模电多种波形发生器
555构成的多种波形发生器电路

555构成的多种波形发生器电路(二)555构成的多种波形发生器(一)TL431高精度的恒流源电路单电源同相输入式交流放大电路图时间:2011-02-05 08:45来源:未知作者:电路图点击:12次电源Vcc通过R1和R2分压,使运放同相输入端电位由于C隔直流,使RF引入直流全负反馈。
所以,静态时运放输出端的电压V0=V-≈V+=+Vcc/2;C通交流,使RF引入交流部分负反馈,是电压串联负反馈。
放大电路的电压增益为放大电路的输入电阻Ri=R1/R2/rif≈R1/R2,放大电路的输出电阻R0=r0f≈0。
负电压的产生电路图(非常好)时间:2011-02-13 07:24来源:未知作者:电路图点击:97次正电压的用处不用我说了,在电子电路中我们常常需要使用负的电压,比如说我们在使用运放的时候常常需要给他建立一个负的电压。
下面就简单的以正5V电压到负电压5V为例说一下他的电路。
通常我需要使用负电压时一般会选择使用专用的负压产生芯片,但这些芯片都比较贵比如ICL7600,LT1054等等。
哦差点忘了MC34063了这个芯片使用的最多了,关于34063的负压产生电路我这里不说了在datasheet中有的。
下面请看我们在单片机电子电路中常用的两种负压产生电路。
现在的单片机有很多都带有了PWM输出,我们在使用单片机的时候PWM很多时候是没有用到的用他辅助产生负压是不错的选择。
上面的电路是一个最简单的负压产生电路了。
他使用的原件是最少的了我们只需要给他提供1kHZ左右的方波就可以了,相当的简单。
这里需要注意这个电路的代负载能力是很弱的,同时在加上负载后电压的降落也比较大。
由于上面的原因产生了下面的这个电路LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
多种波形发生器实验分析报告

多种波形发生器实验分析报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (3)3. 实验原理 (4)二、实验内容与步骤 (5)1. 波形发生器设计与搭建 (6)1.1 设计要求与方案选择 (7)1.2 波形发生器硬件搭建 (9)1.3 波形发生器软件编程 (10)2. 多种波形合成与输出 (12)2.1 合成波形的设计与实现 (12)2.2 波形输出设置与调整 (13)2.3 实时监控与数据分析 (15)3. 实验测试与结果分析 (16)3.1 测试环境搭建与准备 (17)3.2 实验数据采集与处理 (18)3.3 结果分析与讨论 (19)三、实验结果与讨论 (20)1. 实验结果展示 (21)2. 结果分析 (22)2.1 各波形参数对比分析 (23)2.2 性能评估与优化建议 (24)3. 问题与改进措施 (25)四、实验总结与展望 (26)1. 实验成果总结 (27)2. 存在问题与不足 (28)3. 后续研究方向与展望 (29)一、实验概述本次实验旨在研究和分析多种波形发生器的性能特点,包括产生信号的频率、幅度、波形稳定性等方面。
实验中采用了多种类型的波形发生器,如正弦波、方波、三角波、梯形波等,并对其输出波形进行了详细的测量和分析。
实验过程中,我们首先对各种波形发生器的基本功能进行了测试,确保其能够正常工作。
我们对不同波形发生器产生的波形进行了对比分析,重点关注了波形的频率、幅度和波形稳定性等关键指标。
我们还对波形发生器的输出信号进行了频谱分析和噪声测试,以评估其性能表现。
通过本次实验,我们获得了丰富的实验数据和经验,为进一步优化波形发生器的设计提供了有力支持。
实验结果也为我们了解各种波形发生器在实际应用中的性能表现提供了重要参考。
1. 实验目的本次实验的主要目的是深入研究和理解多种波形发生器的原理及其在实际应用中的表现。
通过搭建实验平台,我们能够模拟和观察不同波形(如正弦波、方波、三角波等)的产生与特性,进而探究其各自的优缺点以及在不同场景下的适用性。
模电实验波形发生器实验报告

模电实验波形发生器实验报告模电实验波形发生器实验报告实验名称:模拟电路波形发生器设计与制作实验目的:1.了解正弦波、方波、三角波等基本波形的特性及产生方法;2.掌握模拟电路的基本设计方法和制作技巧;3.加深对电路中各元件的认识和使用方法;4.提高实际操作能力和动手能力。
实验原理:波形发生器是一种模拟电路,在信号发生领域具有广泛的应用。
常见的波形发生器包括正弦波发生器、方波发生器、三角波发生器等。
正弦波发生器:正弦波发生器是一种周期性信号发生器,通过正弦波振荡电路产生高精度的正弦波信号。
常见的正弦波振荡电路有RC,LC和晶体振荡管等。
我们使用的正弦波发生器为Wien桥电路。
方波发生器:方波发生器属于非线性信号发生器,根据输入信号的不同,可以分为单稳态脉冲发生器、双稳态脉冲发生器和多谐振荡器等。
我们使用的方波发生器为双稳态脉冲发生器。
三角波发生器:三角波发生器是一种周期信号发生器,通过将一个线性变化的信号幅度反向后输入到一个比例放大电路中,就可以得到三角波信号。
我们使用的三角波发生器为斜率发生器。
实验步骤:1.按照电路原理图连接电路;2.打开电源,调节电压并测量电压值;3.调节电位器,观察波形在示波器上的变化;4.分别测量各波形的频率和幅值,并记录实验数据;5.将实验结果进行比较分析。
重点技术:1.电路连接技巧;2.相关工具的正确使用方法;3.电路元器件的选择和使用;4.测量和计算实验数据的方法。
注意事项:1.实验中使用电源时应注意电压值和电流值,避免短路和电源过载现象的发生;2.连接电路时应注意电路的接线和连接端子的位置,避免短路和错误连接的情况;3.在实验中应注意对电路元器件的选择和使用,确保电路的正常工作;4.测量和计算实验数据时应认真仔细,避免计算错误和实验数据异常的情况。
实验结论:通过本次实验,我们成功设计和制作了正弦波发生器、方波发生器和三角波发生器。
在实验过程中,我们掌握了模拟电路的基本设计方法和制作技巧,加深了对电路中各元件的认识和使用方法,并提高了实际操作能力和动手能力。
用集成运放组成的正弦波、方波、三角波产生电路

物理与电子工程学院《模拟电路》课程设计题目:用集成运放组成的正弦波、方波、三角波产生电路专业电子信息工程专业班级14级电信1班学号1430140227学生姓名邓清凤指导教师黄川完成日期:2015 年12 月目录1 设计任务与要求 (3)2 设计方案 (3)3设计原理分析 (5)4实验设备与器件 (8)4.1元器件的引脚及其个数 (8)4.2其它器件与设备 (8)5实验内容 (9)5.1 RC正弦波振荡器 (9)5.2方波发生器 (11)5.3三角波发生器 (13)6 总结思考 (14)7 参考文献 (15)用集成运放组成的正弦波、方波、三角波产生电路姓名:邓清凤电子信息工程专业[摘要]本设计是用12V直流电源提供一个输入信号,函数信号发生器一般是指自动产生正弦波、方波、三角波的电压波形的电路或仪器。
电路形式可采用由运放及分立元件构成:也可以采用单片机集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用UA741芯片搭建电路来实现方波、三角波、正弦波的电路。
[关键词]直流稳压电源12V UA741集成芯片波形函数信号发生器1 设计任务与要求(1)并且在proteus中仿真出来在同一个示波器中展示正弦波、方波、三角波。
(2)在面包板上搭建电路,并完成电路的测试。
(3)撰写课程设计报告。
(4)答辩、并提交课程设计报告书2 设计方案方案一:采用UA741芯片用集成运放组成的正弦波、方波、三角波产生电路优点:分立元件结构简单,可用常用分立元器件,容易实现,技术成熟,完全能够达到技术参数的要求,造价成本低。
缺点:设计、调试难度太大,周期太长,精确度不是太高。
图1 集成运放组成的正弦波、方波、三角波产生电路方案二:用8038制作的多波形信号发生器优点:具有在发生温度变化时产生低的频率漂移,最大不超过50ppm/℃;具有正弦波、三角波和方波等多种函数信号输出;正弦波输出具有低于1%的失真度;三角波输出具有0.1%高线性度;具有0.001Hz~1MHz的频率输出范围;工作变化周期宽,2%~98%之间任意可调;高的电平输出范围,从TTL电平至28V;易于使用,只需要很少的外部条件缺点:成本较高。
ne555多路波形发生器实训报告

ne555多路波形发生器实训报告实训报告:ne555多路波形发生器一、实训目的:通过实际操作,了解ne555多路波形发生器的工作原理、特点和应用,学习电路设计、调试和测量的方法和技能,提高电路设计和调试能力。
二、实验原理:ne555是一种经典的集成电路,其内部组成与应用广泛,常用于脉冲发生器、多谐振荡器、定时器等电路中。
ne555多路波形发生器是基于ne555组成的一个数字波形发生器,其主要特点是低成本、低功耗、方便搭建、锁相能力强等。
ne555多路波形发生器的电路图如下图所示:图1 ne555多路波形发生器电路图根据电路图,可由以下步骤得到四种不同的波形信号:1. 正弦波信号(SINE):在C1、R1和R2组成的RC电路中产生正弦波信号,经过Amp1(AD623)的放大后输出一定幅度的正弦波信号。
2. 三角波信号(TRIANGLE):在三角波发生电路中,通过IC1C (ne555)和C2、R3先产生一个同频率、占空比为50%的方波,在通过C4、R5、R6组成的RC电路呈现出一个升降沿均匀的三角波信号,通过Amp2(OP07)的放大电路获得一定幅度的三角波信号。
3. 方波信号(SQUARE):在IC1A中用R4、R7调整占空比并产生一个同频率的方波信号,通过Amp3 (LM358N)的放大电路获得一定幅度的方波信号。
4. 脉冲信号(PULSE):在IC1B中用R8、C5调整脉冲宽度并产生一个脉冲信号,通过Amp4 (LM358N)的放大电路获得一定幅度的脉冲信号。
三、实验步骤:1. 准备实验器材:ne555多路波形发生器电路板、示波器、万用表、电源等。
2. 将电源线插入电源插座,开启电源。
3. 连接示波器的正负极到电路板上的相应接线柱,将示波器调整至适合的工作状态。
4. 将万用表接到电路板上,测量各个元器件的电压、电流等参数,检查电路工作状态是否正常。
5. 分别连接SINE、TRIANGLE、SQUARE、PULSE信号输出接口到测试终端或其他数字电路输入接口(如计数器、定时器等),测试各种波形信号的频率、幅度、占空比等性能指标,并与理论值进行比较。
模电实验常用仪器的介绍及操作

模拟电子技术实验 1 实验一常用电子仪器使用及元件测试实验一常用电子仪器使用正确地观察电子技术实验现象、测量实验数据,必须学会常用电子仪器及设备的正确使用方法,掌握基本的电子测试技术,这也是电子技术实验课的重要任务之一。
所使用的主要电子仪器有:SS-7804型双踪示波器,EE-1641D函数信号发生器,直流稳压电源,DT890型数字万用表和电子技术实验学习机。
其中示波器的使用较难掌握,是我们学习的重点,要进行反复的操作练习,达到熟练掌握的目的。
一、实验内容1. SS-7804(8702)型示波器的面板及其各键钮的功能SS-7804型示波器是双踪示波器,它可以同时观察两个信号的波形,即信号从CH1和CH2输入,便可在荧光屏上得到两个信号的波形;以便分析其特点。
电源按钮POWER 电源开关:按下状态(ON),电源接通;弹出状态(STBY),即切断电源。
垂直系统CH1、CH2 输入端口:测试信号通过测试笔或探头从此端口输入。
CH1、CH2 输入通道选择按钮:按下该钮即被选通,荧屏上即显示该通道的信号波形。
〔VOLTS/DIV〕垂直灵敏度选择开关:对于通道1(CH1)和通道2(CH2)所输入信号的幅度应选择适当的灵敏度。
〔▲ POSITION ▼〕垂直位移旋钮:顺时针旋转,亮线(波形)上升;逆时针旋转,亮线(波形)下降。
即调整亮线(波形)至便于观察、测量即可。
DC/AC 输入耦合方式选择按钮:按下为 DC耦合——即直流耦合,弹出为 AC耦合——交流耦合。
GND 输入接参考地按钮:按下时为接参考地;输入信号被切断,垂直放大器的输入端被接地。
ADD 信号叠加按钮:按下该键,示波器将显示通道1(CH1)和通道2(CH2)两路信号进行代数和的波形,既显示CH1+CH2 的波形。
INV 信号取反按钮:按下该键,将通道2(CH2)输入的信号反向。
*若同时按下了INV、ADD ,既是显示通道1(CH1)和通道2(CH2)两路信号进行代数差的波形,既显示CH1- CH2 的波形。
北邮模电实验报告函数发生器

北京邮电大学课程头验报告课杲程名称:电子测量与电子电路设计题目:函数信号发生器院系: 电子工程学院电子科学与技术专业班级2013211209学生姓名:刘博闻学号2013211049指导教师:咼惠平摘要函数信号发生器广泛地应用于各大院校和科研场所。
随着科技的进步,社会的发展,单一的函数信号发生器已经不能满足人们的需求,本实验设计的正是多种波形发生器。
本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。
方波一三角波发生电路由自激的单线比较器产生方波,通过RC积分电路产生三角波,在经过差分电路可实现三角波—正弦波的变换。
本电路振荡频率和幅度用电位器调节,输出方波幅度的大小由稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。
它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。
关键词:三角波方波正弦波幅度调节频率调节设计要求 (1)1 •前言 (1)2. 方波、三角波、正弦波发生器方案 (1)2.1原理框图 (1)2.2系统组成框图 (2)3. 各组成部分的工作原理 (2)3.1方波-三角波产生电路的工作原理 (2)3.2三角波-正弦波转换电路的工作原理 (4)3.3总电路图 (6)4. 用Mutisim电路仿真 (7)4.1方波一三角波电路的仿真 (7)4.2方波一正弦波电路的仿真 (8)5电路的实验结果及分析 (9)5.1方波波形产生电路的实验结果 (9)5.2方波---三角波转换电路的实验结果 (10)5.3正弦波发生电路的实验结果 (11)5.4实验结果分析 (12)6. 实验总结 (12)7. 仪器仪表清单 (13)7.1所用仪器及元器件: (13)7.2仪器清单表 (13)8. 参考文献 (16)9. 致谢 (166)方波一三角波一正弦波函数信号发生器设计要求1. 设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
基于NE555的多波形发生器的设计

引言锯齿波发生器是一种常用的信号发生电路,广泛地应用于各种电路中,如示波器,开关电源等。
它已有相当成熟的电路:根据对锯齿波形不同的要求,用不同的方法求设计不同的锯齿波发生器。
既有数字的,也有模拟的。
模拟的锯齿波发生器的线路很多,当线性度要求很高时,一般都很复杂。
本文介绍的锯齿波发生器是基于价廉物美的555定时器时基电路,用性能稳定的恒流源对电容的充放电而得到的高精度锯齿波发生器。
第一章设计任务及要求1.设计任务及要求1.1 设计任务利用555定时器和结型场效应管构成的恒流源设计一高线性度的锯齿波发生器。
1.2 设计要求用555定时器和结型场效应管构成的恒流源设计出一个高线性度的锯齿波发生器。
第二章设计思路及各原理1.555定时器555定时器是一种数字电路与模拟电路相结合的中规模集成电路。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳态触发器和多谐振荡器等,因而广泛用于信号的产生、变换、控制与检测。
1.1 555定时器的工作原理555定时器产品有TTL型和CMOS型两类。
TTL型产品型号的最后三位都是555,CMOS型产品的最后四位都是7555,它们的逻辑功能和外部引线排列完全相同。
555定时器的电路如图2-1所示。
它由三个阻值为5kΩ的电阻组成的分压器、两个电压比较器C1和C2、基本RS触发器、放电晶体管T、与非门和反相器组成。
图2-1-1分压器为两个电压比较器C1、C2提供参考电压。
如5端悬空,则比较器C1的参考电压为,加在同相端;C2的参考电压为,加在反相端。
是复位输入端。
当=0时,基本RS触发器被置0,晶体管T导通,输出端u0为低电平。
正常工作时,=1。
u11和u12分别为6端和2端的输入电压。
当u11>,u12> 时,C1输出为低电平,C2输出为高电平,即=0,=1,基本RS触发器被置0,晶体管T导通,输出端u0为低电平。
当u11<,u12< 时,C1输出为高电平,C2输出为低电平,=1,=0,基本RS触发器被置1,晶体管T截止,输出端u0为高电平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁工业大学模拟电子技术基础课程设计(论文)题目:函数信号发生器的设计与制作院(系):工程技术学院专业班级:电气工程及自动化学号:11学生姓名:吴小强指导教师:(签字)起止时间:2013.06.24 —2013.07.5I经乂咪収翼辽宁工业大学课程设计说明书(论文)课程设计(论文)任务及评语院(系):工程技术学院教研室:电子信息工程辽宁工业大学课程设计说明书(论文)摘要在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。
随着集成电路的迅速发展, 用集成电路可很方便地构成各种信号波形发生器。
用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。
信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功或大或小、频率或高或低的振荡器。
函数信号发生器的实现方法通常有以下几种:(1)用分立元件组成的函数发生器:通常是单函数发生器且频率不高,其工作不很稳定,不易调试。
(2)可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。
早期的函数信号发生器IC,如L8038、BA205、XR2207/2209 等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调节方式也不够灵活,频率和占空比不能独立调节,二者互相影响。
(3)利用单片集成芯片的函数发生器:能产生多种波形,达到较高的频率,且易于调试• (4)利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并达到很高的频率。
但成本较咼。
目录一、设计要求 (4)二、设计的作用、目的 (4)三、性能指标 (4)四、设计方案的选择及论证 (4)五、函数发生器的具体方案 (5)1•总的原理框图及总方案........ 错误!未定义书签。
2. ...................................................................................................... 各组成部分的工作原理.. (6)2.1方波发生电路 (7)2.2角波发生电路 (8)2.3正弦波发生电路 (9)2.4直流稳压电源的设计 (3)2.5方波---三角波转换电路的工作原理 (13)2.6三角波一正弦波转换电路工作原理 (15)3•总电路图 (17)六、实验结果分析 (17)七、实验总结 (18)八、参考资料 (19)函数信号发生器设计报告-、设计要求1.用集成运放组成正弦波、方波和三角波发生器。
2.幅值和频率自定义。
3.正弦波、方波和三角波的幅值、频率可调。
、设计的作用、目的1.掌握函数信号发生器工作原理。
2.熟悉集成运放的使用。
3.熟悉Multisim 软件。
三、性能指标1.输出波形:正弦波、方波、三角波等;2.频率范围:0.02〜100 HZ3.输出电压:方波U=18B角波U=18V正玄波U=18;四、设计方案的选择及论证函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波一方波,再将三角波变成正弦波或将方波变成正弦波等等。
方案一:由比较器和积分器组成方波一三角波产生电路,比较器输出的方波经过积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
方案二:文氏桥振荡器产生正弦波输出,用集成运放构成电压比较器,将正弦波信号变换成方波信号输出。
用运放构成积分电路,将方波信号变换成三角波信号输出。
方案二同方案一比较,对于三角波的产生有一定的麻烦,因为题目需要频率为连续可调,但幅度稳定性难以达到要求;方案一由于采用运算放大器组成积分电路, 因此可实现恒流充电,使三角波线性大为改善。
由此,本设计采用方案一五、函数发生器的具体方案总体设计方案及框图三角波正弦波图1.1总体设计方案框图多波形信号发生器方框图如图1.1所示。
本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波一三角波一正弦波函数发生器的设计方法。
并采用先产生方波一三角波,再将三角波变换成正弦波的电路设计方法:由比较器和积分器组成方波一三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
设计差分放大器时,传输特性曲线要对称、线性区要窄,输入的三角波的的幅度Um应正好使晶体管接近饱和区或截止区。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
2. 各组成部分的工作原理2.1方波发生电路从一般原理来分析,可以在滞回比较器电路的基础上,靠正反馈和RC充放电回路组成矩形波发生电路,由于滞回比较器的输出只有两种可能的状态,高电平或低电平,两种不同的输出电平式RC电路进行充电和放电,于是电容上的电压降升高或降低,而电容的电压又作为滞回比较器的输入电压,控制其输出端状态发生跳变,从而使RC电路由充电过程变成放电过程或相反,如此循环往复,周而复始, 最后在滞回比较器的输出端即可得到一个高低电平变化周期性交替的方波信号.方波发生电路仿真电路模型如图5-1和5-2所示图5-1方波发生电路仿真模拟2.2三角波发生电路在产生方波之后,利用此波形输入到一个积分电路便可输出一个三角波。
由于三角波信号是电容的充放电过程形成的指数形式,所以线性度较差,为了能得到线性度较好的三角波,可以将运放和几个电阻,电容构成积分电路。
三角波发生电路仿真电路模型如图5-2所示:图5-2图5-2三角波发生电路仿真模拟2.3 正弦波发生电路利用差分放大器传输特曲线的非线性,将三角波信号转化成正弦波信号。
其传输特性曲线越对称,线性区越窄越好,三角波的幅值u pp应正好使晶体管接近饱和区和截止去。
正弦波发生电路仿真电路模型如图5-3所示:VEt ; ; ■ ■;.......... h'EK........................................................................................... -1-2Vi:*h Isaq^LntKey ■ AJ?■ ■ es ■ ■■ ■#76uF-RJL--・・・・・・・R4・・, 吟阴I总L114■QStWhiF^POL ■ ■ ■ b■ ■ ™ ■ ■ ................ .......................... ■dDOK^LW;=Key =? A :::ARS…6.3*2''5)%2H22-19A ………疔・o' 1—ll—■+ II 亂.n *协DKQjLINM C7........... IW U F-POLTTQ2*T&uF-POL3M22-19Aa- 2N22TSA射.Kg R122.0lfi图5-3方波仿真图如下Oscilloscope-XSCl三角波仿真图如下正弦波仿真图如下I M I Oscilloscope-XSClOsdlloscope-XSCl2.4直流稳压电源设计电源电压由220v 交流电源组成外加3个三极管2个9013 —个8050组成的输 出串联型稳压电源的实验电路图。
其中整流部分采用了 4个二极管组成的桥式整. 十T1出Time137 636 m 5社fta 材钊_A11 913 VReverse J GISDC1我字5 ms1VMSVExt C72-T1•29.去M uVTffir€ba==a ■ 1 ■ ■ n・!■・・・•n 1 i ■ n m ■ ・・-- ..... .........................'*DT■ .TH .........................1 1'TO 1 1-BS-1N40M - - - -1N4flO7 …1H4QQ7 • • HW7C6JWJ2:丄,4 Uf --252 :C2' B' ■ ■ :47QuF ;PD[.............. V T1 B .・ VEfJT NPN VICTUAL■XtKey.-.^---VT2BJtjJRJ_VJRTUAL“06■X,1N4J W7 …•4 C1 ................... .丰击duF ・jP0*.......... 土⑵頁POL..CKsnr^l A':D ■.■¥ pOEiiicn |-AC ] o 厂Sc 旺1200止耳9山X :po5rtm | 0|[V7f 严 i 昭 |流器,型号为1N4007,。
滤波电容C1、C2 一般选取几百至几千微法。
当稳压器距离蒸馏滤波电路较远时,在输入端必须接入电容器C3,以抵消线路的电感效应,防止产生自激振荡。
输出端电容C4用以滤除输出端的高频信号,改善电路的暂态响应。
2.5方波---三角波转换电路的工作原理图5-7为方波-三角波转换电路,其中运算放大器用双运放器741 —DIV参数选择:在电容C1、C2处放置了选择开关,可以满足课设要求的两个频率范围1 〜10Hz、10 〜100Hz当需要1〜10Hz时,开关选择C2=1卩F,取R4=5.1k「, RP2为100Q电位器;当需要10〜100Hz时,取C2=100nF以实现频率波段的转换,R4及RP2的取值不变。
平衡电阻R s =10^]。
工作原理如下:若a点断开,运算发大器A1 (左)与R1、R2及R3 RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。
运放A2 (右)与R4 RP2 C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出电压Uo2为O21(R4 RP2)C2U°1dt当U°1 "V CC时, UO2-(V cc) t _ 7cc t (民RF2)C2(民RR)C2图5-7若a 点闭合,即比较器与积分器首尾相连,形成闭环电路,则自动产生方波- 三角波。