2019线性代数辅导讲义练习参考答案(1)
线性代数讲义课后习题答案

线性代数讲义课后习题答案
《线性代数讲义课后习题答案》
在学习线性代数的过程中,课后习题是巩固知识、提高能力的重要途径。
下面我们将针对线性代数讲义中的一些课后习题进行解答,希望能够帮助大家更好地理解和掌握线性代数的知识。
1. 解题思路
首先,我们要明确线性代数的基本概念和原理,包括向量、矩阵、行列式、线性方程组等。
在解题过程中,要灵活运用这些概念和原理,结合具体题目的要求,采取合适的方法和技巧进行分析和求解。
2. 举例说明
举例来说,对于矩阵的运算,我们需要掌握矩阵的加法、减法、数乘、矩阵乘法等基本运算法则,然后根据题目给出的具体矩阵进行计算。
对于行列式的计算,我们需要了解行列式的性质和计算方法,然后根据题目给出的矩阵计算其行列式的值。
3. 深入探讨
在解题过程中,还需要注意一些特殊情况和问题。
比如,当矩阵不满秩时,如何求解其逆矩阵?当线性方程组无解或有无穷多解时,如何判断和求解?这些都是需要深入探讨和思考的问题。
4. 总结归纳
最后,我们要对解题过程进行总结和归纳,总结出解题的一般规律和方法,以便在以后的学习和应用中能够更加灵活和熟练地运用线性代数的知识和技巧。
通过以上的解题思路、举例说明、深入探讨和总结归纳,相信大家对线性代数
讲义中的课后习题有了更清晰的认识和理解。
希望大家在学习线性代数的过程中能够勤加练习,不断提高自己的解题能力,从而更好地掌握线性代数的知识和方法。
2019年春线性代数补充习题与参考答案

线性代数补充习题第一章 行列式一、填空题1.220a b a b =,则b a ,满足的条件是________ .2.若0010413≠xx x,则x 满足的条件是________ .3.排列3712456的逆序数为________ . 4.排列123(n 1)n -L 的逆序数为________ .5.行列式=0001000000000c b a ________ .6.行列式=-00001002001000ΛΛΛΛΛΛΛΛΛnn ________ . 7.设行列式12230503--a中,余子式632=M ,则=a ________ . 二、选择题1.下列行列式中值为0的是( ).(A )行列式中有两行对应元素之和为0 (B )行列式中对角线上元素全为0(C )行列式中有两行含有相同的公因子 (D )行列式中有一行与另一列对应元素成比例2.在函数xx x xxx f 21112)(---=中,3x 的系数是( ).(A )1 (B )-2 (C )3 (D )43.设121=b b ,则=++22121121111b a a a b a a a ( ).(A )-2 (B )-1 (C )1 (D )24.设1333231232221131211=a a a a a a a a a ,则111112132121222331313233423423423a a a a a a a a a a a a --=-( ). (A )-12 (B )12 (C )-24 (D )245.设0333231232221131211≠=a a a a a a a a a D ,ij A 是D 元素ij a 的代数余子式(3,2,1,=j i ),若0333223113≠++j j j A a A a A a ,则( ).(A )1=j (B )2=j (C )3=j (D )1=j 或3=j 6.下列选项是偶排列的是( )(A )12435 (B )54321 (C )32514 (D )542317.设001000102001000a =-,则a =( ) (A )12-(B )12(C )1 (D )-1 8.如果线性方程组12312312313231x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪-+=⎩有唯一解,则λ必须满足( )(A )1λ≠ (B )15λ≠-(C )15λ≠ (D )1λ≠- 三、判断题1.交换行列式的两行(列),行列式的值不变.( )2.n 阶行列式中,若有n n -2个以上元素为0,则行列式的值为0.( )3.333333222222111111d c c b b a d c c b b a d c c b b a +++++++++333222111c b a c b a c b a =333222111d c b d c b d c b +.( )4.元素ij a 的代数余子式ij A 与ij a 所在有行、列有关,而与ij a 的值无关.( )5.10100001111010001100111001111100010111100010001d c b a dc b a +++=.( )6.n 阶行列式中,某行元素全为0,则行列式的值为0.( )第一章 行列式1、a b =2、0≠x 且2≠x3、74、05、abc6、!)1(2)1(n n n -- 7、3-二、选择题1、A2、B3、C4、A5、C6、B7、A8、B三、判断题1、×2、√3、×4、√5、√6、√第二章 矩阵一、填空题1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010501,10001001B x A ,且B A =,则=x ________ . 2.设⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=23,1102b a B A ,若BA AB =,则b a ,为 .3.设⎥⎦⎤⎢⎣⎡=101a A ,则=nA . 4.设()⎥⎦⎤⎢⎣⎡=+-=2011,522A x x x f ,则()=A f . 5.设⎥⎦⎤⎢⎣⎡=5221A ,则A 的伴随矩阵=*A . 6.设)0(≠-⎥⎦⎤⎢⎣⎡=cb ad d c b a A ,则A -1= . 7.若⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A O21(n i a i ,,2,1,0Λ=≠),则=-1A .8.设3=A ,且A 为二阶方阵,则=A 3 .9.已知⎥⎦⎤⎢⎣⎡=012301A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021B ,则=AB .10.21121214X ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,则=X .1.=⎥⎦⎤⎢⎣⎡++++c b b a z y y x ( ). (A )⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++c b b z y y c b a z y x (B )⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++c b z y b a y x (C )⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡c b z y b a y x (D )⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++c b a z y x b b a y y x2.设C B A ,,均为n 阶方阵,且E ABC =,则必有( ). (A )E CBA = (B )E BCA = (C )E BAC = (D )E ACB =3.已知矩阵 )(,n m B A m n n m ≠⨯⨯,则下列运算结果不为n 阶方阵的是( ). (A )BA (B )AB (C )TBA )( (D )T T B A 4.若A 是( ),则必有A A T-=.(A )可逆矩阵 (B )三角矩阵 (C )初等矩阵 (D )反对称矩阵 5.设B A ,均为n 阶方阵,则下列运算正确的是( ).(A )()kk kB A AB = (B )A A -=-(C )()()B A B A B A +-=-22 (D )若A 可逆,0≠k ,则()111---=A k kA6.矩阵A 经初等行变换化为行阶梯形矩阵后( ).(A ) 秩变大 (B )秩变小 (C )秩不变 (D )化为单位方阵 7.设A 是3阶可逆矩阵,λ为实数,如果A A 8=λ,则( ). (A )2=λ (B )2-=λ (C )1=λ (D )8=λ 8.设A 是n 阶方阵,k 为非零实数,则=-kA ( ).(A )()A k nn1- (A )A k n(C )A k - (D )A k9.设B A ,均为n 阶矩阵,则必有( ).(A )B A B A +=+ (B )BA AB = (C )BA AB = (D )()111---+=+B A B A三、判断题1.设B A ,都是n m ⨯矩阵,则A B B A +=+.( ) 2.两个n 阶可逆矩阵之和一定是可逆矩阵.( )3.如果A 与B 可交换,且A 可逆,则1-A 与B 可交换.( ) 4.n 阶方阵A 可逆的充分必要条件是0=A .( )5.设C B A ,,都是n 阶方阵,且0≠A ,若AC AB =,则C B =.( ) 6.设B A ,都是n 阶方阵,若0=AB ,则0=B .( ) 7.若A 与B 为n 阶方阵,则BA AB =.( )8.设A 与B 为n 阶方阵,且A 为对称矩阵,则AB B T 也是对称矩阵.( ) 9.设A 与B 为n 阶方阵,则B A AB =.( )10.若A 和B 皆为n 阶方阵,则必有B A B A +=+.( )第二章 矩阵一、填空题1、52、0,11==b a3、⎥⎦⎤⎢⎣⎡101na 4、⎥⎦⎤⎢⎣⎡5014 5、⎥⎦⎤⎢⎣⎡--1225 6、⎥⎦⎤⎢⎣⎡---a c b d bc ad 17、⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211n a a a O8、27 9、6- 10、1012⎡⎤⎢⎥-⎣⎦二、选择题1、C2、B3、B4、D5、D6、C7、A8、A9、C三、判断题1、√2、×3、√4、×5、√6、×7、×8、√9、√ 10、×第三章 向量组的线性相关性一、填空题1.设()()TT2,3,1,1,1,221-=-=αα,若()T5,,13λα=可由21,αα线性表示 ,则=λ .2.设()()()1231,2,3,5,4,1ααα===,则12,αα的线性相关性为线性 .3.设()()()1231,2,3,2,2,1,3,4,3ααα===,则123,,ααα的线性相关性为线性 .4.若向量组321,,ααα线性无关,则321321211,2,αααβααβαβ++=+==的线性关系为 . 5.若向量组()()()TTTt t 1,0,0,0,2,1,0,1,12321+==+=ααα的秩为2,则=t .6.若向量组()()()TTTk k k 0,1,,2,2,,7,1,6321==+=ααα的秩为3,则≠k .二、选择题1.向量组n ααα,,,21Λ线性无关的充要条件是( ). (A) n ααα,,,21Λ均不为零向量(B) n ααα,,,21Λ中任意两个向量的对应分量不成比例 (C) n ααα,,,21Λ中有一个部分向量线性无关(D) n ααα,,,21Λ中任意一个向量都不能由其余1-n 个向量线性表示 2.设向量组321,,ααα线性无关,则与321,,ααα等价的向量组为( ). (A) 3221,αααα++ (B) 2121214,3,,αααααα-+ (C) 31312121,,,αααααααα-+-+ (D) 3221,αααα-+ 3.设向量组γβα,,线性无关,δβα,,线性相关,则( ). (A) α必可由δγβ,,线性表示 (B) β必不可由δγα,,线性表示 (C)δ必可由γβα,,线性表示 (D) δ必不可由γβα,,线性表示4.设向量组12,s αααL 的秩等于3,则( ).(A) 12,s αααL 任意3个向量都线性无关 (B) 12,s αααL 中没有零向量(C) 12,s αααL 任意4个向量都线性相关 (D) 12,s αααL 任意2个向量都线性无关5. 向量组123(,1,1),(1,,1),(1,1,)T T Ta a a ααα==-=-线性相关,则=a ( )(A) 12-或 (B)13-或 (C) 10或 (D)32或三、判断题1.设向量组r ααα,,,21Λ与s βββ,,,21Λ都线性相关,且可以互相线性表示,则必有s r =.( ) 2.n 维向量组)1(,,,21>s s αααΛ线性相关的充要条件是其中有一个向量可由其余向量线性表示.( ) 3.设n 维向量组r ααα,,,21Λ中每一个向量均可由s βββ,,,21Λ线性表示,且s r >,则r ααα,,,21Λ必线性相关.( )4.设n ααα,,,21Λ为n 个m 维向量,且m n >,则该向量组必定线性相关.( ) 5.设321,,ααα是线性无关向量组,则向量组32121105,3,2ααααα+-也线性无关.( )6.设向量组r ααα,,,21Λ与s βββ,,,21Λ等价,则r ααα,,,21Λ的任一极大无关组与s βββ,,,21Λ的任一极大无关组可互相线性表示.( )第三章 向量组的线性相关性一、填空题1、-82、线性相关3、线性无关4、线性无关5、16、23-和4 二、选择题1、D2、C3、C4、C5、A三、判断题1、×2、√3、√4、√5、√6、√第四章 线性方程组一、填空题1.n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 仅有零解的充分必要条件是 .2.n 元非齐次线性方程组Ax b =,其增广矩阵记为A% 则方程组有唯一解的充要条件为 . 3.n 元非齐次线性方程组Ax b =,其增广矩阵记为A% 则方程组有无穷多解的充要条件为 . 4.若方程组⎪⎩⎪⎨⎧=++=++=++23213213211k kx x x k x kx x x x kx 无解,则=k .5.设方程组⎪⎩⎪⎨⎧-=+-=++-=++4224321321321kx x x x kx x kx x x 有唯一解,则≠k .6.齐次线性方程组()⎪⎩⎪⎨⎧=-+=+++=++02023202321321321x ax x x a x x x x x 只有零解,则≠a .7.齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-020743032321321321ax x x x x x x x x 有非零解,则=a .二、选择题1.设A 为n m ⨯矩阵,则齐次线性方程组0=Ax 仅有零解的充分必要条件是系数矩阵A 的秩为r ( ). (A) m r < (B) n r < (C) m r = (D) n r =2.设n 元齐次线性方程组0=Ax ,若n r A R <=)(,则该方程组的基础解系( ).(A )唯一存在 (B )共有r n -个 (C )含有r n -个解向量 (D )含有无穷多个解向量3.已知321,,ααα是线性方程组0=Ax 的一个基础解系,则必有( ). (A )321,,ααα线性相关 (B )321,,ααα线性无关(C )133221,,αααααα+++线性相关 (D )133221,,αααααα+++不是0=Ax 基础解系 4.方程组⎩⎨⎧=+--=-++032054354325431x x x x x x x x 的一组基础解系是由( )个解向量组成的.(A )2 (B )1 (C )3 (D )05. n 元非齐次线性方程组Ax b =,其增广矩阵记为A % 则方程组无解的充要条件为( ). (A )()(A)r Ar >% (B )()(A)r A r =% (C )()(A)r A r <% (D )()(A)r A r ≠% 6.设s ααα,,,21Λ是n 元齐次线性方程组0=Ax 的基础解系,则( ). (A )s ααα,,,21Λ线性相关 (B )0=Ax 的任意1+s 个解向量线性相关 (C )n A R s =-)( (D )0=Ax 的任意1-s 个解向量线性相关 7.若321,,ααα是齐次线性方程组0=Ax 的一个基础解系,则( ).(A )133221,,αααααα+++也是0=Ax 的一个基础解系 (B )基础解系具有唯一性 (C )133221,,αααααα+++不一定是0=Ax 的基础解系 (D )以上说法都不对 8.设A 为n m ⨯矩阵,非齐次线性方程组b Ax =的导出组为0=Ax ,若n m <,则( ). (A )b Ax =必有无穷多解 (B )b Ax =必有唯一解 (C )0=Ax 必有非零解 (D )0=Ax 必有唯一解三、判断题1.设21,ξξ为齐次线性方程组0=Ax 的解,1η为非齐次线性方程组b Ax =的解,则22111ξξηk k ++为b Ax =的通解(21,k k 为任意实数).( )2.设21,ξξ为齐次线性方程组0=Ax 的解,21,ηη为非齐次线性方程组b Ax =的解,则()()2121ηηξξ-++为0=Ax 的解.( ) 3.含有n 个方程的n 元齐次线性方程组0=Ax ,仅有零解的充要条件是0A =.( ) 4.含有n 个方程的n 元齐次线性方程组0=Ax ,有非零解的充要条件是0A ≠.( )5.若方程组⎪⎩⎪⎨⎧=++=++=++000321321321kx x x x kx x x x kx 有非零解,则k 应满足的条件是0=k 或1=k .( )6.若方程组⎪⎩⎪⎨⎧=+=++=++03 02032321321x kx x x x x kx x 只有零解,则k 应满足的条件是53=k .( )第四章 线性方程组一、填空题1、r n =2、(A)r(A)n r ==% 3、(A)r(A)n r =<% 4、2- 5、1-和2- 6、1-和3 二、选择题1、D2、C3、B4、C5、D6、B7、A8、C三、判断题1、√2、√3、×4、×5、×6、×第五章 矩阵的特征值一、填空题1.设()()TT0,1,2,1,0,121==αα,则内积[]=21,αα .2.设()Tk 2,1,2=α为单位向量,则=k .3.设321,,ξξξ是矩阵A 的属于不同特征根321,,λλλ的特征向量,则321,,ξξξ是线性 . 4.设A 的特征值为1,2-,3,则A 2的特征值为 .5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=014020112A ,则A 的特征值为 . 6.若0λ为A 的一个特征值,则矩阵多项式()A f 有一个特征值为 . 7.已知三阶矩阵A 的三个特征值为1, -1,2,则()2E A -的特征值为 .8.设0≠λ为方阵A 的一个特征值,则()13-A 有一个特征值为 .9.设A 为n 阶方阵,方程组0=Ax 有非零解,则A 必有一个特征值为 . 10.n 阶矩阵A 可对角化的充分必要条件是A 有 个线性无关的特征向量.11.0是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 01020101的特征值,则=a .二、选择题1.下列结论中不正确的是( ).(A )若n 维向量α与β正交,则对任意实数l k ,,αk 与βl 也正交; (B )若n 维向量β与21,αα都正交,则β与21,αα的任意线性组合也正交; (C )若n 维向量α与β正交,则βα,中至少有一个是零向量; (D )若n 维向量α与任意n 维向量都正交,则α是零向量. 2.设A 是正交矩阵,则下列结论不正确的是( ).(A )1-A 是正交矩阵 (B )T A 是正交矩阵 (C )1±=A (m 是正整数) (D )kA (1≠k )是正交矩阵 3.下列说法正确的是( ).(A )因为特征向量都是非零向量,所以它对应的特征值非零; (B )一个特征值可对应多个特征向量; (C )一个特征向量可以属于多个特征值; (D )n 阶矩阵有n 个不同的特征值.4.设n 阶可逆矩阵A 有一特征值为λ,则A *的特征值之一是( ). (A )nA 1-λ (B )A 1-λ(C )A λ (D )nA λ5.设n 阶可逆矩阵A 有一特征值为λ,则1*--A A 的特征值之一是( ).(A )11---λλA (B )11--+λλA (C )λλ+-A 1 (D )λλ--A 16.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的( ).(A )充分而非必要条件 (B )充要条件 (C )必要而非充分条件 (D )无关的条件7.设n λλλ,,,21Λ是n 阶对称矩阵A 的特征值,{}n diag λλλ,,,21Λ=Λ,则( )不成立. (A )A 与()()Λ=r A r (B )kA 与kΛ相似 (C )Λ=A (D )Λ≠A8.下列矩阵中与矩阵⎥⎦⎤⎢⎣⎡=Λ2011相似的是( ). (A )⎥⎦⎤⎢⎣⎡--2001 (B )⎥⎦⎤⎢⎣⎡2211 (C )⎥⎦⎤⎢⎣⎡2001 (D )⎥⎦⎤⎢⎣⎡10119.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ10000002,210100002y B ,若B A ,相似,则=y ( ). (A) 1 (B) 2 (C) 1- (D) 2-10.对于实矩阵A ,以下结论正确的是( ).(A )一定有n 个不同的特征值 (B )存在可逆矩阵B ,使AB B 1-为对角矩阵(C )它的特征值一定是实数 (D )属于不同特征值的特征向量一定线性无关三、判断题1.线性无关向量组一定可以化为等价的正交向量组.( )2.正交向量组必线性无关.( )3.若n 阶方阵A 与B 相似,则A 与B 必有相同的特征值和特征向量.( )4.设21,ξξ分别是实对称方阵A 对应于两个不同特征值21,λλ的特征向量,则内积[]0,21=ξξ.( )5.n 阶矩阵A 可逆的充要条件是A 的任一特征值不等于0.( )6.n 阶矩阵A 可与对角阵相似的充分必要条件是A 有n 个相异的特征值.( )7.n 阶矩阵A 可与对角阵相似的充分必要条件是A 有n 个线性无关的特征向量.( )8.n 阶方矩阵A 一定可与对角阵相似.( )9.特征多项式相同的矩阵一定相似.( ).第五章 矩阵对角化一、填空题1、22、31± 3、无关 4、2,4-,6 5、1-,2,2 6、)(0λf 7、0,1,4 6,11 8、131-λ 9、0 10.n 11. 1二、选择题1、C2、D3、B4、B5、A6、A7、D8、C9、A三、判断题1、√2、√3、×4、√5、√6、×7、√8、√9、×期考大题题型及分值计算题(一)(本大题共2小题,每小题4分,共8分.请写出计算过程、步骤.) 1.计算行列式201325143.2.121110212,231123341A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭计算23A B +计算题(二)(本大题共5小题,每题8分,共40分.请写出计算过程、步骤.)1.计算行列式0111101111011110.2.求111011101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的逆矩阵.3.求向量组()()()()12341,0,3,1,1,3,0,1,2,1,7,2,4,2,14,4T T T Tαααα==--==的秩与它的一个极大无关组,并将其余向量用此极大无关组线性表示.4.解方程组:1231231234441624x x x x x x x x x ++=⎧⎪-++=⎨⎪-+=-⎩5.求⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111020011A 的特征值证明题(6分)设321,,ααα线性无关,3211αααβ--=,3212αααβ-+-=,3213αααβ+--=,证明:321,,βββ线性无关.。
线性代数辅导及习题答案

线性代数辅导及习题答案线性代数是数学中的一个重要分支,它研究的是向量空间和线性映射的性质。
在学习线性代数的过程中,很多人会遇到一些难题,需要辅导和习题答案来帮助自己更好地理解和掌握相关概念和方法。
一、线性代数辅导的重要性线性代数是数学中的一门基础课程,它在很多领域都有广泛的应用,如物理学、工程学、计算机科学等。
因此,对于学习者来说,掌握线性代数的基本概念和方法是非常重要的。
然而,由于线性代数的抽象性和复杂性,很多人在学习过程中会遇到困难。
这时,线性代数辅导就变得尤为重要。
线性代数辅导可以帮助学生更好地理解和掌握线性代数的基本概念和方法。
辅导老师可以通过讲解和示范,帮助学生理清思路,解决他们在学习过程中遇到的问题。
同时,辅导老师还可以根据学生的不同水平和需求,提供针对性的习题和练习,帮助学生巩固和加深对线性代数知识的理解。
二、线性代数习题的重要性习题是学习线性代数的重要组成部分,通过做习题可以帮助学生巩固和加深对知识的理解。
线性代数习题的设计应该具有一定的难度和深度,既能考察学生对基本概念和方法的理解,又能培养学生的思维能力和解决问题的能力。
习题答案的提供可以帮助学生检验自己的答案是否正确,同时还可以帮助他们理解解题思路和方法。
在学习过程中,学生可能会遇到一些难题,他们需要参考习题答案来解决问题。
通过对习题答案的研究和分析,学生可以更好地理解和掌握线性代数的相关概念和方法。
三、线性代数辅导与习题答案的获取途径线性代数辅导和习题答案可以通过多种途径获取。
首先,学生可以向自己的老师或同学请教,他们可以提供一些解题思路和方法。
其次,学生可以通过参考教材中的习题答案来解决问题。
教材中通常会提供一些习题的答案,学生可以通过对答案的研究来理解解题思路和方法。
此外,学生还可以通过互联网搜索相关的线性代数辅导和习题答案。
有很多网站和论坛提供线性代数的辅导和习题答案,学生可以通过搜索引擎找到这些资源。
然而,学生在使用线性代数辅导和习题答案时需要注意一些问题。
2019考研线性代数基础讲义(含答案)

2019考研线性代数基础讲义参考答案目录第一章行列式 (1)考试内容 (1)考试要求 (1)§1.行列式的定义 (1)§2.行列式的性质 (2)§3.行列式的展开式定理 (3)§4、常见行列式计算 (6)第二章矩阵 (8)考试内容 (8)考试要求 (8)§1.矩阵及其运算 (8)§2.逆矩阵 (12)§3.初等变换与初等矩阵 (15)§4.矩阵的秩 (17)§5.分块矩阵 (19)第三章向量 (23)考试内容 (23)考试要求 (23)§1.n维向量的概念及其运算 (23)§2.向量组的线性相关性 (24)§3.向量组的秩和极大无关组 (27)§4.向量的内积与施密特正交化 (30)第四章线性方程组 (32)考试内容 (32)考试要求 (32)§1.线性方程组有解的判定 (32)§2.向量组的线性相关性与方程组的关系 (39)第五章矩阵的特征值与特征向量 (42)考试内容 (42)考试要求 (42)§1.特征值与特征向量 (42)§2.矩阵的相似对角化 (45)§3.实对称矩阵的相似对角化 (48)第六章二次型 (51)考试内容 (51)考试要求 (51)§1.二次型的概念 (51)§2.二次型的标准型与规范型 (53)§3.正定二次型 (57)附录向量空间(数一) (58)。
《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。
(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
2019考研网校线代强化讲义1-2章41页word文档

第一章行列式线性代数的特点是这些内容联系非常紧密。
不但后面的知识用到前面的知识,而且有时前面的知识也用到后面的一些结论。
因此,把它们串在一起学习,同学们会发现线性代数是1条主线,2种运算,3个工具。
即:一条主线是方程组;二种运算是求行列式和求矩阵的初等行(列)变换;三个工具是行列式,矩阵,向量(组)。
行列式的核心考点是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
另外,用简单的递推公式求行列式的方法也应掌握。
【大纲内容】行列式的概念和基本性质;行列式按行(列)展开定理。
【大纲要求】了解行列式的概念,掌握行列式的性质。
会应用行列式的性质和行列式按行(列)展开定理计算行列式。
【考点分析】考研试题中关于行列式的题型主要是填空题,纯粹考行列式的题目很少,但行列式是线性代数中必不可少的工具,它在处理以下问题中都有重要应用:1.判定方阵是否可逆以及应用公式求逆矩阵;2.判定n个n维向量的线性相关性;3.计算矩阵的秩;4.讨论系数矩阵为方阵的线性方程组的解的情况并利用克莱姆法则求方程组的解;5.求方阵的特征值;6.判定二次型及实对称矩阵的正定性。
同时,上述内容也可与行列式知识相结合构造新的关于行列式的题型。
在复习过程中,请大家注意及时归纳总结。
相应知识点精讲一、行列式的定义1.行列式的形式:个数排列成n行、n列,组装成一个正方形,两边画两根竖线,即形如:,称为一个n阶行列式。
其中数称为行列式的元素,横排的一行元素称为行列式的第i行,自上而下计序,共有n行。
竖排的一列元素称为行列式的第j列,自左向右计序,共有n列。
自左上角到右下角倾斜的一列元素称为行列式的主对角线,自右上角到左下角倾斜的一列元素称为行列式的次对角线或副对角线。
2.行列式的值:行列式的数学属性是一个数,称为该行列式的值。
当一个行列式的元素给定后,该行列式的值可通过特定的运算,从其元素计算得到。
线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解(总92页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae acab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a 100110011001 解(1)7110025*******21434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)265232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -;(2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=yx z x z y zy x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 .证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11 =,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 010000000000001000=按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) n nnnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-= 112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 51165100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--= 51100650000601000051001653=D 展开按第三列5100650006100051650061000510065+6100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1 已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4 计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=5 设⎪⎭⎫ ⎝⎛=3121A ⎪⎭⎫⎝⎛=2101B 问(1)AB BA 吗 解 AB BA 因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B)2A 22AB B 2吗 解 (A B)2A 22AB B 2 因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B)2A 22AB B 2 (3)(A B)(A B)A 2B 2吗 解 (A B)(A B)A 2B 2因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(A B)(A B)A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0 解 取⎪⎭⎫ ⎝⎛=0010A 则A 20 但A 0(2)若A 2A 则A 0或A E 解 取⎪⎭⎫ ⎝⎛=0011A 则A 2A 但A 0且A E(3)若AX AY 且A 0 则X Y 解 取⎪⎭⎫ ⎝⎛=0001A⎪⎭⎫ ⎝⎛-=1111X ⎪⎭⎫ ⎝⎛=1011Y则AX AY 且A 0 但X Y7 设⎪⎭⎫ ⎝⎛=101λA 求A 2A 3Ak解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8设⎪⎪⎭⎫ ⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵证明 因为A T A 所以(B T AB)T B T (B T A)T B T A T B B T AB 从而B T AB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明 充分性 因为A T A B T B 且AB BA 所以(AB)T (BA)T A T B T AB 即AB 是对称矩阵必要性 因为A T A B T B 且(AB)T AB 所以 AB (AB)T B T A T BA 11 求下列矩阵的逆矩阵 (1)⎪⎭⎫⎝⎛5221解⎪⎭⎫ ⎝⎛=5221A |A|1 故A 1存在 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225 (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A|10 故A 1存在 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A|20 故A 1存在因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2a n0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 12 解下列矩阵方程 (1)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛12643152X解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14 设A k O (k 为正整数) 证明(E A)1E A A 2 A k1证明 因为A k O 所以E A k E 又因为E A k (E A)(E A A 2A k 1)所以 (E A)(E A A 2 A k 1)E 由定理2推论知(E A)可逆 且(E A)1E A A 2A k1证明 一方面 有E (E A)1(E A) 另一方面 由A k O 有 E (E A)(A A 2)A 2A k1(A k1A k )(E A A 2 A k 1)(E A)故 (E A)1(E A)(E A A 2 A k 1)(E A) 两端同时右乘(E A)1就有(E A)1(E A)E A A 2A k115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E)1证明 由A 2A 2E O 得A 2A 2E 即A(A E)2E 或E E A A =-⋅)(21由定理2推论知A 可逆 且)(211E A A -=-由A 2A 2E O 得 A 2A 6E 4E 即(A 2E)(A 3E)4E或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A|2 即 |A||A E|2 故 |A|0所以A 可逆 而A 2E A 2 |A 2E||A 2||A|20 故A 2E 也可逆 由 A 2A 2E O A(A E)2E A 1A(A E)2A 1E)(211E A A -=-又由 A 2A 2E O (A 2E)A 3(A 2E)4E(A 2E)(A 3E)4 E所以 (A 2E)1(A 2E)(A 3E)4(A 2 E)1)3(41)2(1A E E A -=+- 16 设A 为3阶矩阵 21||=A 求|(2A)15A*|解 因为*||11A A A =- 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A|1821617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*)1(A 1)*证明 由*||11A A A =- 得A*|A|A 1所以当A 可逆时 有|A*||A|n |A 1||A|n 1从而A*也可逆 因为A*|A|A 1所以(A*)1|A|1A又*)(||)*(||1111---==A A A A A 所以(A*)1|A|1A |A|1|A|(A 1)*(A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A|0 则|A*|0 (2)|A*||A|n 1证明(1)用反证法证明 假设|A*|0 则有A*(A*)1E 由此得A A A*(A*)1|A|E(A*)1O所以A*O 这与|A*|0矛盾,故当|A|0时 有|A*|0 (2)由于*||11A A A =- 则AA*|A|E 取行列式得到|A||A*||A|n 若|A|0 则|A*||A|n 1若|A|0 由(1)知|A*|0 此时命题也成立因此|A*||A|n119设⎪⎪⎭⎫ ⎝⎛-=321011330A AB A 2B 求B解 由AB A 2E 可得(A 2E)B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B 求B解 由AB E A 2B 得 (A E)B A 2E 即 (A E)B (A E)(A E)因为01001010100||≠-==-E A 所以(A E)可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B解 由A*BA 2BA 8E 得(A*2E)BA 8EB 8(A*2E)1A 1 8[A(A*2E)]1 8(AA*2A)1 8(|A|E 2A)18(2E 2A)14(E A)14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(1 2 1)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B 解 由|A*||A|38 得|A|2 由ABA1BA13E 得AB B 3AB 3(A E)1A 3[A(E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫ ⎝⎛--=1141P ⎪⎭⎫⎝⎛-=Λ2001求A 11解 由P 1AP得A P P 1所以A 11 A=P 11P 1.|P|3 ⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫ ⎝⎛-=Λ511 求(A)A 8(5E 6A A 2) 解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(100) (A)P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明 因为 A 1(A B)B 1B1A1A1B1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A1B 1可逆(A1B 1)1[A 1(A B)B 1]1B(A B)1A26 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 27 取⎪⎭⎫ ⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠解41001200210100101002000021010010110100101==--=--=D C B A而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A 则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1-⎪⎭⎫⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211C C C C O B A O 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211D D D D B C O A 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
2019线性代数与概率统计随堂练习答案

1、(单选题) 计算?A.;B.;C.;D.、参考答案:A2、(单选题) 行列式?A.3;B.4;C.5;D.6、参考答案:B3、(单选题) 计算行列式、A.12;B.18;C.24;D.26、参考答案:B4、(单选题) 计算行列式?A.2;B.3;C.0;D.、参考答案:C1、(单选题) 计算行列式?A.2;B.3;C.;D.、参考答案:C2、(单选题) 计算行列式?A.2;B.3;C.0;D.、参考答案:D第一章行列式·1、3 阶行列式的定义1、(单选题) 利用行列式定义,计算n阶行列式:=?A.;B.;C.;D.、参考答案:C2、(单选题) 计算行列式展开式中,的系数。
A.1, 4;B.1,-4;C.-1,4;D.-1,-4、参考答案:B第一章行列式·1、4 行列式的性质1、(单选题) 计算行列式=?A.-8;B.-7;C.-6;D.-5、参考答案:B2、(单选题) 计算行列式=?A.130 ;B.140;C.150;D.160、参考答案:D3、(单选题) 四阶行列式的值等于多少?A.;B.;C.;D.、参考答案:D4、(单选题) 行列式=?A.;B.;C.;D.、参考答案:B5、(单选题) 已知,则?A.6m;B.-6m;C.12m;D.-12m、参考答案:A一章行列式·1、5 行列式按行(列)展开1、(单选题) 设=,则?A.15|A|;B.16|A|;C.17|A|;D.18|A|、参考答案:D2、(单选题) 设矩阵,求=?A.-1;B.0;C.1;D.2、参考答案:B3、(单选题) 计算行列式=?A.-1500;B.0;C.-1800;D.-1200、参考答案:C第一章行列式·1、6 克莱姆法则1、(单选题) 齐次线性方程组有非零解,则=?A.-1;B.0;C.1;D.2、参考答案:C2、(单选题) 齐次线性方程组有非零解的条件就是=?A.1或-3;B.1或3;C.-1或3;D.-1或-3、参考答案:A3、(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论就是哪个?A.无解;B.唯一解;C.一个零解与一个非零解;D.无穷多个解、参考答案:B4、(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论就是哪个?A.只有零解;B.只有非零解;C.既有零解,也有非零解;D.有无穷多个解、参考答案:A5、(单选题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵 A 的特征值为 λ = 0, 2, − 矩阵 A + E 的特征值为 行列式 |A + E | 等于特征值乘积,
1 λ = 1, 3, , (3 阶矩阵 3 个特征值.) 3 |A + E | = 1 × 3 × 4 1 = 1. 3
2019 线性代数辅导讲义练习参考答案
(2)答案
24
解析: 相似矩阵有相同的特征值, 所以矩阵 B 的特征值为 1,2,3,B + E 的特征值为 2,3,4. |B + E | = 2 × 3 × 4 = 24.
2 A2 (α1 + α2 ) = λ2 1 α1 + λ2 α2 = α1 + α2
整理,得
(
) ( 2 ) λ2 1 − 1 α1 + λ2 − 1 α2 = 0
2 α1 , α2 线性无关,系数全为 0. λ2 1 − 1 = 0, λ2 − 1 = 0.
所以, |A| = λ1 λ2 = −1.
4 3 2
0 0 −1 0 0 −1 λ 0 −1 λ 0 0 0 0 −1 0 0 −1 λ 0 0 0 −1 0 第 4 行展开 第 1 行的λ3 + λ2 + 2λ + 3倍加到第 4 行 第 2 行的λ2 + λ + 2倍加到第 4 行 第 3 行的λ + 1倍加到第 4 行
第 18 页
(1)答案 1 解析: 矩阵不可逆, 矩阵行列式为零. |A| = 0, |A − 2E | = 0, |3A + 2E | = 0, (特征值|λE − A| = 0, 特征值的相关知识见第五章) 2 3
3
0 −1 λ
λ + (−1)4+3 (−1) 0 4 + (−1)
3+1
−1 λ 3 0 −1
0 −1 2 )
0 (
= (λ + 1)λ +
λ
λ −1 3 2
4
−1 λ
= λ4 + λ3 + 2λ2 + 3λ + 4. 也可以利用行列式的性质 λ −1 0 0 4 λ 0 3 0 −1 λ 2 0 0 −1 λ+1 = λ −1 0 0 4 λ = 0 0 4 λ 0 3 0 −1 λ λ2 + λ + 2 −1 λ 0 λ3 + λ2 + 2λ + 3 λ = 0 0 λ4 + λ3 + 2λ2 + 3λ + 4 = λ + λ + 2λ + 3λ + 4.
《2019 线性代数辅导讲义》 练习参考答案
- 2018 年 6 月 7 日 -
金榜图书编辑部数学组
微信公众号
Contents
第2页 今年考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 4 5 5 6 6 7 7 8 8 9 10 11 11 12 12 13 13 14 15 15 16 16 17 17 第 15 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 18 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 26 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 28 页 今年考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 42 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 45 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 49 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 52 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 69 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 73 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 75 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 77 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 78 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 94 页 今年考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 98 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 100 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 103 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 109 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 125 页 今年考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 143 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 145 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 150 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 158 页 今年考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 164 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 175 页 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(∗)
1 −1 1 1
= 1 − (−1) = 2.
也可以就得出的关系式 (∗) 两边取行列式, 1 0 |A||P | = |P | 1 1 0 1 P 可逆,则 |P | ̸= 0. 1 0 1 |A| = 1 1 0 0 1 1 (2018,1) 答案 −1 = 2. 1 0 , 1
解析: 设 A 的特征值分别为 λ1 , λ2 ,λ1 ̸= λ2 . α1 , α2 线性无关,则 α1 , α2 属于不同特征值的特征向量. (如果 α1 , α2 是同一个特征值的特征向量,则该特征值至少是二重的,与题设特征值不同矛盾.) 不妨设 λ1 , λ2 对应的特征向量分别为 α1 , α2 ,则 Aα1 = λ1 α1 , Aα2 = λ2 α2 . 代入