样。 固态样品在微粒化后,经气或液体携带可
被引入芯片样品处理通道。
29
30
2 样品处理技术
2.1 萃取
2.1.1 固相萃取 2.1.2 液液萃取
2.2 过滤 2.3 电泳 2.4 色谱
31
2.1 萃取
萃取是利用物质在两相中保留行为的不同对 该物质进行提取的一种样品预处理方法。若 两相为互不相溶的两种液体,这种萃取称为 液液萃取;若两相分别为固相和液相,则称 为固相萃取。
1.2 气、固样品进样
3
1.1 液态样品进样
芯片进样的主流是液态样品进样,实际中 主要有三种形式:区带样品进样、液滴样 品进样、连续样品进样。
4
1.1.1 区带样品进样
单通道辅助进样 多通道辅助进样 激光辅助进样
5
单通道辅助进样
单通道辅助进样就是通过在芯片内设置一 条辅助通道,后经样品源向芯片处理通道 内输入样品区带。
微流控芯片功能单元二
1 如何向微流控芯片中引入样品 2 微流控芯片中的样品处理技术:萃取、 过滤、电泳、色谱等
1
1 进样
进样是芯片实验室的关键技术之一,引入样品的量、形 态、方式都会对后续样品处理产生影响,而且由于芯片 体系微小,这种影响有时候是决定性的,所以进样是非 常关键的一步。
进样就是将样品引入芯片的样品处理通道或通道网络, 通常分为上样和取样两步。
20
1.1.2 液滴样品进样
液滴是近年来在微流控芯片上发展起来的一种全新的操 纵小体积液体的技术。液滴的形成类似于乳化现象,传 统的乳化是在两互不相容的液体(如油和水)中加入适 量的表面活性剂并强烈搅拌,使油分散在水中,形成乳 化液;在微流控芯片上产生液滴,是将两种互不相容的 液体,以其中一种作为连续相,另一种作为分散相,分 散相以微小体积分散在连续相中,形成液滴。
根据分散相和连续相的不同,分为w/o(水为分散相, 油为连续相),O/W(水为连续相,油为分散相)型。一 般情况下,水相泛指水溶液,油相泛指与水互不相容的 有机溶剂。
21
液滴的形成
水溶液和油同时从不同的微通道中流出,当 通道疏水时,油浸润微通道,包裹水溶液, 形成W/O型液滴;当通道亲水时,水浸润微通 道,包裹油相,形成O/W型液滴。
毛细管进样:将待测样品先预先吸入毛细管 中,形成一系列体积相对较大的液滴,然后 将毛细管与芯片连接,在注射泵的推动下, 与反应物形成小液滴开始反应。
24
25
1.1.3 连续样品进样
在芯片上实现连续样品进样,通常需采用流 通式试样引入技术,即在芯片的分离分析通 道旁加工与其相连的专用的试样引入通道, 外界试样通过取样导管进入试样引入通道内, 再由此进入分离分析系统。
14
压力电动单通道辅助进样
压力电动单通道辅助进样是一种上样驱动力为压力, 取样驱动力为电动力的进样方法,简称压力电动进 样。
压力电动进样方法因其采用压力上样而使样品区带 能代表样品中各组分的真实组成,又因其采用电动 取样而与电泳、电色谱等重要芯片实验室单元操作 相容。与压力进样方法相似其推广也受限于压力上 样的技术门槛,但因生产压力的方式是多种多样的, 该方法在一个时期内是科学研究的热点之一,除静 压力电动进样方法外,还有注射泵致、气动微泵致 压力电动进样等。
15
16
多通道辅助进样
多通道辅助进样指的是通过设置多条辅助通
道,后经样品源向芯片处理通道内输入样 品区带。
典型的多通道辅助进样方法有双十字静压力
电动进样,双十字电动进样,多T电动进样 法等。
17
18
19
激光辅助进样
若样品带有荧光且采用荧光法检测,可不设 置辅助通道,而利用强激光对样品的漂白作 用直接在分离通道内形成样品区带。这种方 法实质上是一种“门”进样, “门”为强 激光束。大功率的激光束被分光器分为能量 不同的两束,能量大的作为“门”光速被聚 集到通道上游靠近样品池处,能量小的光束 被聚集到通道下游作为检测光束。
芯片进样可由电场、注射泵、静压力、表面张力等方式 驱动。一般意义上的进样通常是针对液态样品,气态样 品也可以直接进样,固态样品在微粒化后,经气或液体 携带可被引入芯片样品处理通道。
2
1.1 液态样品进样
1.1.1 区带样品进样
1.1.2 1.1.3
1 单通道辅助进样 2 多通道辅助进样 3 激光辅助进样 液滴样品进样 连续样品进样
7
8
9
10
11
简单进样和悬浮进样时上样和取样都只涉及 单方向电场,操作简单,在预实验中较常用。
夹流进样涉及多方向电场,可以较好的控制 样品区带的量和长度,在实际中较常用。
门进样可向样品处理通道内连续输入区带, 缺点是输入区带的形态不规则。
12
优点:操作简单,易于实施,是目前主流 的单通道辅助进样技术。
6
完全电动单通道辅助进样
完全电动单通道辅助进样简称电动进样,指 的是以电动力作为其上样、取样的驱动力, 通过电压切换,在十字交叉口处形成样品区 带并将其引入芯片样品处理通道的方法。
依据电压施加策略的不同,分为简单、悬浮、 门、夹流进样。
缺点:存在进样歧视效应,即由于样品中 各组分的电动淌度不一样,电动淌度大的 进样量大,导致区全压力单通道辅助进样
完全压力单通道辅助进样指的是仅利用压力将样品 区带引入样品处理通道的方法,简称压力进样。
在压力作用下流体的行为与样品组成、管壁带电状 态等基本无关,因此压力进样方法所引入的样品区 带在很大程度上可代表样品中各组分的真实组成, 但向微通道内施加压力操作繁琐,所需设备较精密、 较昂贵,所以该方法实际应用面较窄,主要集中于 芯片液相色谱类操作。
液滴的形成是水、油两相表面张力和剪切力 共同作用的结果。通过改变油相和水相的流 速,即改变表面张力和剪切力的相对大小, 可得到大小不同的液滴。
22
23
反应物的引入
直接进样:当反应比较简单时,可用注射泵 直接将反应物包入液滴,以液滴形成时的条 件作为反应的初始条件,若反应步骤较多, 可以在芯片下游利用旁路通道向液滴内加入 另一种反应物,开始下一步反应。
26
27
一次性试样引入
28
1.3 气/固样品进样
气态样品也可以直接进样。 固态样品在微粒化后,经气或液体携带可
被引入芯片样品处理通道。
29
30
2 样品处理技术
2.1 萃取
2.1.1 固相萃取 2.1.2 液液萃取
2.2 过滤 2.3 电泳 2.4 色谱
31
2.1 萃取
萃取是利用物质在两相中保留行为的不同对 该物质进行提取的一种样品预处理方法。若 两相为互不相溶的两种液体,这种萃取称为 液液萃取;若两相分别为固相和液相,则称 为固相萃取。
1.2 气、固样品进样
3
1.1 液态样品进样
芯片进样的主流是液态样品进样,实际中 主要有三种形式:区带样品进样、液滴样 品进样、连续样品进样。
4
1.1.1 区带样品进样
单通道辅助进样 多通道辅助进样 激光辅助进样
5
单通道辅助进样
单通道辅助进样就是通过在芯片内设置一 条辅助通道,后经样品源向芯片处理通道 内输入样品区带。
微流控芯片功能单元二
1 如何向微流控芯片中引入样品 2 微流控芯片中的样品处理技术:萃取、 过滤、电泳、色谱等
1
1 进样
进样是芯片实验室的关键技术之一,引入样品的量、形 态、方式都会对后续样品处理产生影响,而且由于芯片 体系微小,这种影响有时候是决定性的,所以进样是非 常关键的一步。
进样就是将样品引入芯片的样品处理通道或通道网络, 通常分为上样和取样两步。
20
1.1.2 液滴样品进样
液滴是近年来在微流控芯片上发展起来的一种全新的操 纵小体积液体的技术。液滴的形成类似于乳化现象,传 统的乳化是在两互不相容的液体(如油和水)中加入适 量的表面活性剂并强烈搅拌,使油分散在水中,形成乳 化液;在微流控芯片上产生液滴,是将两种互不相容的 液体,以其中一种作为连续相,另一种作为分散相,分 散相以微小体积分散在连续相中,形成液滴。
根据分散相和连续相的不同,分为w/o(水为分散相, 油为连续相),O/W(水为连续相,油为分散相)型。一 般情况下,水相泛指水溶液,油相泛指与水互不相容的 有机溶剂。
21
液滴的形成
水溶液和油同时从不同的微通道中流出,当 通道疏水时,油浸润微通道,包裹水溶液, 形成W/O型液滴;当通道亲水时,水浸润微通 道,包裹油相,形成O/W型液滴。
毛细管进样:将待测样品先预先吸入毛细管 中,形成一系列体积相对较大的液滴,然后 将毛细管与芯片连接,在注射泵的推动下, 与反应物形成小液滴开始反应。
24
25
1.1.3 连续样品进样
在芯片上实现连续样品进样,通常需采用流 通式试样引入技术,即在芯片的分离分析通 道旁加工与其相连的专用的试样引入通道, 外界试样通过取样导管进入试样引入通道内, 再由此进入分离分析系统。
14
压力电动单通道辅助进样
压力电动单通道辅助进样是一种上样驱动力为压力, 取样驱动力为电动力的进样方法,简称压力电动进 样。
压力电动进样方法因其采用压力上样而使样品区带 能代表样品中各组分的真实组成,又因其采用电动 取样而与电泳、电色谱等重要芯片实验室单元操作 相容。与压力进样方法相似其推广也受限于压力上 样的技术门槛,但因生产压力的方式是多种多样的, 该方法在一个时期内是科学研究的热点之一,除静 压力电动进样方法外,还有注射泵致、气动微泵致 压力电动进样等。
15
16
多通道辅助进样
多通道辅助进样指的是通过设置多条辅助通
道,后经样品源向芯片处理通道内输入样 品区带。
典型的多通道辅助进样方法有双十字静压力
电动进样,双十字电动进样,多T电动进样 法等。
17
18
19
激光辅助进样
若样品带有荧光且采用荧光法检测,可不设 置辅助通道,而利用强激光对样品的漂白作 用直接在分离通道内形成样品区带。这种方 法实质上是一种“门”进样, “门”为强 激光束。大功率的激光束被分光器分为能量 不同的两束,能量大的作为“门”光速被聚 集到通道上游靠近样品池处,能量小的光束 被聚集到通道下游作为检测光束。
芯片进样可由电场、注射泵、静压力、表面张力等方式 驱动。一般意义上的进样通常是针对液态样品,气态样 品也可以直接进样,固态样品在微粒化后,经气或液体 携带可被引入芯片样品处理通道。
2
1.1 液态样品进样
1.1.1 区带样品进样
1.1.2 1.1.3
1 单通道辅助进样 2 多通道辅助进样 3 激光辅助进样 液滴样品进样 连续样品进样
7
8
9
10
11
简单进样和悬浮进样时上样和取样都只涉及 单方向电场,操作简单,在预实验中较常用。
夹流进样涉及多方向电场,可以较好的控制 样品区带的量和长度,在实际中较常用。
门进样可向样品处理通道内连续输入区带, 缺点是输入区带的形态不规则。
12
优点:操作简单,易于实施,是目前主流 的单通道辅助进样技术。